N

HAL

open science

Programming in style with bach

Andrea Agostini, Daniele Ghisi, Jean-Louis Giavitto

» To cite this version:

Andrea Agostini, Daniele Ghisi, Jean-Louis Giavitto. Programming in style with bach. 14th In-
ternational Symposium on Computer Music Multidisciplinary Research, Mitsuko Aramaki, Richard
Kronland-Martinet Sglvi Ystad, Oct 2019, Marseille, France. hal-02347961

HAL Id: hal-02347961
https://hal.science/hal-02347961
Submitted on 5 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02347961
https://hal.archives-ouvertes.fr

Proc. of the 14th International Symposium on CMMR, Marseille, France, Oct. 14-18, 2019

Programming in style with bach

Andrea Agostini!, Daniele Ghisi?, and Jean-Louis Giavitto®

1 Conservatory of Turin
2 Conservatory of Genoa
3 CNRS, STMS — IRCAM, Sorbonne University

Abstract. Different programming systems for computer music are based
upon seemingly similar, but profoundly different, programming paradigms.
In this paper, we shall discuss some of them, with particular reference
to computer-aided composition systems and Max. We shall subsequently
show how the bach library can support different programming styles
within Max, improving the expression, the readability and the main-
tainance of complex algorithms. In particular, the forthcoming version
of bach introduces bell, a small textual programming language embedded
in Max and specifically designed to facilite programming tasks related
to manipulation of symbolic musical material.

Keywords: Programming paradigms, computer-aided composition, Max,
bach, bell

1 Introduction

In spite of the way it is advertised, its own Turing-completeness and the sheer
amount and complexity of things that have been done with it, programming in
Max is difficult. Whereas setting up simple interactive processes with rich graph-
ical interfaces may be immediate, it has been long observed that implementing
nontrivial algorithms is far from straightforward, and the resulting programs are
often very difficult to analyse, maintain and debug.

Several other popular programming languages and environments for com-
puter music, such as OpenMusic [1], PWGL [10] and Faust [11], share with Max a
superficially similar, but profoundly different, dataflow programming paradigm,
which makes them better suited for ‘real’ programming and less for setting up
highly interactive and responsive systems. This is reflected in the types of artis-
tic practices these systems are typically used for, and mirrors the oft-discussed
rift between composition- and performance-oriented tools in computer music.

We are convinced that this rift is by no means necessary or natural, and, on
the contrary, has proven problematic with respect to a wide array of practices
lying somehow between the two categories, such as extemporaneous, ‘intuition-
istic’ approaches to composition (including, but not limited to, improvisation),
sound-based and multimedia installations, live coding and more.

In this paper, we shall investigate this divide and its reasons from the point
of view of computational models, and consider how it can be bridged, or at least
narrowed, through the use of the bach package for Max [3].

91



Proc. of the 14th International Symposium on CMMR, Marseille, France, Oct. 14-18, 2019

2 Dataflow computational models

The concept of data flow is an old one, dating back at least to [5], which first
introduced the idea of independent computational modules communicating by
sending data (discrete items) among directed links. Over the years, many kinds
of dataflow computation models have been developed. In this section, we shall
review some of them and how they apply to different languages and software
systems for computer music.

2.1 The pipelined and functional dataflow and the Kahn principle.

Several computer music languages and systems (such as Reaktor, OpenMusic
and Faust, but also Reaper, Live, ProTools and various software synthesisers)
are based upon the pipelined dataflow model. This means that programs written
in those systems have the following features, strictly linked to one another:

— Programs are represented as directed graphs; each node of the graph imple-
ments an abstract process consuming data on its input links and producing
data on its output links; the links are the only interactions between the
processes; the sequence of data traversing a link is called a stream.

— Processes have referential transparency: we can always replace every variable
and function by its definition, and a function called twice on the same data
will always return the same result.

— The resulting programming style is declarative: programmers only specify
the properties of the objects they want to build, rather than the way to
build them.

