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Abstract Recent proteomic and biochemical evidence indicates that cellular 
 signaling is organized in protein modules. G protein-coupled receptors (GPCRs) are 
privileged entry points for extracellular signals that are transmitted through the 
plasma membrane into the cell. The adequate cellular response and signaling 
specificity is regulated by GPCR-associated protein modules. The composition of 
these modules is dynamic and might depend on receptor stimulation, the proteome 
of a given cellular context, the subcellular localization of receptor-associated mod-
ules, the formation of GPCR oligomers and the variation of expression levels of 
components of these modules under physiological, for example circadian rhythm, 
or pathological conditions. The current article will highlight the importance of 
GPCR-associated protein modules as a biochemical basis for signaling specificity.
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Chapter 12
Differential Assembly of GPCR Signaling 
Complexes Determines Signaling Specificity

Pascal Maurice, Abla Benleulmi-Chaachoua, and Ralf Jockers
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2 P. Maurice et al.

Keywords Circadian rhythm • Compartmentalization • Complex assembly • 
Dimerization • Therapeutic

12.1  Introduction

Membrane receptors are at the interface between the extra- and intra-cellular 
 environment and are thus crucial for cellular communication. The superfamily of G 
protein-coupled receptors (GPCRs) constitutes the largest family of membrane 
receptors with approximately 800 members in humans (Vassilatis et al. 2003; 
Fredriksson and Schioth 2005). They are composed of seven transmembrane 
domains connected by short intra- and extra-cellular loops and respond to a large 
panel of signals: photons, ions, metabolites, amino acids, lipids, peptides and 
 proteins. Despite this ligand diversity, the overall architecture and activation mecha-
nism is believed to be highly conserved for these receptors. Many GPCRs are able 
to activate heterotrimeric G proteins composed of a, b and g subunits. G proteins are 
classified according to the activation of various effectors: G

i/o
 and G

s
 proteins are 

typically involved in the inhibition and stimulation of adenylyl cyclase, respectively; 
G

q/11
 proteins in the stimulation of phospholipase C and G

12/13
 proteins in the activa-

tion of small G proteins and cytoskeleton rearrangements. According to the type of 
G protein activated, GPCRs have been initially classified as G

i/o
-, G

s
-, G

q/11
- or G

12/13
-

coupled receptors. However, replication of these studies in different cell types and 
experimental conditions clearly show that most GPCRs do not couple to one single 
G protein but often to several of them. Activation of additional G protein-indepen-
dent signaling events, i.e. ß-arrestin-dependent pathways, are also increasingly 
described. The capacity of GPCRs to signal through multiple pathways together 
with the fact that signaling pathways are highly interconnected within networks 
raises the fundamental and still largely unsolved question of how signaling specificity 
is obtained upon stimulation of cells with a given ligand.

A simple way to generate signaling specificity is the expression of different 
receptor isoforms responding to the same ligand but triggering different signaling 
events (Fig. 12.1a). This strategy is widely used and applies to multiple neurotrans-
mitters (serotonin, dopamine, glutamate, etc.). In other more limited circumstances, 
signaling specificity is generated by the expression of different natural ligands tar-
geting the same receptor with different functional outcomes (Fig. 12.1c). Prominent 
examples are the ß2-adrenergic receptors (ß2AR) that is activated by epinephrine 
and norepinephrine (Reiner et al. 2010) and the parathyroid hormone receptor 
(PTHR) that is activated by PTH and the PTH-related peptide (PTHrP) (Ferrandon 
et al. 2009). Epinephrine and norepinephrine induce different conformational 
changes within the receptor with different kinetics as monitored with a fluorescently 
tagged ß2AR FRET sensor. These differences translate into different capacities to 
activate G

s
- and ß-arrestin-dependent signaling events. In the case of the PTHR, 

both natural ligands trigger different durations of the cAMP responses in which 
PTHrP-promoted actions are short-lived and restricted to the cell surface and 
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312 Differential Assembly of GPCR Signaling Complexes Determines Signaling…

PTH-promoted actions are long-lived and dependent on receptor internalization. 
This idea can be also extended towards inverse agonists as illustrated by melanocor-
tin MC3/MC4 receptors and their naturally occurring inverse agonists agouti and 
agouti-related protein (Agrp) that diminish the action of the melanocortin receptor 
agonist a-melanocyte-stimulating hormone (Adan and Kas 2003).

