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Abstract: The optimal exploitation of the oceanic information provided by recent high spatial 
resolution sensors such as Landsat 8-OLI is strongly conditioned by the quality of the water 
reflectance signal retrieval. One main issue stands in the ability to correct water pixels for the 
contamination of the sun glint, which might induce a seasonal or permanent loss of data 
according to the latitude. The SWIR information now provided for the most recent high 
spatial resolution sensors was used for evaluating the sun glint level and correcting the 
radiative signal for its effect. This has been performed transposing historical empirical 
formalisms based on the NIR signal. An automated SWIR-based sun glint correction 
procedure was then developed using a 4-year OLI archive gathered over very turbid waters of 
French Guiana (227 scenes). This procedure allows the practical limitations associated with 
past similar empirical methods (sensitivity to water turbidity and manual image per image 
correction) to be overcome. While a satisfactory preservation of the information over sun 
glint free pixels was observed, comparison exercises based on in situ Rrs data gathered in sun 
glint affected areas emphasize the relevance of the proposed methodology (correction by a 
factor of 14 of the averaged bias in the Rrs values after removing sun glint effects). Current 
limitations in the applicability of this SWIR-based empirical automated method are mainly 
associated with the presence of high cloud coverage, thin clouds in the OLI scene or highly 
spatially variable marine or atmospheric signal (around 47%, 42% and 11%, respectively, of 
the total of 12% of failure over French Guiana OLI archive). The potential large applicability 
of the procedure developed in this work was eventually demonstrated over contrasted coastal 
environments. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

The spectral and radiometric improvement of the recent high spatial resolution satellite 
sensors (e.g., Landsat8-OLI, Sentinel2-MSI) now offers innovative possibilities for 
investigating the biogeochemical variability of inland, estuarine or coastal environments at 
fine spatial scale. Numerous recent works have documented the potential of such remote 
sensing observation for obtaining new insights into the distribution of a variety of key 
biogeochemical parameters including suspended particulate matter [1–4], phytoplankton 
concentration [5,6], or dissolved organic matter [7,8]. Besides the development of adapted 
bio-optical inversion algorithms, the full exploitation of high spatial resolution data for 
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quantitatively describing the distribution of the latter biogeochemical descriptors is strongly 
conditioned by the quality of the marine reflectance assessed from these sensors. While 
numerous efforts have been performed for adapting existing atmospheric corrections schemes 
to high spatial resolution data through different processing platforms (e.g. ACOLITE [1,2], 
SeaDAS [1,2,5]), issues related to other specific patterns still have to be specifically 
addressed [9]. In particular, the specular reflection of the sun on the ocean surface can 
represent a strong limitation in the use of ocean color satellite data [10]. While at medium 
latitudes sun glint contamination affects the marine reflectance only seasonally [5,11], 
permanent sun glint issues prevail over tropical areas [12] being therefore responsible for a 
huge loss of information. The different methods currently available for correcting the water 
reflectance for the sun glint contamination are based on different assumptions according to 
sensors spatial resolution [10]. For medium resolution sensors, historical standard models rely 
on geometric based approaches [13,14] requiring information on the sea surface state assessed 
from wind speed based model [15]. More recent approaches based on neural networks [16] or 
polynomial formulations (POLYMER [17]) have demonstrated their potential, which 
however still needs to be evaluated for high spatial resolution sensors. 

Diverse alternative methods specifically designed for correcting high spatial resolution 
data for sun glint contamination have been proposed. These methods rely generally on near-
infrared (NIR) based relationships used for assessing the sun glint contamination level and 
then correcting the marine reflectance in the visible for its effects [18–21]. In practice, these 
approaches assume that 1) a stable NIR-visible dependency exists over areas presenting 
increasing levels of sun glint and 2) the NIR information can be used as a proxy for 
estimating the sun glint level due to a negligible water-leaving radiance in this spectral 
domain. A comparison exercise by Kay et al. [10] has documented the potential of the 
different NIR-based correction approaches illustrating their relevance but also the limits in 
their practical applicability. One major limitation is related to the assumption of a negligible 
marine contribution in the NIR, being invalid for highly turbid environments [22]. Further, 
the current NIR-based procedures are based on user-defined relationships assessed manually 
for each individual scene to be corrected. Until now, no automated procedure has been 
proposed for routinely applying such empirical sun glint correction methods over series of 
high resolution data, thus restricting the scope of application of their latter methods to 
punctual or local studies. The possibility to overcome the latter issues have been recently 
documented by Harmel et al. [11] who proposed a semi-analytical procedure for correcting 
Sentinel2-MSI data for sun glint effects taking advantage of the short-wavelength infrared 
(SWIR) information now available for the most recent high spatial resolution sensors. The 
main limitation of this method however stands in the need of a priori information on the 
atmospheric properties. 

This study aims first at evaluating the performance of simple SWIR-based empirical 
approaches transposing the historical methods developed based on the NIR information 
[19,20,23] for correcting large data set of Operational Land Imager (OLI) scenes in coastal 
waters. An automated empirical SWIR-based sun glint correction procedure is further 
proposed and applied to the OLI 4-year archive gathered over the turbid coastal waters of 
French Guiana while its potential is illustrated considering other contrasted coastal regions 
(Vietnam and Mexico). 

2. Material and methods 

2.1 Study area 

The coastal waters of French Guiana (Fig. 1), permanently influenced by the Amazon river 
outputs, are globally characterized by high turbidity levels, with suspended particulate matter 
concentration reaching up to 325 g m−3 in the shallowest waters [24–26]. 



 

Fig. 1. Landsat-8 OLI true color images illustrating the coverage over the coastal waters of 
French Guiana (4 OLI scenes). 

Four different OLI scenes cover this coastal area (Fig. 1). The low latitude of French 
Guiana (3°30-6°30°N) combined with the solar and viewing path geometry of OLI, induce 
the presence of a quasi-permanent sun glint contamination towards the eastern part of each 
OLI scene. Standard OLI Rrs (Remote sensing reflectance) processing (e.g. using ACOLITE 
software) allow a recovery of less than 10% of the information over the 4-year OLI archive 
for the corresponding pixels (Fig. 2), using the standard bright pixels (e.g. cloud, land, sun 
glint pixels) masking threshold in ACOLITE (0.021 for the band 1609nm). 

 

Fig. 2. Number of valid pixels gathered from the OLI archive over the coastal waters of French 
Guiana. Rrs values have been processes using ACOLITE pixel per pixel SWIR processing from 
April 2013 to April 2017 (265 scenes). 

