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Membrane-mediated interactions

Anne-Florence Bitbol, Doru Constantin and Jean-Baptiste Fournier

Abstract Interactions mediated by the cell membrane between inclusions, such as
membrane proteins or antimicrobial peptides, play important roles in their biolog-
ical activity. They also constitute a fascinating challenge for physicists, since they
test the boundaries of our understanding of self-assembled lipid membranes, which
are remarkable examples of two-dimensional complex fluids. Inclusions can couple
to various degrees of freedom of the membrane, resulting in different types of in-
teractions. In this chapter, we review the membrane-mediated interactions that arise
from direct constraints imposed by inclusions on the shape of the membrane. These
effects are generic and do not depend on specific chemical interactions. Hence, they
can be studied using coarse-grained soft matter descriptions. We deal with long-
range membrane-mediated interactions due to the constraints imposed by inclusions
on membrane curvature and on its fluctuations. We also discuss the shorter-range
interactions that arise from the constraints on membrane thickness imposed by in-
clusions presenting a hydrophobic mismatch with the membrane.
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Laboratoire “Matière et Systèmes Complexes” (MSC), UMR 7057 CNRS, Univer-
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1 Introduction

Although membrane proteins were traditionally described as free to diffuse in the
cell membrane [1], it was soon acknowledged that the lipid bilayer can influence
their organization and thus have an impact on many aspects of their activity [2].
Hence, interactions between proteins and the host membrane, as well as the resulting
protein-protein interactions, have become fundamental topics in biophysics.

Membrane inclusions such as proteins can couple to various degrees of freedom
of the membrane (curvature, thickness, composition, tilt, etc.), thus giving rise to
several types of membrane-mediated interactions. It is noteworthy that these in-
teractions are often non-specific, i.e. they do not involve the formation of chemi-
cal bonds between the various components. Thus, understanding these interactions
calls for a description of the membrane as a self-assembled system whose proper-
ties are collectively determined, and not merely given by the chemical properties
of the molecules involved [3]. Over the last few decades, it has become clear that
the concepts developed in soft matter physics to describe self-organized systems are
extremely useful in this context, and that coarse-grained effective models such as
the Helfrich model of membrane elasticity [4] can yield valuable insight.

In this chapter, we review the membrane-mediated interactions between inclu-
sions such as membrane proteins that arise from direct constraints imposed by these
inclusions on the shape of the membrane. Our point of view is mostly theoretical, in
agreement with the history of this research field, but we also discuss the numerical
and experimental results that are available. For clarity, we treat separately the effects
that result from the coupling of the inclusions with membrane curvature and those
that arise from their coupling with membrane thickness. Note however that a given
inclusion can couple to both of these degrees of freedom. The first case, presented
in Section 2, leads to interactions with a much larger range than the characteristic
size of the inclusions, which will be referred to as “long-range interactions”. Such
effects can be described starting from the coarse-grained Helfrich model [4]. The
second case, discussed in Section 3, yields a much shorter-range interaction, and
requires more detailed effective models of the membrane.

Other types of membrane-mediated interactions, arising from other underlying
membrane degrees of freedom such as lipid composition and tilt, will not be dis-
cussed in detail. Besides, important applications such as the crystallization of mem-
brane proteins and the interaction between constituents of such crystals, are outside
of the scope of this chapter.

2 Long-range membrane-mediated interactions

Inclusions such as proteins are generally more rigid than the membrane. Therefore,
they effectively impose constraints on the shape of the membrane, especially on its
curvature, which plays a crucial part in membrane elasticity. These constraints in
turn yield long-range membrane-mediated interactions between inclusions.
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We will review the first theoretical predictions of these interactions, before mov-
ing on to further results in the analytically tractable regime of distant inclusions
embedded in almost-flat membranes, including anisotropy, multi-body effects, and
dynamics. Extensions to other geometries will then be discussed, including the com-
pelling but tricky regime of large deformations, where numerical simulations pro-
vide useful insight. Finally, we will examine the available experimental results.