— Programs are mathematical objects, and can be treated as such. It has been
proven by Gilles Kahn [9] that a pipelined dataflow program is equivalent to
a set of equations, taking the form of a fixed point equation. What is known
now as the Kahn Principle states that the stream associated to each edge
of the dataflow graph is the solution of the previous set of equations. As a
consequence, algebraic reasoning on the operational properties of programs
is possible and useful.

— Just like in the process of solving an equation, there is no notion of temporal
sequencing of actions, but rather of algebraic relations between parts of the
equation. Therefore, the program graph is acyclic (as feedback loops are only
meaningful if they establish a temporal delay), and an input link can only
accept one single incoming graph edge.

All this being considered, whether to write a functional dataflow program as
a graphical patch or as a set of equations specified textually is a matter of taste.
Faust is an example of a textual, functional dataflow programming language in
which a program is a set of equations.

Although programs are not explicitly expressed as equations, OpenMusic
and PWGL are essentially based upon the same assumptions as Faust.* How-

4 It should be remarked that the computational model of OpenMusic and PWGL is
not as pure as described here, since it includes imperative traits like storing and
retrieving mutable states through variables.

92



Proc. of the 14th International Symposium on CMMR, Marseille, France, Oct. 14-18, 2019

ever, evaluation in Faust is driven by the availability of the data, that is, it
happens whenever data enter the nodes. On the contrary, the evaluation process
of OpenMusic and PWGL is demand-driven, that is, the user requests a result
to the bottom node of the graph, which in turns requests values to the nodes
connected to its input links, and so on.

2.2 Asynchronous, non-functional pipelined dataflow: Max

Max implements two different dataflow systems, respectively devoted to audio
signals and control messages.® The former is a relatively simple case of syn-
chronous pipelined dataflow, whose functional nature is somewhat less explicit
than that of Faust but not too different from it: in fact, the functional dataflow
view fits very well with the audio graph representation of signal processing. Our
discussion will only focus on the latter and its significantly different paradigm.
In what follows, we shall assume in the reader a basic, practical knowledge of
Max, and only review some fundamental concepts when needed.

A Max patch can be seen as a set of nodes working asynchronously with
respect to each other: if, when and how each module ‘fires” depends on the data
processed, and, generally speaking, only one message can traverse the patch at
any given time. This means that nodes with more than one input link must have
mechanisms for storing data for later use. This is accomplished through the so-
called ‘hot’ and ‘cold’ inlets (that is, input links in the Max jargon): when a hot
inlet receives a message, it performs its computation and delivers the result; but
when a message is received in a cold one, it gets stored for later use and nothing
else happens. Most Max objects have at least one hot inlet, and many have one
or more cold inlets.

This structure, which actually involves many other details and is not without
exceptions, has some profound consequences:

— Objects have mutable states, which may change over time in response to
a single evaluation request (see, e.g., the ‘cold’ inlet of any arithmetical
operator).

— Objects have no referential transparency. The order of messages on a link is
not enough to determine the global behavior of a patch: the precise times-
tamp of these messages is semantically meaningful. Altering the order in
which data are sent from a node to others in response to a single piece of
incoming data (that is, to a single computation request) may change the
performed computation.

— Multiple links (‘cords’ in the Max jargon) can be connected to a single inlet:
as data are always transmitted sequentially, this means that the inlet will
receive data from its incoming cords one after another, and act consequently.

® Most of the general principles described here also apply to Max’s sibling system, Pd,
which we shall not discuss as the bach library is currently not available for it.

93



Proc. of the 14th International Symposium on CMMR, Marseille, France, Oct. 14-18, 2019

2.3 Pros and cons of different computational models

Max’s computational model is motivated by the fact that, unlike the other sys-
tems described above, it was not conceived as a programming language but, in
its own creator’s words [12], as a musical instrument. With respect to this end,
Max has the merit of being extremely economical in terms of its basic principles
and quite adaptable to very different use cases.