Cellular context: GAPCs
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signaling
specificity
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Fig. 12.1 Schematic illustration of different means to generate GPCR signaling specificity. 
(a) Stimulation of different receptor isoforms by the same ligand may result in the activation of 
different signaling pathways; (b) receptor polymorphisms may modify the functional properties of 
receptors; (c) different natural ligands may activate the same receptor differently; (d) receptor 
function may vary depending on the cellular context; (e) GPCR dimerization may modify receptor 
function and the recruitment of different GAPCs; (f) association of GPCRs with ion channels and 
neurotransmitter transporters may modify receptor function; (g) the subcellular localization of 
receptors may impact on receptor function; (h) the functional response of receptors may vary 
depending on physiological or pathological changes of receptor or GAPC expression. Changes in 
GAPC composition as a function of the circadian rhythm are illustrated
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4 P. Maurice et al.

The same strategy is increasingly applied by pharmaceutical industry to design 
synthetic ligands with biased signaling properties. The idea behind biased ligands is 
to develop drugs that activate only a subset of signaling pathways (ideally only those 
important for the therapeutic effect) thus significantly decreasing unwanted side 
effects of drugs due to the activation of therapeutically irrelevant pathways. The proof-
of-concept for such a strategy has been shown for the nicotinic acid receptor. Nicotinic 
acid is one of the most effective agents for both lowering triglycerides and raising 
HDL levels. However, the side effect of cutaneous flushing severely limits patient 
compliance. Recent evidence suggests that effects on lipid metabolism are mediated 
by G

i/o
 proteins and flushing by ß-arrestin (Walters et al. 2009). Drugs with reduced 

flushing profiles are currently developed (Shen et al. 2010).
Furthermore, receptor polymorphisms might modify the signaling profile of the 

receptor and thus redirect the functional outcome (Fig. 12.1b). This aspect has to be 
considered in the context of personalized drug design.

Although the abovementioned cases participate in the generation of signaling 
specificity, they only apply to a subset of situations and leave the majority of cases 
unexplained. Indeed, the signaling outcome of the stimulation of a particular recep-
tor might largely depend on the cellular context, the precise subcellular localization 
of receptors, their clustering and their interaction with signaling modules, whose 
composition might vary depending on different physiological or pathological condi-
tions. The present article describes how signaling specificity can be generated under 
these different circumstances. We will focus our attention on the importance of 
GPCR-associated protein complexes (GAPCs) that might be either involved in the 
trafficking and subcellular localization of the receptor or directly in receptor signal-
ing. Importantly, integration of receptors into different preformed signaling 
 complexes might be a biochemical basis for the generation of signaling specificity.

12.2  Impact of the Cellular Context

Activation of specific signaling pathways and the functional outcome of receptor acti-
vation depend on the cellular context. This may include differences in the functional 
response depending on the differentiation state of cells, for example preadipocytes vs. 
adipocytes, or on the cell types (immune cells, epithelial cells, neurons, etc.). 
Differences may occur at the level of receptor expression, receptor localization, the 
expression pattern of effector systems and downstream signaling pathways as well as 
expression of components of GAPCs (Fig. 12.1d).