2.1 First predictions

2.1.1 Seminal paper

The existence of long-range membrane-mediated forces between inclusions in lipid
membranes was first predicted in Ref. [5]. The curvature elasticity of the membrane
was described by the tensionless Helfrich Hamiltonian [4]. For an up-down sym-
metric membrane, it reads:

H =
∫

dA
[

κ

2
(c1 + c2)

2 + κ̄ c1c2

]
, (1)

where κ is the bending rigidity of the membrane and κ̄ is its Gaussian bending
rigidity, while c1 and c2 denote the local principal curvatures of the membrane, and
A its area. This elastic energy penalizes curvature. For small deformations of the
membrane around a planar shape, Eq. 1 can be approximated by

H[h] =
∫

drrr
{

κ

2
[
∇

2h(rrr)
]2
+ κ̄ det[∂i∂ jh(rrr)]

}
, (2)

where h(rrr) is the height of the membrane at position rrr = (x,y) ∈ R2 with respect
to a reference plane, and (i, j) ∈ {x,y}2. The Hamiltonian in Eq. 2 is massless and
features a translation symmetry (h→ h+C where C is independent of position)
that is broken in a ground-state configuration, yielding Goldstone modes. The as-
sociated long-range correlations give rise to long-range membrane-mediated inter-
actions. Neglecting the effect of the membrane tension σ , as in Eqs. 1 and 2, is
legitimate below the length scale

√
κ/σ . Note that the simplified Hamiltonian in

Eq. 2 is quadratic in the field h, i.e. the field theory is Gaussian.
In Ref. [5], inclusions are characterized by bending rigidities different from those

of the membrane bulk. A zone with slightly different rigidities can represent a phase-
separated lipid domain, while a very rigid zone can represent a protein. Both regimes
(perturbative and strong-coupling) are discussed, in the geometry of two identical
circular domains of radius a at large separation d � a (see Fig. 1). An interaction
potential proportional to 1/d4 is obtained in both regimes.

In the perturbative regime, the interaction depends on the perturbations of κ and
κ̄ in the inclusions and on the value of κ in the membrane, as well as on kBT .
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Fig. 1: Ground-state shape of a membrane containing two rigid disk-shaped inclu-
sions that impose the contact angles α1 and α2, obtained by solving the Euler-
Lagrange equation (see Ref. [6]). The membrane shape is described by its height
h with respect to the plane z = 0. The radius of the inclusions is denoted by a, and
the center-to-center distance by d.

Besides, a low-temperature interaction is obtained for rigid inclusions that im-
pose a contact angle with the membrane, e.g. cone-shaped inclusions [5, 7]:

U1(d) = 4πκ(α2
1 +α

2
2 )

a4

d4 , (3)

where α1 and α2 are the contact angles imposed by inclusion 1 and inclusion 2 (see
Fig. 1). This interaction is obtained by calculating the membrane shape that mini-
mizes the membrane curvature energy in Eq. 2 in the presence of the inclusions. It
arises from the ground-state membrane deformation due to the inclusions, and van-
ishes for up-down symmetric inclusions. It is repulsive. Note that this interaction
does not depend on the Gaussian bending rigidity of the membrane [7], in contrast
with the perturbative case [5]. Indeed, the Gaussian curvature energy term only de-
pends on the topology of the membrane and on boundary conditions [7]. Hence, in
most subsequent studies of the membrane-mediated forces between rigid membrane
inclusions, the Gaussian curvature term in Eq. 2 is discarded.

Another interaction, which is attractive and originates from the thermal fluctua-
tions of the membrane shape, was predicted as well between rigid inclusions [5, 8]:

U2(d) =−6kBT
a4

d4 . (4)

Importantly, this fluctuation-induced interaction is independent of elastic constants
and of contact angles. It exists even for up-down symmetric inclusions (imposing
α1 = 0 and α2 = 0) that do not deform the ground-state membrane shape.

Multipole expansions valid for a� d were used to calculate these interactions
for rigid inclusions. Details on these expansions are presented in Refs. [8, 6]. Only
the leading-order terms in a/d were obtained in Ref. [5]. This method was recently
pushed further, yielding higher-order terms in a/d [6].
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2.1.2 Point-like approach

Ref. [9] extended the study of of Ref. [5]. Membrane elasticity was described by
Eq. 2 as in Ref. [5], but different membrane-inclusion couplings were considered.
Rigid inclusions were treated through a coupling Hamiltonian favoring a relative
orientation of their main axis and of the normal of the membrane. The membrane-
mediated interaction was calculated in the limit of very small inclusions, where
the ultraviolet cutoff of the theory Λ appears. The radius a of the inclusions was
related to Λ through Λ = 2/a [9], yielding agreement with the results of [5]: the
total interaction energy obtained is the sum of U1 and U2 (Eqs. 3 and 4).