2.2 In situ measurements 

Marine reflectance measurements have been performed over estuarine and coastal waters of 
French Guiana quasi permanently affected by sun glint contamination during concomitant 
OLI acquisition in order to assess the performance of the sun glint correction procedure 



developed in the frame of this study. In practice, two in situ cruises (19/10/2016 and 
04/11/2016) were performed for this matchup exercise. Above-water hyperspectral 
radiometric measurements (3 nm resolution) were performed in the 350-900 nm spectral 
domain using TRiOS radiometers. Rrs (λ) spectra were computed using the standard protocol 
fully described in Ruddick et al. [22]. It is worth mentioning that the Rrs in situ data are here 
assumed to be free of sun glint effects thanks to the specific geometry considered when 
performing above water radiometric measurements for minimizing these effects (135° 
azimuth angle to the sun and 45° from nadir [27]). 21 stations were kept after data quality 
control, taking into account the temporal interval with OLI overpass (< 90 min) and the 
potential impact of cloud shadow. Hyperspectral Rrs data were spectrally computed to the 
nominal OLI bands (B1 to B7) using the spectral response function reported for this sensor 
[27]. 

2.3 Satellite data 

2.3.1. Landsat 8-OLI data set 

OLI level 1 data (L1T) were downloaded from the EarthExplorer platform 
(http://earthexplorer.usgs.gov/) for the four scenes covering the study area between April 
2013 and April 2017 leading to a total of 265 L8/OLI images. A selection of the OLI scenes 
presenting at least 5% of cloud-free pixels led to the consideration of a regional data set 
gathering 227 OLI images. 

Top-of-atmosphere (TOA) radiances, LTOA, were computed from digital numbers, DN, as 
follows: 

 TOAL ML DN AL= ⋅ +  (1) 

with ML (multiplicative factor, gain) and AL (additive factor, offset) values provided in the 
OLI metadata file. TOA reflectance (RTOA) was computed by normalizing LTOA to the band 
averaged solar irradiance: 
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where d is the earth-sun distance in Astronomical Units, 0θ  the sun zenith angle and F0 the 

band averaged extraterrestrial solar irradiance [2]. 

2.3.2. OLI Rrs(λ) processing 

Landsat 8 L1T data have been processed using the ACOLITE software (acolite_win 
20170718.0) developed at RBINS (https://odnature.naturalsciences.be/remsem/software-and-
data/acolite). The ACOLITE atmospheric correction chain allows simple and fast processing 
(no external measurements required) of OLI images for marine and inland water applications. 
Considering the high turbidity level of French Guiana coastal waters, marine reflectance 
(ρw(λ)) were computed using the SWIR bands approach [22] which rely on OLI bands 6 
(1609 nm) and 7 (2201 nm) for estimating the aerosol reflectance [2]. Note that ACOLITE 
allows users to define the aerosol properties (ε parameter) on a pixel per pixel basis or using a 
single value for the whole scene. The current processing of OLI database by ACOLITE was 
performed regionally setting the threshold value on band 6 (1609 nm) to 0.032 for masking 
pixels contaminated by sun glint, which was established empirically based on a OLI regional 
sub-data set. 

2.4 Principle of the SWIR adapted sun glint correction methods 

Diverse methods for correcting the marine signal provided by historical high-resolution 
sensors from sun glint contamination have been documented [18–20,23,28]. All the latter 



methods are based on the use of the NIR information. They estimate the level of sun glint 
assuming that the water-leaving radiance in this spectral domain is negligible. Therefore, any 
signal remaining in the NIR after atmospheric correction can be related to sun glint effects. 
Considering that the Fresnel reflectance affects the whole spectrum with weak variability, sun 
glint should affect both NIR and visible spectrum in a predictable manner (i.e. linear 
relationship) [10]. Such NIR-based methods can be used alternatively after or before (under 
the condition of a uniform atmosphere across the image) atmospherically correcting the top-
of-atmosphere signal. 

Globally, two kinds of NIR-based sun glint correction approaches can be considered. The 
first one aims at correcting the whole image for NIR-visible relationships derived from a 
selection of pixels presenting gradual levels of sun glint and a stable marine (and 
atmospheric) signal. The various approaches proposed in this frame [18–20,23] mainly differ 
regarding the way used to define the NIR-visible spectral dependency. Other methods, such 
as the one by Goodman et al. [21], perform a sun glint correction on a pixel-by-pixel basis. 
The latter approach, however suffers from several issues limiting its practical applicability 
[10]. Goodman et al. [21] further assume a unique NIR-visible relationship for correcting all 
the visible bands, potentially biasing the sun glint corrected signal. This method has therefore 
not been considered in the frame of this study. 

A common limitation of all the latter historical NIR-based procedures stands in their 
assumption of a null marine signal in the NIR, which prevent their practical use over very 
turbid environments [22]. Conversely, the latter assumption of null marine signal over very 
turbid waters remains true when considering the SWIR domain [29], which information is 
now available for recent high spatial resolution sensors (Landsat 8-OLI, Sentinel 2-MSI). As 
a matter of fact, the advantage of the presence of SWIR bands for correcting sun glint effects 
have been recently documented by Harmel et al. [11], based on a semi-analytical scheme 
applied to Sentinel-2 data. The main principle of this method is to derive the BRDF values of 
the air-water interface in the SWIR bands for which the atmosphere is weakly impacted by 
scattering of air molecules and aerosols. Once the BRDF value is retrieved in the SWIR, the 
sun glint radiance in the visible-NIR bands is computed considering for a theoretical 
representation of the BRDF spectral dependence [11]. The main limitation of the latter 
automated method however stands in the need of a priori knowledge on the aerosol optical 
properties, which implicitly requires the use of ground-based (e.g. AERONET) or external 
data (e.g. CAMS global reanalysis and forecasts data sets) or relies on a coupling with an 
atmospheric correction procedure able to spectrally describe the aerosol optical thickness. 
Besides a correction of the visible reflectance, the presence of multiple information in the 
SWIR (e.g. 2 SWIR bands for OLI) also potentially allows the correction of NIR and SWIR 
signals for the sun glint effect being of interest for further applying atmospheric correction 
[1,2] or some bio-optical algorithms [30]. 