This is well illustrated by the regulator of G protein signaling (RGS) proteins. 
RGS proteins are GTPase-activating proteins that accelerate the GTPase activity of 
Ga subunits, thereby modulating G protein signaling (Sjogren 2011). In addition to 
their selectivity for certain Ga subtypes, one obvious source of specificity is the 
tissue- or cell-specific expression pattern of RGS. A good example is the distinct 
localization of the two splice variants of RGS9. RGS9, a member of the R7 family 
of RGS proteins, is expressed as two splice variants, RGS9-1 in the retina and the 

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113



512 Differential Assembly of GPCR Signaling Complexes Determines Signaling…

longer form RGS9-2 primarily postsynaptic in dopamine receptor-rich brain regions, 
such as the striatum (Gold et al. 1997; Mancuso et al. 2010). In the retina, RGS9-1 
is exclusively found in the outer segment of photoreceptor cells in which it regulates 
signaling through transducin a subunits in rods and cones (Cowan et al. 1998; He 
et al. 1998). This protein seems to be essential for normal visual perception as 
 demonstrated by the RGS9 knockout mice and humans with mutations in RGS9 
(Nishiguchi et al. 2004; Michaelides et al. 2010). In contrast, RGS9-2 is highly 
expressed in the striatum where it regulates opioidergic and dopaminergic responses 
(Gold et al. 1997). RGS proteins have been also implicated in regulating cancer 
progression. In many cases, the link is related to changes in expression. For instance, 
RGS2 and RGS4 mRNA are both down-regulated in ovarian cancer cell lines, in 
contrast to RGS6 mRNA which is upregulated, indicating different and specific 
functional roles for these proteins (for review, see Hurst and Hooks 2009).

12.3  GPCR Dimerization

Organization of GPCRs into dimeric clusters has been considered for more than 
10 years and is now supported by numerous studies (Milligan 2009) and the crystal 
structure of two GPCRs (Palczewski et al. 2000; Wu et al. 2010). GPCR heterodi-
merization is a topic of great interest due to the potential importance of the func-
tional consequences of such interactions on signal transduction pathways. Depending 
on the two protomers constituting the dimer (the dimer being the minimal func-
tional oligomeric unit), the composition of the GAPCs can vary and generate signal-
ing specificity (Fig. 12.1e). In addition, GPCR heterodimerization offers a plausible 
solution for the simultaneous binding of many interaction partners to the receptor 
and would increase the diversity of the activation response of such complexes.

Accumulating evidence in the literature indicates that heterodimerization may 
modify the G protein coupling profile. For instance, signaling of m- and d-opioid 
receptor heterodimers is insensitive to pertussis toxin (PTX) treatment in contrast to 
the individually expressed receptors, suggesting a switch from PTX-sensitive to 
PTX-insensitive G protein coupling (George et al. 2000). Other studies on dop-
amine D

1
 and D

2
 receptor heterodimers demonstrated that the Ga

s
-coupled D

1
 and 

the Ga
i
-coupled D

2
 receptors become Ga

q/11
-coupled in the corresponding heterodi-

mer (Rashid et al. 2007). These examples illustrate how heterodimerization between 
two different GPCRs can determine signaling specificity.

Asymmetry between the two protomers of a GPCR dimer may also contribute to 
signaling specificity (for review, see (Maurice et al. 2011; Kamal et al. 2011). The 
recent development of a functional complementation assay allowed to explore the 
individual contribution of each protomer of class A GPCR dimers (Han et al. 2009). 
A trans-activation model was proposed in which the agonist-occupied protomer can 
trans-activate the second protomer that associates with the Ga subunit to modulate 
the signal transduction pathway. Another example in which asymmetry downstream 
of the G protein determines signaling specificity was recently reported for the 
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6 P. Maurice et al.

 melatonin MT
1
/MT

2
 heterodimer and RGS20 (Maurice et al. 2010). In contrast to 

the MT
2
 receptor, which only couples to G

i
 proteins, the MT

1
 receptor forms a con-

stitutive ternary complex with both G
i
 and RGS20. By using a ligand binding-

deficient MT
1
* mutant and bioluminescence resonance energy transfer (BRET) 

studies with energy transfer probes at different sites of the MT
1
/Gi/RGS20 complex, 

Maurice et al. showed that activation of the MT
2
 protomer, within the MT

1
*/MT

2
 

heteromer, can cis-activate G
i
, which then interacts functionally with RGS20 bound 

to the MT
1
* protomer. This shows that receptors, such as MT

2
, that are insensitive 

to a specific GPCR-interacting protein (GIP) can become sensitive to the action of 
this GIP in the appropriate heterodimer complex.