On the other hand, as hinted at above, representing nontrivial algorithms
in Max is often more complicated than with other systems. Two of the au-
thors became painfully aware of this complicatedness while working at the cage
package [2], which implements a comprehensive set of typical computer-aided
composition operations. cage is entirely composed of abstractions, and during
its development the shortcomings of Max programming became so evident that
the seeds for the work presented in this article were planted.

The reasons for this difficulty are multiple, and include the following;:

— The greater freedom Max grants in building the program graph easily leads
to far more intricate patches than functional dataflow models, with spaghetti
connections that can grow very hard to analyse.

— Typical Max patches often have their state distributed through many objects
whose main, individual purpose is not data storage.

— Max lacks, or implements in quite idiosyncratic ways, some concepts that
are ubiquitous in modern programming languages, such as complex, hierar-
chical data structures, data encapsulation, functions and parametrization of
a process through other processes.

On the other hand, Max allows to incorporate, on top of its basic paradigm,
traits reminiscent of various programming styles, such as imperative, object-
oriented and functional. Moreover, it includes various objects enclosing entire
language interpreters, thus allowing textual code in various languages to be
embedded in a patch.

These features may prove useful when nontrivial processes have to be imple-
mented, as is the case when working in contexts like algorithmic and computer-
aided composition. Whereas Max was not conceived with these specific applica-
tions in mind, it quickly became clear that it could be a valuable environment
for them, and several projects have been developed in this sense [14,13,7]. We
shall focus on one of them, the bach package, which has been conceived and
maintained by two of the authors.

2.4 The bach package

The bach package® for Max is a freely available library of more than 200 modules
aimed at augmenting Max with advanced capabilities of symbolic musical repre-
sentation. At its forefront are two objects called bach.roll and bach.score,
capable of displaying, editing and playing back musical scores composed of

6 www. bachproject.net

94



Proc. of the 14th International Symposium on CMMR, Marseille, France, Oct. 14-18, 2019

both traditional notation and arbitrary time-based data, such as parameters for
sound synthesis and processing, textual or graphical performance instructions,
file paths and more.”

One of the main focuses of bach is algorithmic generation and manipula-
tion of such scores. To this end, bach implements in Max a tree data structure
called Il (an acronym for Lisp-like linked list), meant to represent arbitrary
data including whole augmented scores. bach objects and abstractions exchange
lllls with each other, rather than regular Max messages, and their majority is
devoted to performing typical list operations such as reversal, rotation, search,
transposition, sorting and so on.

Generally speaking, bach objects abide by the overall design principles and
conventions of Max, but it should be remarked that, whereas standard Max
objects can control the flow of Illls in a patcher just like they do with regular Max
messages, they cannot access their contents unless [lllls are explicitly converted
into a Max-readable format, which on the other hand has other limitations (for
a detailed explanation, see [3]). Thus, bach contains a large number of objects
that somehow extend to [llls the functionalities of standard Max objects. For
example, whereas the zl.rev object reverses a plain Max list, the bach.rev
object reverses an [lll by taking into account all the branches of the tree, each
of which can be reversed as well or not according to specific settings. Whereas
it is possible to convert an [lll into Max format and reverse it with z1.rev, in
general the result will not be semantically and syntactically correct.

Since its beginnings, bach has been strongly influenced by and related to
a number of other existing projects: for an overview of at least some of them,
see [3]. The synthesis of different approaches that lies at the very basis of the
conception itself of bach has been validated by a large community of users, who
have developed many artistic and research projects in several domains®, as well
as the fact that it provides the foundation for the cage and dada® libraries [8].

In the following sections, we shall review a few programming styles and ap-
proaches and see how bach can be helpful with adopting them in Max: namely,
we shall show how some fundamentally imperative, functional and objected-
oriented traits of Max can be leveraged through the use of specific bach objects
and design patterns; moreover, we shall discuss a recent addition to bach, that
is, a multi-paradigm programming language called bell and meant to facilitate
the expression of complex algorithms for manipulating [lils.

" bach.roll and bach.score differ in that the former represents time proportionally,
whereas the latter implements a traditional representation of time, with tempi, metri,
measures and relative temporal units such as quarter notes, tuplets and so on.