In the framework of this study, a simple transposition of three NIR and image based 
empirical methods: Hedley et al., Lyzenga et al., and Joyce [19,20,23] has been performed in 
order to correct OLI data using the SWIR information for deriving the sun glint level. 
Considering that a seawater signal can potentially still be found in the OLI SWIR 1 (1609 
nm) channel over ultra turbid waters [29], sun glint correction was based on the information 
hold by the SWIR 2 channel (2201 nm). The latter three methods have fundamental 
similarities. As defined in the original approaches, a selection of pixels showing a variable 
range of sun glint has first to be performed by the user in order to derive the relationship 
between the SWIR 2 and the band to be corrected for sun glint effects. Considering a sun glint 
correction performed before atmospheric correction (RTOA or digital number), the whole scene 
can then be corrected, using a Hedley-like approach, as follows: 

 '
2 2( )TOAi TOAi i SWIR SWIRR R b R offset= − ⋅ −  (3) 



where '

iTOAR  is the corrected TOA reflectance of the band i, TOAiR  is the TOA reflectance of 

the non-corrected band i, ib  is the spectral dependency between the band i and the SWIR 2 

band, TOASWIR 2R  is the TOA reflectance of the SWIR2 and SWIR 2(offset )  is the SWIR2 level 

for the pixels not affected by sun glint. The spectral dependence of sun glint is primarily 
function of the spectral shape of the direct sun light. As a matter of fact, the spectral slope of 
the SWIR-visible based relationships is expected to increase from the blue to the red part of 
the spectrum. Besides this general feature, the spectral dependence of sun glint is modulated 
according to atmospheric conditions and observation geometry. The definition of the offset 
and slope parameter in Eq. (3) has therefore to be defined on a scene specific basis. Note that 
the use of the latter parameter implicitly assumes the presence of a homogeneous atmosphere 
over a defined OLI scene, which is quite reasonable according to the relatively small size of 
typical OLI scenes (i.e. ~200 x 200 km over French Guiana coastal waters). 

The definition of the spectral dependency for the method proposed by Lyzenga et al. and 
Joyce [20,23] is very similar to Hedley et al. [19] specifically regarding the slope term (bi in 
Eq. (3)). Since it is based on the covariance information between SWIR 2 and each of the 
bands to be corrected, it is equivalent to the assessment of the slope parameter from a least 
squares linear regression [10]. The latter three methods therefore mainly differ on the 
definition of the offset value, which is assumed to be the minimum SWIR 2 value over the 
whole image (or within a sub-sample) by Hedley et al. [19] approach, while it is considered as 
the average value for Lyzenga et al. [20] or the mode for Joyce [23]. 

The method proposed in the frame of this study has been applied to the TOA information. 
This enables further processing of the Rrs signal (including areas initially affected by sun glint 
contamination) using the various processing chains specifically developed to atmospherically 
correct the OLI images (e.g. ACOLITE, SeaDas) [1,2]. Note that the Eq. (3) can also be 
potentially considered for correcting the NIR (using SWIR2 vs NIR relationship) and SWIR 
data (using SWIR1-SWIR2 reverse relationships). This potential has been also investigated in 
the frame of this work. 

2.5 Statistics 

Four statistical indicators have been used to characterize the impact of sun glint correction 
procedure on reflectance data restitution. The root mean squared difference (RMSD), the 
average relative percentage error (BIAS), the mean absolute error (MAE), the mean absolute 
relative percentage error (MARE) have been calculated based on original values as follows: 
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where N is the number of samples in the data set, xi the radiometric measured (or initial) 
value, yi the sun glint corrected data. 

Robust linear regression procedure [31], adapted for deriving a linear regression between 
variables potentially affected by the presence of outliers, has been used for computing the 



spectral relationships considered in the frame of this study (i.e. SWIR 2 band vs visible and 
NIR, SWIR 1 vs SWIR 2). 

3. Results and discussion 

3.1 Illustration of the performance of the SWIR based algorithms 

An illustration of the performance of the three SWIR based methods considered in the frame 
of this study (i.e. Hedley-SWIR, Lyzenga-SWIR and Joyce-SWIR) was first performed on a 
single test image over French Guiana coastal waters (LC82270562015258LGN00). Figure 
3(b) shows the relationships between the SWIR 2 band and the other OLI bands over a 
transect [Fig. 3(a)] gathering clear waters pixels with increasing levels of sun glint. As 
expected, strong linear relationships between SWIR 2 and each of the visible bands can be 
drawn [Fig. 3(b)], confirming the spectral co-variation of the sun glint contamination over 
clear waters, in relation with the low spectral variability of refraction index from the visible to 
the SWIR spectral domain [32]. While previous studies were focusing on the definition of 
NIR vs visible bands relationships, it is worth to notice that strong relationships also exist 
between SWIR 2 and NIR and SWIR 1 data, suggesting the possibility to correct the sun glint 
effect also for the latter spectral bands using such empirical methods. 

 

Fig. 3. Performance of the three SWIR based methods of this study over the scene 
LC82270562015258LGN00 (15 September 2015). Transect (a) used (true color image) to 
estimate the linear relationship (b) between the band SWIR 2 and the other OLI bands B1 (443 
nm), B5 (655 nm) and B6 (1609 nm) and to illustrate the sun glint correction provided by the 
Hedley-SWIR and Joyce-SWIR. (c to e) Performance of the latter two different correction 
methods over RTOA values at 443, 655 and 865 nm, respectively. (f to h) Relative difference (in 
%) between RTOA values before and after the sun glint correction at 443, 655 and 865 nm, 
respectively. Note that the results for the Lyzenga-SWIR approach are coincident with those 
provided by Joyce –SWIR and are thus here omitted. 



The spectral relationship between the SWIR2 band and the visible bands is not constant 
with slopes increasing from 0.56 at 443 nm to 1.02 at 665 nm (Table 1). The latter spectral 
variation can be associated with the spectral shape of direct sun glint reflectance. As 
mentioned previously, the terms bi for Hedley-SWIR or rij for Lyzenga-SWIR or Joyce-SWIR 
show very similar values due to their statistical equivalence as already pointed out by Kay et 
al. [10]. Variations according to the method are more significant when considering the offset 
value defined by each approach (Table 1, Heldey-SWIR SWIR2 minimum over the scene, 
Joyce-SWIR and Lyzenga-SWIR, mode and average of SWIR2 over the selected transect 
respectively). 

Table 1. Comparison of the coefficients of the SWIR based relationships considered in 
the Hedley-SWIR, Lyzenga-SWIR and Joyce-SWIR method used for correcting the 

French Guiana sample OLI image in Fig. 3 from the sun glint effects. 

Band 
Hedley Lyzenga Joyce 

bi 
Min 
offset 

rij 
Mean 
offset 

rij 
Mode 
Offset 

443 0.565  0.565  0.565  

483 0.705  0.705  0.705  

561 0.876  0.876  0.876  

665 1.028  1.028  1.028  

865 1.233  1.233  1.233  

1609 1.252 0.0055 1.252 0.012 1.252 0.0119 

2201 0.794 0.0027 0.794 0.0087 0.794 0.0080 

The RTOA values corrected for sun glint contamination using the three methods selected 
are represented in Fig. 3(c), 3(d) and 3(e). Globally, the shape of the corrected transect is 
similar from one method to another, due to the similarity in the slope parameter used for 
correcting the TOA values using the relative level of sun glint detected for the SWIR2 signal. 
The observed variation in the amplitude of the returned RTOA is more likely related to the 
differences in the way considered for defining the offset parameter in each method. The level 
of the RTOA corrected using Joyce-SWIR and Lyzenga-SWIR methods is similar providing a 
better preservation of the initial values for the glint-free pixels when compared to the RTOA 
returned by the Heydley-SWIR approach which tends to underestimate RTOA (by up to 5% in 
this example) for these pixels. This underlines the potential bias induced by the use of the 
scene SWIR 2 actual minimum value as an offset parameter. 