Agonist binding to GPCRs and G protein activation are followed by the recruit-
ment of G protein-coupled receptor kinases (GRKs) that phosphorylate the receptor, 
and of arrestins triggering receptor endocytosis and arrestin-dependent signal trans-
duction (Reiter and Lefkowitz 2006). The receptor/GRK stoichiometry remains 
unknown but several studies have reported that binding of only one GRK molecule 
to the receptor dimer might be sufficient for full receptor phosphorylation of both 
protomers by cross-phosphorylation. This phenomenon has been shown for rhodop-
sin for which recruitment of the rhodopsin kinase to an activated rhodopsin can 
cross-phosphorylate multiple nearby non-activated rhodopsin molecules (Shi et al. 
2005) and for several other class A GPCR heteromers (Pfeiffer et al. 2002, 2003). 
In these studies, GRK cross-phosphorylation of the unligated GPCR within the het-
erodimer was accompanied by co-internalization of this unligated protomer together 
with the ligand-bound protomer of the dimer (Pfeiffer et al. 2002, 2003). Cross-
internalization of receptors within GPCR heterodimers may have important func-
tional consequences, as shown in the case of the m/d-opioid receptor heterodimer. 
Activation of the d-opioid receptor cross-internalizes m-opioid receptors, thereby 
severely limiting m-opioid receptor-associated morphine analgesia (He et al. 2011).

Taken together, these examples indicate how GPCR heterodimerization, by 
acting as scaffolds and by assembling distinct GAPCs, can generate signaling properties 
that differ from those observed in the corresponding homodimers thus illustrating 
the diversification of the functional properties of receptors by heterodimerization.

12.4  Complex Formation with Membrane Proteins  
Other Than GPCRs

GPCRs have not only been reported to cluster into homo- and heterodimeric com-
plexes but also with other major transmembrane proteins as diverse as neurotrans-
mitter transporters and ion channels, which are privileged pharmacological targets 
by themselves (Fig. 12.1f). A physical and functional interaction was reported 
between the g-aminobutyric-acid A(GABA

A
) -ligand gated channel and the dop-

amine D
5
 receptor (Liu et al. 2000). Interestingly, this association was shown to 

enable mutually inhibitory effects resulting in D
5
 receptor-attenuated GABA

A
-

mediated inhibitory postsynaptic currents and GABA
A
-stimulated reductions of D

5
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receptor cAMP accumulation. These findings are of primary importance since 
GABA

A
 receptors mediate fast inhibitory synaptic transmission at the vast majority 

of inhibitory synapses in the brain, thereby playing a fundamental role in brain 
physiology and pathology.

The ionotropic N-methyl-D-aspartate (NMDA) receptor was also reported to 
physically interact with the D

1
 receptor (Lee et al. 2002) and more recently with the 

mGlu5a receptor (Perroy et al. 2008). NMDA receptors play an important role in the 
regulation of activity-dependent neuroplasticity and excitotoxicity and the interac-
tion with D

1
 was reported to modulate NMDA receptor-mediated functions in hip-

pocampal culture neurons (Lee et al. 2002). Interaction with mGlu5a allows 
reciprocal modulation of both receptors; the mGlu5a receptor decreases NMDA 
receptor currents and the NMDA receptor strongly reduces the ability of the mGlu5a 
receptor to release intracellular calcium (Perroy et al. 2008). These studies illustrate 
the richness in the functional interactions between a GPCR and other unrelated 
transmembrane receptors, leading to a much higher degree of effector specificity 
and subcellular signaling pathways.