8 The website of bach showcases some interesting works that have been developed with
the library, mostly by people independent of its developers.

9 The dada library contains interactive two-dimensional interfaces for real-time sym-
bolic generation and dataset exploration, embracing a graphic, ludic, explorative
approach to music composition.

95



Proc. of the 14th International Symposium on CMMR, Marseille, France, Oct. 14-18, 2019

3 Different programming styles and approaches in Max

3.1 Imperative approach

It has been observed that Max is essentially an imperative system in disguise [6]:
as stated before, any nontrivial program in Max requires to take care of states
and the order of operations, and analysing even a moderately complex patch can
only be done by following the flow of data and the evolution of states over time.

It is possible to make this imperative style more explicit by adopting some
good practices, such as widely using specific objects, such as trigger and
bangbang, that can help with keeping the evaluation order under control. More-
over, Max contains two objects whose only purpose is holding data associated
with a name: value and pv (for ‘private value’), whose role can be seen as corre-
sponding to that of variables in traditional imperative programming languages.
Each instance of those objects has a name, and every time it receives a piece
of information it retains and shares it with all the other objects with the same
name. It is subsequently possible retrieve the stored data from any of them.
The value and pv modules differ in their scope: the former’s is global, that is,
data are shared through all the open patches in the Max session, whereas the
latter’s is local, in that data are only shared within the same patcher or its
subpatchers. By combining value and pv with the aforementioned sequencing
objects, it is possible to use Max in a much more readable, essentially imperative
programming style.

bach implements its own variants of these objects, respectively named
bach.value and bach.pv. Besides dealing correctly with lllls, they can open
a text editing window if double-clicked, allowing to view and modify the data
they hold. Moreover, bach contains an object called bach.shelf, which acts as
a container of an arbitrarily large set of lllls, each associated to a unique name.
bach.shelf objects can be themselves named, thus defining namespaces: this
means that [llls associated to a name within one named bach.shelf object will
be shared only with other bach.shelf objects with the same name. Although
still somewhat crude (it might be interesting, for example, allowing non-global
namespaces), this is a way to improve data localization and data encapsulation,
and reduce the proliferation of storage objects in complex scenarios.

3.2 Object-oriented approach

The fact that a Max program is built of independent blocks responding to mes-
sages they send to each other in consequence of callbacks triggered by events
gives it a strong object-oriented flavour, and the Smalltalk influence is both ap-
parent and declared. At a lower level, in fact, each Max object in a patch is an
instance of a specific class, with member variables containing the object’s state
and methods roughly corresponding to the messages it accepts for modifying
and/or querying the state.

The two main bach editors, bach.roll and bach.score, comply with this
object-oriented approach. However, a distinction can be made about the kinds

96



Proc. of the 14th International Symposium on CMMR, Marseille, France, Oct. 14-18, 2019

of messages they accepts: some control and query the object’s appearance (back-
ground color, zoom level, etc.), whereas others are dedicated to the direct man-
agement of the editor’s content. This distinction between the two kinds of mes-
sages is explicit in the syntax of the messages they receive.

Messages dealing with the editor’s contents enable the creation, the edition
and the deletion of individual notation items, such as a single measure or a single
note. These messages can actually be seen as methods of the items themselves,
which are arranged according to a precise hierarchy and share a certain number
of common properties (such as having a symbolic name, being selectable, etc.).

In fact, there are several ways to modify a score. One of the simplest involves
dumping its parameters from some outlets, modifying them via appropriate Max
and bach modules, and feeding the result into a different editor object.

In contrast, one can send direct messages to the editor, asking for specific el-
ements of the score to be created or modified through the so-called bach in-place
syntaz, with no output from the object outlets (unless explicitly requested). Mod-
ifications are immediately performed and the score is updated (see Fig. 1). This
mechanism is strongly inspired by an object-oriented approach: first, references
to the notation items to be modified are acquired via a selection mechanism,
and then messages are sent to them. For example, a set of notes can be selected
graphically, or through a query in the form of a message such as sel note if
voice == 2 and pitch % C1 == F#0. After this, those notes can be modified
by means of messages such as duration = velocity * 10.