The three latter methods of sun glint correction tends to smooth the RTOA signal as already 
reported by Kay et al. [10] for the similar NIR based approaches. Results in Fig. 3(f), 3(g) and 
3(h) illustrate the relative importance of sun glint contamination [Eq. (9)] which maximal 
values increase for the illustration transect in Fig. 3(a) from 15% at 443 nm to 55% at 865 nm 
the latter spectral pattern being in agreement with previous observations [10]. 

The previous results on a single test image illustrate the potential for these simple 
empirical SWIR based methods to correct OLI data from sun glint effects, also underlining 
the importance of the way chosen to define the region of interest (ROI) considered for 
deriving the SWIR based parameterization. 

3.2 Automated parameterization of the SWIR2 based relationships 

Current applications of the previous NIR based empirical methods were mainly aiming at 
correcting a restricted amount of historical high resolution sensors data [33], based on user 
defined and image per image parameterizations. 



Despite the overall simplicity of the general principle of the latter empirical methods, a 
procedure defining their practical application for routinely processing an archive of high 
spatial resolution satellite data has not been achieved yet. More generally, few automated 
procedures have been currently proposed for correcting high spatial resolution data for sun 
glint effects, the existing ones being mainly based on semi-analytical procedures (SWIR 
based: Harmel et al. [11], NIR based: Martin et al. [34], which application however requires a 
priori knowledge specifically on the atmospheric conditions. 

The possible definition of an automated procedure was, therefore here assessed from an 
archive gathering 227 OLI images over French Guiana coastal waters. The application of 
SWIR 2 based automatic sun glint correction requires three key steps which have been 
specifically investigated on the basis of the latter regional data set: 1) identification of 
homogeneous water pixels impacted by different levels of sun glint, 2) determination of the 
slope of the SWIR2 based spectral relationships and 3) SWIR2 offset selection. 

In practice, the automated approach proposed in the frame of this work was developed 
following a two-steps procedure. In a first development step, the empirical SWIR based sun 
glint correction was performed without any a priori knowledge of the data to be corrected in 
order to assess the practical issues related to the spectral relationships definition and the 
sensitivity of the TOA signal correction to regional variation in atmospheric and oceanic 
conditions. Based on these first developments, an automated procedure was then proposed to 
empirically correct the OLI marine reflectance signal for sun glint effects. 

3.2.1 Region of interest (ROI) definition 

The first step for applying a blind correction of sun glint effects using the considered 
empirical methods consists of the detection of clear water areas affected and not affected by 
sun glint for a defined OLI scene. It is worth to notice that the “clear waters” definition is 
considered here as the pixels having a constant background signal over marine pixels showing 
different sun glint levels. Different ways can be considered for defining the corresponding 
ROI. In the absence of sun glint, empirical methods using a threshold value based on the TOA 
Rayleigh corrected signal have been for instance proposed by Vanhellemont and Ruddick [2]. 
The direct use of such a threshold is here avoided considering that clear water pixels have to 
be selected over different levels of sun glint. Further, the presence of pixels impacted by 
cloud shadow, darker than surrounding waters, might also represent another issue in the clear 
waters detection process. In practice, the ROI used for parameterizing the SWIR-based 
relationships was performed considering the following successive masks: 

1) Water mask: A land and cloud detection was first performed on the whole image. The 
method used here is based on the recent works by Ngoc et al., (in review [35]), 
which detects cloud and cloud shadow over glint-free pixels and which is based on 
the statistical analysis of the Rayleigh corrected TOA reflectance (i.e. spectral shape 
analysis, Hue-Saturation-Value analysis). Considering the current issues related to 
the retrieval of cloud shadow in the presence of sun glint, water pixels surrounding 
cloud regions were here arbitrarily discarded from our analysis. 

2) “Clear water” mask: The detection of clear water pixels needs to be performed over 
the whole OLI scene (including sun glint affected pixels). As a first approach, 
considering the absence of a priori knowledge of sun glint correction parameters to 
be applied over French Guiana area, the detection of clear water pixels was here 
based on the ratio B4/B1. These two bands have been corrected for the SWIR 2 
signal in order to roughly remove the sun glint information (see section 3.1): 
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where factors C1 and C2, defined to balance the heterogeneity of the sun glint 
impact at 443 and 655 nm, were assessed empirically on a local sub data set and set 
to 1 and 0.6 respectively. 

A relative threshold was used for assessing the “clearest waters” present in each OLI 
scene defined as the pixels for which the Rclear ratio was lower than a defined 
percentile value computed over the whole water pixel of the corresponding map 
(10% percentile as default value). 

3) Sun glint mask: The definition of the sun glinted mask was based on the relative 
increase of the value in the SWIR 2 signal from the map average SWIR2 background 
signal as follows: 
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where min2SWIR  corresponds to the averaged minimum of the SWIR 2 signal 

computed over the pixels showing the map lowest SWIR 2 data (10% percentile as 
the default threshold value). 

Conversely the pixels not (or slightly) affected by sun glint were defined as: 
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 (10) 

The previous water, clear waters, sun glinted and non-glinted masks were then used for 
developing the automated sun glint procedure proposed in the frame of this work, so the 
detection of the glint and no glint area should be regionally adapted. 

3.2.2 Slope estimation 

The definition of the spectral slope parameter aims at relating the sun glint level observed in 
the SWIR2 signal to the one of the bands to be corrected. In the context of a correction 
applied before atmospheric correction, the slope has to be assessed considering pixels 
showing different levels of sun glint and spatially stable marine (usually assumed to be the 
case in clear waters region) and atmospheric signals. Ideally, the considered pixels should not 
be affected by cloud shadow pixels or thin cloud pixels, which might induce scatter in the 
relationships and bias the SWIR based spectral linear relationships. 

In this development step, spectral slopes were computed according to the following 
process. A first estimation of the slope parameter of the SWIR2 based linear relationships was 
performed for all the bands on the clear water pixels defined from the Rclear ratio [Eq. (8)]. In 
order to check the spatial homogeneity of the marine pixels selected for deriving the slope of 
the SWIR2 based linear relationships for a defined OLI map, three successive ROI based on 
decreasing percentile value thresholds applied to Rclear were considered (i.e. 10, 5, and 1%). A 
variation lower than 5% in the computed slopes was considered as an indicator of the 
presence of a homogeneous marine/atmospheric spatial pattern, validating the 
representativeness of the slope defined. 