This opened the way to direct point-like descriptions of membrane inclusions. In
Ref. [10], a perturbative approach was taken, where the coupling with the membrane
and the inclusions was assumed to be linear or quadratic in the local mean curvature
at the point location of the inclusion. In Ref. [11], the insertion energy of a protein
in the membrane was approximated by a term proportional to the Gaussian curva-
ture of the membrane at the insertion point. Then, in Refs. [12, 13], inclusions were
modeled as more general local constraints on the membrane curvature tensor. Con-
sidering inclusions as point-like is justified in the case of membrane proteins, since
their typical radius is comparable to membrane thickness, which is neglected when
the membrane is considered as a surface, as in Eq. 2. This description simplifies
the calculation of membrane-mediated interactions, by eliminating the need for a
multipole expansion. In practice, one writes the partition function of the membrane
described by the elastic energy in Eq. 2 (discarding Gaussian curvature), modeling
inclusions as point curvature constraints [12, 13]. For one inclusion imposing a lo-
cal isotropic curvature c in rrr0, these constraints read ∂ 2

x h(rrr0) = ∂ 2
y h(rrr0) = c and

∂x∂yh(rrr0) = 0. Then, the part of the free energy that depends on the distance d be-
tween the inclusions is the sum of U1 and U2 (Eqs. 3 and 4), where the effective
radius a of the point-like inclusions appears through the cutoff Λ = 2/a, and the
effective contact angle is α = ac.

Refs. [14, 15] formalized the connection between the original description of in-
clusions as rigid objects [5], and the more convenient point-like description. The
effective field theory formalism developed in Refs. [14, 15] for membranes (see
also Ref. [16] for fluid interfaces, and Ref. [17] for a review) considers inclusions
as point-like particles, and captures their structure and the boundary conditions they
impose via localized coupling terms. In practice, a series of generic scalar localized
terms consistent with the symmetries of the system is added to the curvature energy
describing the bare membrane. Each term in the series is polynomial in the deriva-
tives of the membrane height h, taken at the point position of the inclusion. The
coefficients of each term of the series are then obtained by matching observables,
such as the ground-state membrane shape responding to an imposed background,
between the full model with extended inclusions and the effective field theory [15].
These Wilson coefficients are analogous to charges, polarizabilities etc. of the in-
clusions and describe the interplay between the membrane and the inclusions, by
encoding the long-range effects of short-range coupling [17]. Membrane-mediated
interactions can be obtained from this effective field theory. It gives back the lead-
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ing terms in a/d obtained previously, with a generalization to inclusions with dif-
ferent radii, and yields higher-order corrections [14, 15]. This general and powerful
method could be extended to complex inclusions with specific Wilson coefficients,
and also enables general derivation of scaling laws through power counting. How-
ever, one should bear in mind that its existing application to rigid disk-shaped in-
clusions a priori yields results specific to this particular model of the inclusions.
In particular, the discrepancy obtained with previous point-like approaches on cer-
tain higher-order terms [15] should be regarded as a different result obtained for
a different model, since previous point-like approaches did not aim to fully mimic
rigid disk-shaped inclusions. Note that higher-order terms were recently calculated
in the framework of extended disks [6], showing agreement with [15] and pushing
the expansion further.

2.1.3 Two types of interactions

The long-range membrane-mediated interaction between rigid inclusions comprises
two leading-order terms that both depend on the fourth power of a/d (Eqs. 3
and 4) [5]. Subsequent works [9, 12, 13, 14, 15] demonstrated that the total interac-
tion is the sum of these two terms, one coming from the ground-state deformation
of the membrane by the inclusions (Eq. 3) and the second one arising from entropic
effects (Eq. 4). However, it should be noted that the separation of these two terms is
mostly of formal interest, since the ground-state shape, which is obtained by mini-
mizing the Hamiltonian of the system, may not be of much practical relevance. In
practice, one may be able to measure experimentally the average shape of a mem-
brane, but in general it would not coincide with the ground-state one, except in the
regime of small deformations. In this regime, which has been the focus of most the-
oretical work, the membrane Hamiltonian is quadratic (Eq. 2): then, the separation
of the two terms makes sense. Let us now discuss each of these two terms.

The first term, U1 (Eq. 3), arises from the interplay of the ground-state deforma-
tions of the membrane due to the presence of each of the inclusions, and it was first
obtained in Ref. [5] by taking the (fictitious) zero-temperature limit. It also corre-
sponds to the membrane-mediated interaction within a mean-field approximation.