In fact, this kind of approach allows much more complex operations than the
ones described here, as there are many classes of notation items, each having
a large number of properties and related messages. In spite of the richness of
the data it can manipulate, though, the in-place syntax is not very flexible, but
there are plans to extend it through the bell language (see below).

sel note if voice == 2 && (measure < 2 || (measure == 2 && symonset < 1/2)), pitch = pitch + GO

9 Selected Iltems

N
o0
N
i,
N
b,
k.
N
N
1!
™
RN
b,
"

Fig. 1. A very simple example of in-place modification: notes belonging to the second
voice and whose onset lies before the middle of the second measure are selected and
transposed up a perfect fifth (the image shows both the state of the score before and
after the click on the message).

97



Proc. of the 14th International Symposium on CMMR, Marseille, France, Oct. 14-18, 2019

3.3 Functional approach

Max shares some similarities with functional languages, mostly by handling val-
ues through a variety of nodes implementing functions on these values. It is then
possible to build patches that somehow behave functionally, and whose appear-
ance is extremely similar to that of equivalent ones in a functional graphical
system such as PWGL. bach extends the functional traits of Max in a few areas.

As hinted at before, it implements the [lll, a tree data type quite similar to a
Lisp list, and provides a large number of modules for dealing with [/lls. Although,
of course, list operators are not inherently functional, they are quite customary
in functional languages, and the corresponding bach objects can be connected in
a way corresponding to the composition of list functions in functional languages
such as Lisp or Haskell.

Secondly, generalized versions of functions such as sort and find require some
way to specify, respectively, a custom ordering or an arbitrary search criterion.
In several languages, these generalized functions are conveniently implemented
as higher-order functions, i.e., functions taking other functions as arguments.
This requires to handle functions like ordinary data. A Max patcher lacks the
concept of function, but several bach objects implement a design pattern called
the lambda loop (see Fig. 2), whose role is somehow akin to that of higher-order
functions.

A lambda loop is a patching configuration in which one or more dedicated
outlets of a module output data iteratively to a patch section, which must cal-
culate a result (either a modification of the original data, or some sort of return
value) and return it to a dedicated inlet of the starting object [3].

[C5 DS] [E3 B5 G#6] [E5 F5 D5] [C6 Bb5 D6] [G5 A5 F#5] [A5 Gb6] m

1 P take the lower

bach.mapelem @maxdepth 1 @out m }( note of each

f ey s/ SRR sulist Py T

E— o G hesetor s
b swpy only retain
Dachexpralter(Spt) == 0 IR
C5E3 D5A5

L
bach.sort @out m

bach.% C1 bach.% C1
T
bach.<= |

Fig. 2. The cross-connected and loop-connected patch cords attached to bach.mapelem,
bach.sieve, bach.sort and cage.timewarp modules form several instances of the so-called
lambda loop. The left-side example should be straightforward. In the right-side ex-
ample, the temporal distribution of events in a musical score is altered through the
provided transfer function, with time on the X axis and speed on the Y axis. At a su-
perficial level, patches like these appear to be quite similar to how the same processes
might be implemented in a functional dataflow system.

) sort pitches according to
pitch classes

98



Proc. of the 14th International Symposium on CMMR, Marseille, France, Oct. 14-18, 2019

Lambda loops are used by some bach modules directly inspired by functional
programming practices, such as bach.mapelem (performing a map operation)
and bach.reduce (recursively applying a binary function on elements); all these
modules can be helpful to translate programs conceived functionally into Max
patches. The number of modules taking advantage of this design pattern is,
however, much larger, and include basic operators such as bach.sieve (only
letting some elements through) and bach.sort (performing sort operations), but
also advanced tools such as bach.constraints (solving constraint satisfaction
problems) as well as some of the modules in the cage package.