Conversely, a variation higher than 5% between the slope values indicates a higher spatial 
heterogeneity in the map clearest pixels water and/or atmospheric conditions. This feature can 
be potentially related to an imperfect selection of clear pixels from the Rclear criterion. An 
approximate band specific correction was in this case performed for selecting the “clear 
waters” data on which the slope was newly assessed as follows: 

 7
2 3i

clear TOA TOAR R C R= − ⋅  (11) 



where, C3 corresponds to the slope firstly defined considering the 10% percentile, in order to 
minimize the weight of potential outliers on the linear fit procedure. 

A new test on the slope stability was performed as previously on considering this refined 
clearest water ROI selection using the same three successive percentile values (10, 5 and 1%). 

The analysis of the stability of the selected clear waters has been performed on the 227 
images gathered over French Guiana. The vast majority of the OLI scenes considered (e.g. 
from 74 to 85% from the Band 1 to the Band 7, respectively) were presenting spatially 
homogeneous clearest waters based on the use of the Rclear threshold [Eq. (8)]. The percentage 
of the remaining OLI scenes showing spatially stable patterns over clear waters using the 
approximate per band correction based on the Rclear2 criterion was 61 ± 13%. Consequently, 
only 10% of the OLI scenes gathered over French Guiana (22 images over 227) were showing 
a highly variable signal over clearest waters indicating that the corresponding sun glint 
corrected map should be considered with caution. 

Table 2. Slope values (mean, minimum, maximum, standard deviation and variation 
coefficient) computed from the whole data set gathered over French Guiana coastal 

waters (227 images) for each OLI band. 

 Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 

Mean 0.743 0.825 0.901 0.985 1.079 1.089 0.846 

Std 0.166 0.154 0.139 0.067 0.126 0.108 0.169 

Min 0.039 0.085 0.220 0.675 0.563 0.802 0.175 

Max 1.283 1.354 1.422 1.393 1.497 1.484 1.213 

CV 22.485 18.875 15.628 6.813 10.599 9.576 19.999 

Statistics associated with the slope values obtained for each bands considering the whole 
OLI data set gathered over French Guiana coastal waters are presented in Table 2. Slope 
values increase from the blue (0.74 +/− 0.17) to the red band (0.99 +/− 0.067), in agreement 
with previous NIR based empirical [36] or SWIR based theoretical works [11]. Strong 
variations in bi are further observed at regional scale (227 OLI images) with a higher 
variability in the blue (CV = 22.5% at 443 nm) than in the red part of the spectral (CV = 
6.81% at 655nm). Such variation in the slope of the SWIR to visible relationships can be 
related to a variation in the spectral shape of sun glint according to atmospheric properties 
and data geometry [11]. The latter results further indicate spectrally invariant methods such as 
Goodman et al. [21] can lead to significant errors in the sun glint correction procedure. It is 
worth noticing that the latter statement is in agreement with a recent study aiming to correct 
in situ above-water reflectance measurements for sun reflection at the sea surface [37]. As a 
matter of fact, the comparison of the correction performed using the average bi value found 
from our data set (Table 2) or the average bi modulated by the corresponding spectral 
standard deviation (bi +/− std) indicates that the use of regional average bi value would induce 
a relative error in the returned RTOA of about 20% in the blue and 100% in the red band over 
glint free area. This indicates the need to use image specific slope values for correcting the 
radiative signal for sun glint effects. 

3.2.3 Offset definition 

The offset value corresponding to the background SWIR 2 signal was assessed over areas not 
affected by sun glint [Eq. (10)]. The consideration of the actual SWIR2 minimum for a 
defined image is sensitive to noise in the SWIR2 signal potentially generating important 
errors in the corrected RTOA [Fig. 3(c), 3(d) and 3(e)]. The minimum offset value was 
therefore estimated as the average value of the pixels showing a SWIR2 signal lower than the 
10% percentile of a defined image in agreement with Harmel et al. [11]. 

Using the latter ROI, the offset definition still has to consider the actual distribution of the 
SWIR data that might be significantly impacted by the presence of thin clouds, not detectable 
using current existing cloud masks over sun glinted areas. Thin cloud free scenes globally 



show a normal distribution of the lowest SWIR2 values [Fig. 4(a) and 4(c)] inducing a 
general convergence of the correction performed alternatively with the average or modal 
offset definition (i.e. Lyzenga and Joyce-SWIR2 approaches). In the presence of thin clouds a 
bimodal distribution of the lowest SWIR2 is instead observed inducing a potential 
misestimation of the SWIR2 background signal. In such cases, the first peak corresponds to 
the signal to be considered to set the SWIR2 background of the image while the second peak 
is associated with pixels impacted by thin clouds. In the presence of a bimodal distribution in 
the SWIR2 values, a specific selection of the pixels corresponding to the first peak was thus 
performed using local minima and maxima information. 

The impact of the offset definition on the RTOA restitution was assessed over sun glint free 
area. In the presence of a SWIR2 unimodal distribution, the RTOA signal returned considering 
the mean or the mode as the SWIR2 offset value are as expected consistent, but strong 
differences are provided when using the actual map averaged minimum (with a maximum of 
26% for the SWIR bands for the example in Fig. 4(e). 

In the presence of the bimodal distribution, the impact of a misdefinition of the SWIR2 
offset on the performance of the correction is more relevant [Fig. 4(f)]. As observed 
previously, the use of the minimum SWIR2 value as offset parameter induces a strong 
modification in the signal returned over sun glint free pixels (with relative errors reaching 
11% and 55% in the red and SWIR2 bands respectively). The best preservation of the signal 
is provided when defining the offset as the SWIR2 modal value. If the average offset value is 
used, results will be biased due to the partial representation of the SWIR2 background signal 
when selecting the pixels corresponding to the first SWIR2 peak [Fig. 4(f)]. 

 

Fig. 4. Illustration of the sensitivity of the method to the offset value definition for two OLI 
scenes LC82270562016261LGN00 (17 September 2016) (a) and LC82260572014072 (13 
March 2017) (b). Panels (c) and (d) show the two kind of distributions of SWIR2 in the non 
glinted area, while the relative errors (e and f) in the RTOA restitution related to the use of the 
three different offsets: mean, mode and averaged minimum (lower than 10%) are illustrated in 
panels e and f for the pixels identified by a red star in the panel a and b, respectively. 