The second term, U2 (Eq. 4), is a fluctuation-induced or entropic effect, which
exists even if both inclusions impose vanishing contact angles. Remarkably, in
the case of rigid inclusions, the only energy scale involved is kBT : this interac-
tion is universal. It arises from the constraints imposed by the inclusions on the
thermal fluctuations of the shape of the membrane, which is a field with long-
range correlations. It is analogous to the Casimir force in quantum electrodynam-
ics (see e.g. [9, 18, 8, 12, 13]), which arises from the constraints imposed by
non-charged objects (e.g. metal plates) on the quantum fluctuations of the electro-
magnetic field [19, 20]. This fluctuation-induced interaction is thus often termed
“Casimir” or “Casimir-like”. In Ref. [21], the fluctuation-induced force between
membrane inclusions was recovered from the entropy loss associated to the sup-
pression of fluctuation modes, thus reinforcing the formal analogy with the Casimir
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force. Fluctuation-induced forces analogous to the Casimir force exist in several
other soft matter systems, where thermal fluctuations play an important part [22, 23].
They were first discussed by Fisher and de Gennes in the context of critical binary
mixtures [24]. This “critical Casimir” force has been measured experimentally be-
tween a colloid and a surface immersed in a critical binary mixture [25]. Interest-
ingly, such critical Casimir forces have been predicted to exist in membranes close
to a critical point in lipid composition, and that they are very long-range, with power
laws up to (a/d)1/4 [26]. Their sign depends on the boundary conditions imposed
by the inclusions [26], as in the three-dimensional critical case [23].

Let us now compare the magnitude of these two types of interactions. For two
identical inclusions imposing the same contact angle α , the interactions in Eq. 3
and 4 have the same modulus if

|α|=
√

3
4π

kBT
κ

. (5)

Using the typical value κ ≈ 25kBT gives |α| ≈ 6◦: for larger contact angles, the
mean-field repulsion dominates over the fluctuation-induced attraction.

2.2 Further developments on distant inclusions embedded in
almost-flat membranes

2.2.1 In-plane anisotropy

Until now, we discussed the simple case of two inclusions with isotropic (i.e. disk-
shaped) in-plane cross-section, which was the first case investigated [5]. However,
real membrane inclusions, such as proteins, have various shapes. Fig. 2 shows a
schematic of the different cases at stake: those in panels a and b were discussed
above, and those in panels c and d will be discussed here.

In Ref. [9], the case of anisotropic cross-sections was treated through a cou-
pling between membrane curvature and symmetric traceless tensor order parame-
ters constructed from the main direction of the inclusion cross-section, integrated
over the surface of the inclusion cross-section. The interaction energies obtained
are anisotropic, and depend on d as 1/d4 for up-down symmetric inclusions that
interact only through the fluctuation-induced interaction (see Fig. 2c), just as in
the case of isotropic cross-sections. However, inclusions that break the up-down
symmetry of the membrane feature an anisotropic interaction with a stronger 1/d2

power law. Its angle dependence is cos(2(θ1 +θ2)), where θi is the angle between
the main in-plane axis of inclusion i and the line joining the two inclusion centers
(Fig. 2c). This orientation dependence is that of a quadrupole-quadrupole interac-
tion [27, 28], and the interaction energy is minimized whenever θ1 + θ2 = 0 (or
equivalently θ1 +θ2 = π). This interaction is attractive for a wide range of relative
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Fig. 2: Schematic representation of the different cases for inclusions with separation
d much larger than their characteristic size a, embedded in a membrane with small
deformations around the flat shape. In each case, a view from above and a longitu-
dinal cut are presented. Thermal fluctuations of the shape of the membrane are only
represented in the bottom right cut of panel a.

orientations, while the analogous interaction between inclusions with an isotropic
cross-section is always repulsive (see Eq. 3).

The in-plane anisotropic case of rigid up-down symmetric rods imposing vanish-
ing contact angles to the membrane on their edges was treated in Refs. [27, 8]. Only
the fluctuation-induced interaction is then at play (as in Fig. 2c). In this study, thin
rods were considered in the limit of vanishing width, and in the “distant” regime
where their length L is much smaller than their separation d. The opposite case
d � L will be discussed in Sec. 2.4.2. The power law obtained is in 1/d4, as in
the case of isotropic cross sections (Eq. 4), and the only energetic scale involved in
this fluctuation-induced force is kBT . The angular dependence of the interaction is
cos2[2(θ1 +θ2)], yielding energy minima for θ1 +θ2 = 0 and π/2.