4 Textual coding

The approaches described so far are based on the idea that individual objects
carry out elementary operations, and they are connected graphically so as to
build complex behaviors.

A different, but not incompatible, point of view is embedding an algorithm,
even a potentially complex one, into a single object by means of textual coding,
and subsequently insert it into a patch. In graphical, Lisp-based systems such
as OpenMusic and PWGL, this is easily accomplished by inserting graph boxes
containing Lisp code in the patcher. Whereas it is possible to embed in Max
textual code written into various programming languages including C, Lua, Java
and JavaScript, we feel that none of those language bindings provides the ease
and directness of embedding of a Lisp code box in OM or PWGL.

On the other hand, Max contains a family of objects, namely expr, vexpr
and if, that allow defining textually mathematical expressions and simple condi-
tionals which might otherwise require fairly complicated constellations of objects
in a patch. bach adds another member to the family, called bach.expr, allowing
to define mathematical expressions to be performed point-wise on [liis.

Whereas the expr family syntax is not a full-fledged programming language,
it can be seen as the basis for one. We therefore decided to include in the latest
release of bach a new object to the family, called bach.eval, implementing a
new, simple programming language conceived with a few, conceptually simple
points in mind:

— Turing-complete, functional syntax, in which all the language constructs re-
turn values, but also including imperative traits such as sequences, variables
and loops.

— Full downward compatibility with the expr family.

— Inclusion of list operators on lllls respecting, as far as possible, the conven-
tions and naming of the corresponding bach objects.

— Implicit concatenation of elements into /llls, meaning that by simply juxta-
posing values (be they literals, or the result of calculations) they are packed
together into an [lll. In this way, a program can be seen as an [/l inter-
mingled with calculations, not unlike what happens by combining the quote
operator and unquote macro in Lisp.

99



Proc. of the 14th International Symposium on CMMR, Marseille, France, Oct. 14-18, 2019

— Maximum ease of embedding of the object into a Max patcher, with, among
the other things, no need for explicit management of inlets and outlets.

The resulting language is called bell (standing for bach evaluation language
for lllls, but also paying homage to the historic Bell Labs). A detailed description
of its syntax can be found in [4], whereas, for the scope of this article, a few
examples should suffice (see Fig. 3, 4 and 5).

bell code can be typed in the bach.eval object box or into a dedicated text
editor window, loaded from a text file and even passed dynamically to the host
object via Max messages.

oco)

I

bach.eval for $i in 0 ... length($x1) - 1 collect [rot($x1,1)] _

)
|
]

H bach.length
bach.textout

SN ——

[abcd][bcda][cdab][dabc] ahin$1

bach.collect @inwrap 1
1

[abcd][bcda][cdab][dabc]

Fig. 3. A comparison between an [lll manipulation process described through a snippet
of bell code (in the bach.eval object box) and the corresponding implementation
within the standard graphical dataflow paradigm of Max. The code should be mostly
straightforward for readers familiar with the bach library and a textual programming
language such as Python, considering that the [ ... ] paired operator encloses one
or more elements into a sublist, according to the general syntax of lllls.

The intended usage paradigm of bach.eval is similar to that of the expr
family: bach.eval objects are meant to carry out relatively simple computa-
tional tasks, and to be sprinkled around the patcher among regular bach and
Max objects taking care of the UI, MIDI, DSP, event scheduling and so on.

Snippets of bell language can also be passed to other objects as well for fine-
tuning their behavior, as a replacement for lambda loops. Moreover, an intended
(albeit not straightforward) development is to allow bach.score and bach.roll
to be scripted in bell, thus allowing far more complex interactions than what is
already possible through the syntax described above.