The nociceptin (ORL1) receptor has been shown to physically and specifically 
interact with another type of ion channel, the voltage-gated N-type Ca

v
2.2 calcium 

channel (Beedle et al. 2004). Calcium influx through N-type calcium channels in 
dorsal root ganglion (DRG) neurons is an essential step in the transmission of noci-
ceptive signals at the spinal level. Specific interaction between ORL1 and Ca

v
2.2 has 

been shown to result in an agonist-independent, receptor concentration-dependent 
inhibition of the channel in vitro and in DRG neurons (Beedle et al. 2004). These 
findings raised the possibility that the activity of N-type calcium channels, and con-
sequently transmission of pain signals, may be regulated by difference in GPCR 
(ORL1) receptor density. Further characterization of the ORL1/Ca

v
2.2 interaction 

showed that prolonged exposure of ORL1 to its cognate agonist nociceptin triggers 
co-internalization of ORL1 and the ion channel thus down-regulating calcium entry 
in DRG neurons (Altier et al. 2006).

Preferential interactions have also been reported between GPCRs and neurotrans-
mitter transporters. The dopamine D

2
 and orphan GPR37 receptor have been shown 

to interact with the dopamine transporter (DAT), one of the key presynaptic compo-
nents involved in regulating dopaminergic tone. The physical coupling between 
DAT and D

2
 facilitates the recruitment of intracellular DAT to the plasma  membrane, 

thus enhancing dopamine reuptake in primary cultures of rat midbrain neurons. 
Disruption of the D

2
/DAT interaction in mice decreases synaptosomal dopamine 

uptake and increases locomotor activity (Lee et al. 2007). Interestingly, opposite 
effects have been reported following interaction of DAT with GPR37 (Marazziti 
et al. 2007). Gpr37-null mutant mice show enhanced DAT-mediated dopamine 
uptake in striatal membrane samples, with a significant increase in the number of 
membrane DAT molecules. Taken together, these two studies demonstrate how, 
according to the nature of the GPCR engaged in a complex with a  neurotransmitter 
transporter, opposite functional effects can be observed.

Formation of stable GPCR-effector complexes within the plasma membrane is 
also exemplified by GPCRs and G protein-gated inwardly-rectifying K+ (GIRK) 
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8 P. Maurice et al.

channels, particularly of family 3 (Kir3). Kir3 channels represent a family of ion 
channels that mediate the postsynaptic inhibitory effect of many neurotransmitters 
and drugs of abuse. In 2002, a first study reported the formation of stable complexes 
of Kir3 with D

2
-like, D

4
 and b

2
 adrenergic receptors using co-immunoprecipitation 

and BRET experiments (Lavine et al. 2002), Further studies reported formation of 
such complexes with other GPCRs such as GABA

B
 receptors (David et al. 2006; 

Ciruela et al. 2010; Fowler et al. 2007), and muscarinic M
2
, serotonin 1

A
, adenosine 

A
1
, and LPA

1
 receptors (Jaen and Doupnik 2006).

Overall, these different studies suggest that assemblies containing these compo-
nents may represent a common organizational premise needed to determine 
specificity and efficacy of signal transduction and may be critical to assure the speed 
of signaling.

12.5  Physiological Changes, Illustrated by Circadian 
Rhythmicity

The cellular state is constantly changing depending on the cell cycle and the devel-
opmental stage of the organism. An interesting regular modification of biological 
systems is imposed by the biological clock that generates circadian rhythmicity at 
the cellular level. It is estimated that at least 10 % of all genes are cycling in a cir-
cadian manner, which has obviously important functional consequences on cellular 
homeostasis (Lowrey and Takahashi 2004). Two recent examples illustrate the 
direct impact of circadian rhythmicity on GPCR function (Fig. 12.1h).