The processing of the whole OLI data set over French Guiana coastal waters indicates that 
the offset SWIR2 RTOA values vary strongly at regional scale from 0.00094 to 0.0516 with an 
average of 0.0118. This indicates the need to consider image specific offset definition in 
contrast with other studies which were relying on the use of a unique regional offset 
parameter [36]. For the vast majority of the images (87%) the definition of the offset as the 
average of the glint free SWIR2 pixels was providing the best preservation of the RTOA signal 
over sun glint free pixels. The mode value was instead found to be more appropriated for the 
remaining maps which showed a bimodal distribution of SWIR signal. 

3.3 Automated sun glint correction procedure 

Based on the results documented in the previous sections, an automated empirical procedure 
proposed here for correcting OLI data for sun glint effects (using DN as input variables) is 
described in Fig. 5 and consists in the application of the following main steps: 

1) Mask definition: 

- Water pixel definition: the approach chosen for masking land and cloud pixels was 
here based on Ngoc et al., (in review) [35]. Note that a main issue still remains 
regarding the identification of thin cloud affected pixels over sun glinted areas. 

- Clear waters mask: the procedure is based on the identification of the clearest water 
pixels (considering the relative distribution for each band) including non glinted and 
glinted areas which are defined from the Eq. (11) using spectral average parameters 
in Table 2. 

- Sun glint/no glint masks: pixels affected and non-affected by sun glint are defined 
considering relative thresholds as defined in Eqs. (9) and (10). These thresholds 
might be refined regionally according to the average relative level of sun glint 
affecting a defined coastal region. 

2) Definition of the offset parameter: 

The definition of the offset SWIR2 signal has to be performed for each scene 
individually and has to consider the actual distribution of the SWIR2 background 
signal over glint free pixels (uni/bimodal). In the case of a unimodal SWIR2 
distribution, the average SWIR2 value has to be preferentially considered. In the 
presence of a bimodal distribution, generally related to the presence of thin clouds in 
the corresponding scene, the offset should be defined as the mode of the first peak. 

3) Definition of the slope parameter: 

The slope parameter has to be computed for each image individually and for each 
band to be corrected. The clearest water pixels have first to be identified based on a 
relative threshold for assessing the slope of the SWIR based relationships (using 
robust fit procedure). At this step the stability of the TOA signal (and therefore of 
the atmospheric and/or marine conditions) should be assessed in order to identify the 
representativeness of the slope definition and thus potential uncertainties in the 
signal corrected for the sun glint effects (based on the use of successive relative 
thresholds when defining the clearest waters mask). 

4) Validity of the sun glint correction 

The validity of sun glint correction for a defined OLI scene has to be checked on 
each individual band considering spectral variation in the performance of the sun 
glint correction procedure. In the absence of concomitant sea truth information, this 
can be performed by checking the preservation of the signal over glint free areas 



(user defined threshold for discarding scenes for which the sun glint correction has 
induced a strong modification of the initial information). 

 

Fig. 5. Synthetic flowchart describing the different steps corresponding to the SWIR2 based 
automated empirical correction procedure proposed in the frame of this study. 

3.3.1 Performance of TOA signal correction 

The previous automated procedure has been applied to Digital Numbers corresponding to the 
227 OLI scenes over French Guiana coastal waters. A first visual examination of the RTOA 
distribution after sun glint correction indicates a good restitution of the spatial patterns 
without any apparent discontinuity between non-glinted and sun glint corrected areas [Fig. 
7(a), 7(b), 7(e) and 7(f)]. 

The validity of the sun glint correction procedure was statistically assessed checking the 
preservation of the radiometric signal after the application of the automated procedure (Fig. 5) 
over glint free areas. Results indicate a global good preservation of the information over sun 
glint free pixels with relative differences in the DN before and after correction reaching a 
maximum of 1.7% in the NIR, while the relative error in the visible domain show an average 
of 1.05% with a slight increasing pattern from the blue to the red band (Table 3). 

Table 3. Statistics values illustrating the preservation of the TOA signal (DN) over sun 
glint free pixels after the correction the whole OLI data set gathered over French Guiana 

using the automated procedure defined in Fig. 5. 

 Band 443 Band 483 Band 565 Band 655 Band 865 

Mean (DN) 10837 9997 8725 7507 6449 
RMSD 105 11 120 131 143 
BIAS 0.22 0.97 1.72 1.30 1.11 
MARE 0.78 0.9 1.13 1.40 1.74 
MAE 86.4 91 99.1 107.8 117.6 



3.3.2 Sun glint corrected Rrs restitution 

The SWIR based atmospheric correction approach available for atmospherically correcting 
OLI data over highly turbid waters [2], was here chosen for computing the marine reflectance 
signal over French Guiana coastal waters (section 2.3.2.). The use of this atmospheric 
correction scheme implicitly induces the need to correct the SWIR channels from sun glint 
effects, the SWIR information being indeed specifically required for assessing the aerosol 
properties described through the ε parameter (defined here as the regression slope between the 
two OLI SWIR bands). Applying the sun glint correction procedure to the SWIR channel 
tends to smooth the SWIR signal over the whole OLI scene generating a homogeneous SWIR 
spatial distribution (Fig. 6). The average ε values over sun glint free pixels remain unchanged 
when correcting OLI data from sun glint effects [Fig. 6(c)], suggesting the possible definition 
of ε alternatively using the SWIR data before or after sun glint correction. The current results 
however emphasize that the consideration of sun glint corrected data tend to generate a higher 
noise level in the SWIR1 to SWIR2 ratio [Fig. 6(c)]. In the context of this study the initial ε 
values were therefore considered for processing the OLI marine reflectance data. 

 

Fig. 6. Illustration of the impact of the sun glint correction process on the SWIR signal 
(LC82270562015338 scene – 4 December 2015) along a transect (a) in French Guiana water. 
Panels (b) and (c) show the distribution of the SWIR 2 and of the ratio SWIR 1 and SWIR 2 
before and after correction, respectively. 

Similarly to the results obtained for RTOA data, a visual examination of the OLI maps 
before and after correcting for sun glint effects seems to indicate a satisfactory recovery of all 
the information associated with the pixels initially flagged as sun glinted pixels with an 
apparent preservation of the Rrs spatial patterns [Fig. 7(c), 7(d), 7(g) and 7(h)]. 



 

Fig. 7. Illustration over two coastal contrasted OLI scenes (coastline orientation, glint free 
water masses distribution) over French Guiana of the performance of the SWIR-based sun 
glint empirical automated procedure. RTOA values before (a) and after correction (b) and Rrs 
values before (c) and after correction (d) at 483 nm for the scene LC82260572014264 (21 
September 2014). RTOA values before (e) and after correction (f) and Rrs values before (g) and 
after correction (h) at 655 nm for the scene LC82270562015242 (30 August 2015). 