5 Conclusions and future work

We have presented some historical and theoretical background about the com-
putational models of Max and other related programming languages and envi-

100



Proc. of the 14th International Symposium on CMMR, Marseille, France, Oct. 14-18, 2019

6000 6210 7099
3
bach.eval @extraoutlets 2

i ~

- ~ N
0501
Fig. 4. A snippet of bell code approximating a list of midicents to the nearest semitone,
and returning the distances from the semitone grid from a different outlet. Here, the
code has been typed in a separate text editing window (shown on the right). The $o1
and $02 pseudovariables assign results to the extra outlets declared in the bach.eval
object box. The main, rightmost outlet returning the actual result of the computation
(which, in this example, is the last term of the sequence defined by the ; operators,
that is, the value of the $1 variable as passed to the first extra outlet) is left unused

here. The language has several other features not shown here, including named and
anonymous user-defined functions with a rich calling mechanism.

Fig. 5. An example of usage of bell in combination with bach.roll’s in-place syntax:
100 notes are generated in the first voice with random onsets (between 0 and 2 seconds)
and random pitches (between middle C and the C two octaves above, on a tempered
semitonal grid); then all C’s, Cf’s and D’s are selected (i.e. notes whose remainder
modulo 1200 is less than or equal to 200), assigned to the second voice, transposed two
octaves below, remodulated with a velocity crescendo and distributed equally in time.

101



Proc. of the 14th International Symposium on CMMR, Marseille, France, Oct. 14-18, 2019

ronments, and subsequently described how the bach library can be helpful with
writing clear and maintainable programs, through some specific features aimed
at implementing different programming approaches and styles on top of it.

Overall, we think that time is ripe for advocating the adoption of more struc-
tured and theoretically grounded approaches to working with this successful and
widely used tool. We hope that this article may be a step in that direction: fur-
ther steps should involve, on the one hand, an actual survey of real-life use cases,
possibly with the involvement of the community of bach users; and, on the other
hand, a more precise and organic formalisation of good and scalable program-
ming practices in Max, which might prove quite different from the ones typical
of more traditional programming languages.

References

1. C. Agon. OpenMusic : Un langage visuel pour la composition musicale assistée par
ordinateur. PhD thesis, University of Paris 6, 1998.

2. A. Agostini, E. Daubresse, and D. Ghisi. cage: a High-Level Library for Real-
Time Computer-Aided Composition. In Proceedings of the International Computer
Music Conference, Athens, Greece, 2014.

3. A. Agostini and D. Ghisi. A Max Library for Musical Notation and Computer-
Aided Composition. Computer Music Journal, 39(2):11-27, 2015/10/03 2015.

4. A. Agostini and J. Giavitto. bell, a textual language for the bach library. In
Proceedings of the International Computer Music Conference (to appear), New
York, USA, 2019.

5. M. E. Conway. Design of a separable transition-diagram compiler. Communication
of the ACM, 6(7):396—408, 1963.

6. P. Desain et al. Putting Max in Perspective. Computer Music Journal, 17(2):3-11,
1992.

7. N. Didkovsky and G. Hajdu. Maxscore: Music Notation in Max/MSP. In Proceed-
ings of the International Computer Music Conference, 2008.

8. D. Ghisi and A. Agostini. Extending bach: A family of libraries for real-time
computer-assisted composition in max. Journal of New Music Research, 46(1):34—
53, 2017.

9. G. Kahn. The semantics of a simple language for parallel programming. In pro-
ceedings of IFIP Congress’74, pages 471-475, 1974.

10. M. Laurson and M. Kuuskankare. PWGL: A Novel Visual Language based on
Common Lisp, CLOS and OpenGL. In Proceedings of International Computer
Music Conference, pages 142-145, Gothenburg, Sweden, 2002.

11. Y. Orlarey, D. Fober, and S. Letz. Faust: an efficient functional approach to dsp
programming. New Computational Paradigms for Computer Music, 290:14, 2009.

12. M. Puckette. Max at seventeen. Computer Music Journal, 26(4):31-43, 2002.

13. S. Scholl. Musik Raum Technik. Zur Entwicklung und Anwendung der
graphischen Programmierumgebung “Max”, chapter Karlheinz Essls RT'C-lib, pages
102-107. Transcript Verlag, 2014.

14. T. Winkler. Composing Interactive Music: Techniques and Ideas Using Max. The
MIT Press, 1998.

102