In mammals, the hypothalamic suprachiasmatic nucleus (SCN) is the central 
pacemaker, generating an endogenous and self-sustained circadian activity and 
coordinating rhythms of numerous peripheral tissues (Sujino et al. 2003). Circadian 
rhythmicity is generated at the cellular level but how the phase and period of circa-
dian oscillation of different SCN neurons is maintained remains largely unknown. 
Oscillation in intracellular cyclic adenosine monophosphate (cAMP) levels is 
known to be an important component of circadian rhythmicity. The cAMP system 
can be manipulated by several means. cAMP production is controlled by stimulat-
ing G

s
 or G

i
 protein-coupled receptors that activate or inhibit adenylyl cyclases, 

respectively. Degradation of cAMP occurs through phosphodiesterases. In addition, 
RGS proteins such as RGS16 may inhibit the function of G

i
 proteins by accelerating 

their GTP-GDP exchange rate. Interestingly, RGS16 is expressed in a circadian 
manner in the dorsomedial part of the SCN with peak levels during dawn modulat-
ing cAMP signaling in a highly regulated spatiotemporal manner (Doi et al. 2011). 
Ablation of the Rgs16 gene eliminates the circadian cAMP production and, as a 
result, lengthened the circadian period of the locomotor activity rhythm thus dem-
onstrating the importance of defined circadian activation patterns for behavioral 
outputs. This is further underlined by the fact that cAMP levels in Rgs16 knockout 
mice remained constant at an elevated level demonstrating that not elevated cAMP 
levels per se but rather their rhythmicity are important. Taken together, rhythmic 
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912 Differential Assembly of GPCR Signaling Complexes Determines Signaling…

changes in the expression of an important component of GPCR signaling, RGS16, 
may define signaling specificity in a temporal manner.

Another example illustrating the impact of the circadian rhythm on GPCR 
 signaling has been shown in a peripheral organ, the liver (Zhang et al. 2010). In 
hepatic cells, intracellular cAMP levels appear to be regulated by a core component 
of the circadian rhythm generating cellular machinery, cryptochrome proteins (Cry). 
Circadian control of gene expression is achieved by two transcriptional activators, 
Clock and Bmal1, which stimulate Cry1, Cry2 and Period repressors that feedback 
on Clock-Bmal1 activity (Reppert and Weaver 2002). Recent evidence indicates 
that Cry may have additional, extra-nuclear, functions in hepatocytes (Zhang et al. 
2010). Cry protein expression is rhythmic with peak levels during the night-day 
transition. By interacting with G

s
 proteins, Cry diminishes intracellular cAMP lev-

els in a circadian manner due to its circadian expression pattern. This may be of 
physiological relevance as the liver clock regulates the gluconeogenic genetic pro-
gram through Cry-mediated inhibition of CREB activity during fasting. Furthermore, 
hepatic overexpression of Cry1 lowered blood glucose concentrations and improved 
insulin sensitivity in insulin-resistant db/db mice suggesting that enhancing Cry 
activity might be beneficial in type 2 diabetes treatment. Taken together, circadian 
expression of proteins involved in the regulation of GPCR signaling provides a 
powerful means to control GPCR signaling specificity.

12.6  Localization of GPCRs at Different Subcellular 
Compartments

GPCR signaling specificity can be modulated depending on receptor localization at 
different subcellular compartments (Fig. 12.1g). Targeting of receptors to these 
compartments determines receptor function due to the specific physicochemical 
properties of each compartment (membrane rigidity and lipid composition) and the 
enrichment of GAPCs and signaling pathway components in these compartments. 
Microdomains (lipid rafts and caveolae) are specialized compartments of the plasma 
membrane that are highly structured zones of low fluidity due to their enrichment in 
cholesterol and sphingolipids. The structural integrity of caveolae is further main-
tained by a coat composed of caveolin protein at the cytoplasmic side. Microdomains 
have been suggested to constitute a scaffolding zone of GPCR signaling cascades 
that also modify GPCR trafficking and favor crosstalk with other signaling path-
ways. The precise mechanism of GPCR targeting into these microdomains remains 
unclear, in particular whether some GPCRs show higher intrinsic affinity for micro-
domains than others or whether microdomain-enriched GAPCs target GPCR to 
these domains (Insel et al. 2005). Furthermore, the impact of microdomains on 
GPCR localization and signaling specificity may vary depending on the tissue, as 
some cells, such as adipocytes, are richer in microdomains than others.