As performed previously for the RTOA values, a quality control of the sun glint corrected 
Rrs was performed checking the preservation of the data before and after correction over sun 
glint free coastal areas (Fig. 8). Results show an overall good preservation of the marine 
reflectance signal whatever the spectral band considered. Similarly, spectral ratios usually 



considered in various bio-optical inversion models (e.g. Rrs(443)/Rrs(565) [37,38]) are also 
preserved when correcting OLI images for the sun glint effects [Fig. 8(f)]. Note however that 
a general higher scatter is found for the Rrs values than for the DN with a reversal trend with 
wavelength, relative errors in the Rrs restitution increasing with decreasing wavelength, 
except for band 865 nm, with higher scatter than the visible bands (Table 3). As a matter of 
fact, when considering the whole data set over French Guiana, a better preservation of the 
marine signal is globally observed in the red channel (variation in coastal waters Rrs lower 
than 5% for 80% of the scenes) than in the blue one (75% of the OLI scenes at 483 nm). 
Regarding the Rrs blue/green ratio, the variation remains lower than 5% for the 84% of the 
scenes. The latter features indicate that modifications of the original data induced by the sun 
glint correction process are amplified when correcting the TOA information for the effects of 
the atmosphere. This is particularly true for the shortest wavelengths (i.e. 443, 483 nm) for 
which the marine signal is the lowest in relation to the atmospheric one, especially for turbid 
waters [39–41]. 

In some restricted cases (from 7% to 12% for band 443 and NIR band, respectively, over 
the 227 OLI Rrs images considered) a failure in the sun glint correction occurred with a 
modification of the non-glinted Rrs data higher than 20% in coastal sun glint free waters. Such 
peculiar cases are related to OLI scenes showing high levels of clouds and clouds shadow 
coverage as well as to the presence of thin clouds, which have led to a wrong 
parameterization of the SWIR2 based relationships (misestimation of the bi and offset 
parameters). Figure 9 illustrates through two examples the possible failure in the sun glint 
correction procedure emphasizing the limits of the approach proposed in the frame of this 
study. A visual examination of the OLI scenes showing a failure in the sun glint correction 
process emphasizes that at regional scale 47% of these failure cases are associated with high 
cloud-cloud shadow coverage, 42% with the presence of thin cloud and 11% with the 
presence of highly heterogeneous TOA signal. In these specific OLI scenes [Fig. 9(a) and 
9(b)], the presence of thin clouds is responsible for the poor performance of the sun glint 
correction leading to a modification of the Rrs for sun glint free pixels reaching about 30% in 
the blue and 100% in the NIR bands, respectively. While a priori detection of invalid OLI 
scene is difficult to achieve (e.g. 53.13% and 6.25%, of the invalid French Guiana OLI scenes 
being associated with a low significance level of the corresponding SWIR2-visible 
relationships for the bands 483 and 655 nm, respectively), a proper way to flag the occurrence 
of failure in the sun glint correction process should consist in checking the preservation of the 
signal over glint free areas. This should be performed on a spectral basis (considering the 
potential spectral variation in the performance of the sun glint correction) taking into account 
the user requirements (in terms of bands of interest and associated level of precision), which 
might vary according to the aimed application of sun glint corrected reflectance data. Figure 
9(c) and 9(d) show situations when the marine signal was too heterogeneous for deriving a 
relevant linear SWIR to visible dependency due to the absence of clear (or spatially stable) 
waters for the corresponding map. 



 

Fig. 8. Illustration of the Rrs preservation after the correction of the sun glint effect using 
average values over French Guiana coastal sun glint free areas for the 227 OLI scenes 
considered in the frame of this study. The solid and dashed black lines represent the 1:1 and 
the ± 20% error lines, respectively. The same representation is provided in panel f) for the 
Rrs(443)/Rrs(565) ratio. 

The application of image-based sun glint correction is expected to impact the original 
signal even in areas not affected by sun glint. Considering the potential spectral variation in 
the precision of the sun glint correction process and in the context of further biogeochemical 
applications based on sun glint corrected OLI data, an examination of the Rrs preservation 
over glint free areas should be performed on a band specific basis considering the user input 
bands of interest associated with a defined bio-optical inversion model. 

Note that the OLI data set considered in the frame of this study over French Guiana was 
voluntarily not restrictive regarding the level of cloud coverage (selection of the OLI scenes 
showing at least 5% of cloud-free pixels). The average performances here reported therefore 
include extreme cases, presumably not considered by the user in the context of an exploitation 
of OLI data for biogeochemical applications. 



 

Fig. 9. OLI scenes over French Guiana coastal waters illustrating the failure in the sun glint 
correction procedure. True color image (a) and Rrs(655) (b) values after sun glint correction 
obtained in the case of failure due to the presence of thin clouds (LC82270562015274, 1 
October 2015). True color image (c) and Rrs (443) values (d) after correction illustrating 
highly heterogeneous marine patterns related issues (LC82260572013261, 19 September 2013) 

3.3.3 Validation 

A comparison of the in situ and satellite Rrs values gathered simultaneously during OLI 
overpass was performed. Results of these Rrs matchup exercises performed in coastal waters 
of French Guiana affected by sun glint are presented in the Fig. 10 and Table 4. The different 
in situ stations presented moderated levels of sun glint contamination as estimated from the 
SWIR 2 signal using Eq. (9) (10 to 25% of increase in the RTOA(2201) signal [Fig. 10(b)]. 



 

Fig. 10. Validation of the sun glint correction method through match-up data gathered in sun 
glint affected coastal areas of French Guiana (a). The panel b) illustrates the percentage of sun 
glint present in the sampled stations, estimated using Eq. (9), while the comparison between in 
situ and OLI Rrs data (before and after correction) is provided for the OLI visible bands in 
panels c to f, making a distinction between the points with sun glint percentage in the SWIR2 
lower or greater than 10%. 

The statistics derived from the matchup data show a sharp underestimation of the OLI Rrs 
in sun glint conditions (Fig. 10, Table 4) related to an overestimation of the atmospheric 
contribution using the SWIR information impacted by sun glint contamination. A good 
agreement between in situ and ACOLITE Rrs is, however, obtained after applying the 
automated empirical SWIR based sun glint correction procedure developed in the frame of 
this study as illustrated by the strong decrease in the bias (globally divided by a factor of 14) 
and MARE (globally divided by a factor of 6) values when comparing the statistics derived 
for all bands before and after the correcting for the Rrs data for sun glint effect. Note that in 
spite of a relative low bias, the agreement between in situ and ACOLITE Rrs after sun glint 
correction was globally lower in the blue spectral domain (R2 = 0.191 and 0.145 at 443 and 
483 nm respectively). This higher scattering in the blue part of the spectrum can be related to 
the low signal of these wavelengths in very turbid environments as those of French Guiana 
(SPM reaching up to 1200 mg/l for the current matchups data with an average of 57.73+/− 



283.43 mg/l). Conversely, a higher agreement with the Rrs measured in situ was found in the 
green and red part of the spectrum where the marine signal is stronger (R2 = 0.493 and 0.937 
at 561 and 655 nm, respectively). Further, data presenting a relatively restricted amount of 
sun glint contamination are globally well preserved (no systematic over correction [Fig. 10]). 
It is worth mentioning that Rrs matchup results are rarely close to perfect due to limitation 
inherent to the radiometric in situ measurements [37], as well as to atmospheric correction 
procedures [1,2]. Taking into account these limitations, these results although derived from a 
quite restricted matchup data set tend to confirm the overall good performance of the sun glint 
correction procedure proposed in this work as well as of the ACOLITE atmospheric 
correction over such turbid waters. 