An obvious role of caveolae in determining the functional outcome of GPCR 
signaling is provided by caveolae-localized PAR1 receptors that phosphorylate 
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caveolin-1 in a Src-dependent manner. Phosphocaveolin-1 then binds to the SH2 
domain of the C-terminal Src kinase (Csk) resulting in a rapid decrease in Src kinase 
activity. Thus, PAR1-induced Src activation is down-regulated by recruiting Csk 
specifically in caveolin-1 containing microdomains (Lu et al. 2006).

GnRH receptors have been shown to constitutively localize within microdomains 
as part of a preformed signaling complex composed of caveolin-1, c-Src, protein 
kinase C, Ras, MAPK kinase 1/2, ERK1/2, tubulin, FAK, paxillin, vinculin, and 
kinase suppressor of Ras-1 (Dobkin-Bekman et al. 2009). Stimulation by GnRH 
induces molecular rearrangement of the complex, the rapid dissociation of some 
components and the phosphorylation of FAK and paxillin by EKR1/2. Whereas acti-
vation of ERK1/2 typically induces their nuclear translocation and phosphorylation 
of transcription factors, scaffolding into microdomain-associated multiprotein sig-
naling complexes, as described here, helps to maintain the activated ERK1/2 pool 
within the cytoplasm and to phosphorylate FAK and paxillin at focal adhesions.

Primary cilia are appendages present at the cell surface on most mammalian cells 
involved in signal sensing and transmission (Goetz and Anderson 2010). Some 
GPCRs, including somatostatin receptor 3, serotonin receptor 6, smoothened, 
 dopamine D

1
 receptor and melanin-concentrating hormone receptor 1 localize to cilia. 

The importance of the localization and signaling of GPCRs in primary cilia is sug-
gested by altered signaling caused by the absence of cilia formation (Berbari et al. 
2009). Some molecular determinants directing localization of GPCRs to cilia have 
been identified in the third intracellular loop, which most likely binds to cytoskeleton 
proteins involved in the transport into and out of cilia (Berbari et al. 2008). The func-
tions of cilia are defined by the signaling proteins localized to the ciliary membrane 
such as adenylyl cyclases, heterotrimeric G proteins and ß-arrestins. What makes 
 primary cilia so special compared to other cell surface-exposed membrane regions, 
remains still an open question and warrants further investigation.

Many GPCRs contain a PSD-95/Disc large/Zonula occludens 1 (PDZ) ligand 
sequence composed of three amino acids at their carboxyl-terminal extremity 
(Heydorn et al. 2004). These PDZ ligands are recognized by PDZ domains, which 
are present in almost 200 proteins. PDZ domains are scaffolding domains per excel-
lence that are involved in GPCR trafficking and subcellular localization. The post-
synaptic density protein 95 (PSD95) contains three PDZ domains and interacts with 
the serotonin 5-HT

2C
 receptor and other GPCRs in post-synaptic membranes 

(Becamel et al. 2002). PSD95 is also part of large molecular networks such as the 
PSD95/GKAP/Shank/Homer3 complex that physically and functionally connects 
NMDA receptors (PSD95 binding partner) to metabotropic glutamate 5 receptors 
(mGluR5) (Homayoun and Moghaddam 2010). Homer three proteins assemble into 
tetramers bridging GKAP and mGluR5. Interestingly, this complex can be disrupted 
by the monomeric immediate early gene Homer1a that blocks the interaction 
between GKAP and mGluR5 by competing with Homer3. This indicates a dynamic 
regulation of the presence of mGluR5 in the complex and possibly its localization 
to post-synaptic membranes (Bertaso et al. 2010).

Signaling of GPCRs has been reported not only at the plasma membrane or 
 specialized plasma membrane sub-compartments such as microdomains, primary 
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cilia and synapses, but also in intracellular membranes such as endosomes and 
nuclear membranes (Boivin et al. 2008; Calebiro et al. 2010). GAPCs appear to play 
an important role under these circumstances as current observations are compatible 
with the joint translocation of both receptors and their GAPCs from the cell surface 
to intracellular compartments to prolong their signaling capacity. It remains how-
ever unclear why these complexes remain stable during receptor endocytosis and 
which component is responsible for the targeting of the complex to specific intracel-
lular sites. Although it is tempting to speculate that specific GAPCs participate in 
this new paradigm of signaling specificity, experimental proof for this hypothesis is 
still lacking.