Table 4. Statistics of the matchup comparison between in situ and OLI-ACOLITE Rrs 
data (before and after sun glint correction). 

 Band 443 Band 483 
 

Band 561 Band 655 

Before After Before After Before After Before After 
RMSD 0.011 0.0025 0.011 0.0028 0.016 0.0037 0.012 0.0031 
Correction factor RMSD  4.40  3.93  4.32  3.87 
BIAS(%) −61.6 4.9 −50.1 7.1 −44.9 −3.9 −54.6 2.1 
Correction factor BIAS  12.68  7.06  11.63  26.52 
MARE(%) 61.6 10.4 50.1 10.5 49.9 8.5 54.6 8.9 
Correction factor MARE  5.92  4.77  5.88  6.11 
R2 −0.075 0.191 0.090 0.145 0.134 0.493 0.325 0.937 
slope −0.059 0.3082 −0.535 0.208 0.266 0.546 0.321 0.949 

3.3.4 Illustration for the performance of the SWIR2 automated sun glint correction 
over contrasted coastal waters 

The potential of the automated empirical procedure summarized in Fig. 5 for application over 
contrasted coastal sites (in terms of turbidity and sun glint coverage) is here illustrated 
considering two different OLI scenes. 

Specifically, a first image gathered in coastal waters of Mexico (17°50′-19°48′N and 
93°24′-95°-32’W, LC08_L1TP_023047_20170713_20170726_01_T1) provides an example 
of sun glint correction over low-moderate turbid waters atmospherically corrected using the 
NIR information (ACOLITE NIR formalism) to the difference of the development data set 
(ACOLITE SWIR formalism). The second illustration scene depicts Vietnamese turbid 
coastal waters (9°06′-11°12′N and 106°28′-108°30′E, 
LC08_L1TP_124053_20170615_20170628_01_T1, ACOLITE SWIR processing) and differs 
from the coastal waters of French Guiana regarding the part of clear water affected by the sun 
glint due to different shoreline orientation (east–west vs north–south, respectively). 

Note that the ROI definition and SWIR based correction were performed without 
regionally adapting the procedure proposed in the frame of this work (e.g. the clear waters 
pixels definition using the Eq. (11) and coefficients in Table 2). 

Results of the sun glint correction applied to these two sample maps are provided in Fig. 
11 and tend to indicate the potential large applicability of the method here proposed with an 
apparent good restitution of the RTOA and Rrs, signal in non glinted areas and a satisfying 
recovery of the information over sun glinted pixels. 

The presence for both scenes in Fig. 11 of other issues in the Rrs spatial patterns depicted 
from OLI data, such as band striping, are clearly visible. The correction of these spatial 
artifacts requires special pre-processing steps that are beyond the scope of this paper. 



 

Fig. 11. Illustration of the potential applicability of the automated procedure developed over 
French Guiana coastal waters over contrasted coastal sites in Mexico (a to d, 
LC08_L1TP_023047_20170713_20170726_01_T1) and in Vietnam (e to f, 
LC08_L1TP_124053_20170615_20170628_01_T1). Values of RTOA and Rrs for band 561nm 
before (a,c,,e,g)and after (b,d,f,h) sun glint correction. Land and cloud masks are represented 
in grey. 



4. Conclusions 

Water pixel contamination from sun glint effects represents a main issue to overcome in order 
to fully exploit the potential now offered by recent high spatial resolution sensors for 
gathering detailed information on biogeochemical properties of coastal water masses. The 
performance of simple empirical SWIR based methods was evaluated in the frame of this 
work considering a 4-year OLI archive (227 OLI scenes) gathered over the low latitude 
coastal waters of French Guiana, which are permanently affected by sun glint contamination. 

This study first provides evidences of the interest of such empirical approaches which are 
not relying, to the difference of other proposed methodologies [11,34], on any theoretical step 
nor on a priori information on the atmospheric conditions. 

This work has also emphasized the possibility to overcome the two main limitations in the 
applicability of historical empirical sun glint corrections schemes initially based on the use of 
the NIR signal. First, the results have illustrated the advantage of the availability for the most 
recent sensors, such as OLI, of information in the SWIR spectral domain, where the marine 
information is negligible, for now correcting the marine signal over coastal waters including 
the most turbid ones. Further, the developments performed based on the considered regional 
OLI data set have demonstrated the possibility to routinely apply SWIR based empirical sun 
glint correction approaches. The proposed automated sun glint correction procedure, which 
aims at correcting the water signal before atmospheric correction, mainly relies on the 
definition of adapted masks (clearest waters, glinted and non-glinted pixels) based on scene 
specific relative statistical descriptors. 

The overall performance of the proposed methodology is satisfactory as illustrated by the 
global good recovery of the signal over the whole sun glint contaminated area, as also 
confirmed from the match ups exercises performed in French Guiana coastal waters. Our 
results have further demonstrated that the current image based correction procedure allows 
the marine signal over glint free pixels to be preserved. The main limitation of the current 
automated empirical approach is related to the presence of thin clouds and cloud shadows 
(which are not detected over glinted areas) biasing the estimation of the SWIR based 
relationships parameters. Further developments should therefore aim at coupling the current 
sun glint correction approach with cloud masking procedures in order to optimize the 
identification of the water pixels over the whole map and the recovery of the Rrs information 
for biogeochemical applications. 

Another main limitation of the proposed procedure is the presence over a defined OLI 
scene of a high heterogeneity in the TOA signal associated with the highly spatially variable 
atmospheric and/or water patterns. While an a priori definition of the level of homogeneity 
suitable for performing SWIR based empirical sun glint corrections is difficult to achieve, a 
quality control of the sun glint correction can be easily performed on an image basis checking 
the preservation of the Rrs signal over glint free areas. This should be performed spectrally 
considering the user’s bands of interest and requirement regarding the level of precision in the 
marine signal restitution. 
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