12.7  Targeting GPCR-GIP Interaction In Vivo: A Promising 
Approach for Specific Therapeutic Intervention?

An important issue concerns the pathophysiological relevance of such differential 
assembly of GAPCs. Indeed, the potential of targeting GPCR-GIP interactions as a 
novel approach for therapeutic intervention is of particular interest and specific dis-
ruption of a GPCR/GIP interaction in a given tissue without affecting the interaction 
of this same GPCR with other GIPs in another tissue represents an attractive strategy 
for drug discovery. Emerging evidence that illustrate this concept came from studies 
based on the use of cell-penetrating HIV TAT-conjugated peptides that clearly showed 
the potential of peptides in disrupting a specific GPCR/GIP interaction.

A first example was proposed by the study of Ji et al. (2006) reporting that 
 intravenous injection in rats of a TAT-conjugated peptide encompassing the PTEN-
binding motif located within the i3 loop of 5-HT

2C
 receptor suppresses the firing rate 

of ventral tegmental area (VTA) dopaminergic neurons induced by d9-tetrahydro-
cannabinol (THC), thereby reproducing the effect of 5-HT

2C
 receptor agonists. As 

5-HT
2C

 receptor agonists, this TAT-peptide also inhibits the rewarding effects of 
THC (and nicotine) mediated by VTA dopaminergic neurons. However, it does not 
reproduce the side effects (anxiogenic effects, penile erection, hypophagia, and 
motor functional suppression) observed following administration of 5-HT

2C
  agonists 

(Ji et al. 2006).
Disruption of the mGluR7a/PICK1 interaction by intravenous injection of a TAT-

conjugated peptide was able to trigger absence epilepsy-like seizures in mice and 
rats, providing evidence that a single PDZ protein/GPCR interaction can result in a 
specific neurological disorder (Bertaso et al. 2008). More recently, disruption of the 
interaction between 5-HT

2A
 and PDZ proteins in diabetic neuropathic rats by a TAT-

conjugated peptide encompassing the nine C-terminal residues of the 5-HT
2A

 recep-
tor was shown to induce an antihyperalgesic effect and to strongly enhance 
antihyperalgesia induced by the selective serotonin reuptake inhibitor (SSRI) 
fluoxetine. This study thus suggests that 5-HT

2A
 receptor/PDZ protein interactions 

might contribute to the resistance to SSRI-induced analgesia in painful diabetic 
neuropathy and that disruption of these interactions might be a valuable strategy to 
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design novel treatments for neuropathic pain and to increase the effectiveness of 
SSRIs (Pichon et al. 2010).

The importance of D
1
/D

2
 heterodimers in human disease was suggested in a 

recent study showing that physical interaction between dopamine D
1
 and D

2
 receptors 

is markedly increased in postmortem brains of patients suffering from major depres-
sion. Administration of an interfering peptide consisting of a sequence located in 
the third intracellular loop of D

2
 that disrupts the D

1
-D

2
 receptor complex reduced 

immobility in the forced swim test without affecting locomotor activity, and 
decreased escape failures in learned helplessness tests in rats (Pei et al. 2010). This 
study thus provided evidence for potential implication of GPCR heterodimers and 
associated signaling specificity in human diseases.

12.8  Conclusions

Evolution has selected several ways to achieve signaling specificity, by generating 
receptor isoforms, receptor polymorphisms, differential localization and targeting 
of receptors and pre-assembly of receptors and GAPCs into defined and distinct 
signaling modules. The latter holds the potential to explain many of the observed 
signaling specificity. However, we are only beginning to define the precise composi-
tion and impact of these modules on receptor signaling. Given the dynamic nature 
of these modules, a precise analysis has to be performed for each receptor in a 
specific cellular context and under defined physiological and pathological 
conditions.
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