Anisotropic cross-sections were revisited within the point-like approach in Refs. [12,
29]. In this model, inclusions couple to the membrane by locally imposing a generic
curvature tensor, with eigenvalues (principal curvatures) denoted by K+J and K−J.
The interaction between two such identical inclusions then reads, to leading order
in a/d [12, 29]:

U3(d) =−8πκ
a4

d2

{
2J2 cos(2(θ1 +θ2))+ JK [cos(2θ1)+ cos(2θ2)]

}
, (6)

where θi are angles between the line joining the inclusion centers and their axis of
smallest principal curvature (see Fig. 2d). This term vanishes for isotropic inclu-
sions (J = 0), consistently with Refs. [5, 9]. Furthermore, in the fully anisotropic
case K = 0, corresponding to a saddle, the power law and the angular dependence
both agree with the up-down symmetry breaking and anisotropic cross-section case
of Ref. [9]. Eq. 6 shows that in the generic case where J and K are nonzero, the
angular degeneracy of the lowest-energy state is lifted, and (assuming without loss
of generality that K and J have the same sign) the inclusions tend to align their axis
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of smallest principal curvature along the line joining their centers. Their interac-
tion is then attractive [12]. This interaction (Eq. 6) was recovered in Ref. [14] (with
different angle notations), and generalized to inclusions with different radii.

Subleading terms in 1/d4 were also calculated in Refs. [12] and [14], featuring
different results (as for the subleading terms in the isotropic case). One should keep
in mind that the models at stake are different, since Ref. [12] considers fully point-
like inclusions while Ref. [14] models disk-shaped ones with finite radius through
the effective field theory. While the agreement of these models on the leading-order
term is a nice sign of robustness, there is no reason to expect an exact agreement at
all orders.

Ref. [12] also investigated the fluctuation-induced interaction, but its leading-
order term was found not to be modified with respect to the isotropic case (Eq. 4).
This is at variance with the anisotropy obtained in Refs. [27, 8] for the flat rods, but
one should keep in mind that the point-like saddles do not correspond to the limit of
the distant flat rods.

2.2.2 Multi-body effects and aggregation

A crucial and biologically relevant question is how long-range membrane-mediated
interactions drive the collective behavior of inclusions, in particular aggregation.
One would be tempted to start by summing the pairwise potentials discussed above,
but these long-range membrane-mediated interactions are not pairwise additive.
Non-pairwise additivity is a general feature of fluctuation-induced interactions. For
instance, the existence of a three-body effect in the van der Waals–London interac-
tion was demonstrated in Ref. [30]. The interaction due to the ground-state mem-
brane deformation is not additive either. Indeed, if one considers inclusions that
impose boundary conditions to the membrane on their edges, a shape minimizing
the energy in the presence of one inclusions will generically not satisfy the boundary
conditions imposed by the other one, yielding non-additivity [17].

Three-body and four-body long-range membrane-mediated interactions were
first calculated within a perturbative height-displacement model, breaking up-down
symmetry but retaining in-plane anisotropy, in Ref. [9]. The distance dependence of
the three-body term involves terms in 1/(d2

12d2
23) where di j is the distance between

particles i and j. These interactions were also investigated in Ref. [10], in a different
perturbative approach, considering in particular inclusions that favor a given aver-
age curvature, and then in Ref. [11] in a point-like framework, but this particular
calculation was recently shown to miss some contributions [14].

In Ref. [12], the multi-body interactions and the aggregation of point-like inclu-
sions locally imposing a curvature tensor were investigated. This generic model can
include both up-down symmetry breaking and in-plane anisotropy depending on the
curvature tensor imposed. The leading three-body interaction was found to involve
terms in 1/(d2

12d2
23), as in Ref. [9], and to vanish for inclusions imposing a zero cur-

vature tensor [12]. Monte-Carlo simulations including the full multi-body interac-
tions were performed, allowing to study the phase diagram of the system (see Fig. 3).
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Polymer-like linear aggregates were obtained for sufficient values of K and J, as pre-
dicted from the leading pairwise term (Eq. 6). A gas phase was found for small J,
consistent with the fact that for isotropic inclusions (J = 0) that break the up-down
symmetry (K 6= 0), the leading pairwise interaction is repulsive (Eq. 3). Finally, for
small K and large J, aggregates were obtained, some of which had an “egg-carton”
structure. This is made possible by the angular degeneracy of the lowest-energy state
for K = 0 in the leading pairwise term (Eq. 6). Multi-body interactions were shown
to be quantitatively important, but the effect of the fluctuation-induced interaction
(Eq. 4) was found to be negligible [12]. The analytical calculation of multi-body
effects was performed in this framework in Ref. [29], where the “egg-carton” ag-
gregates were also further studied and related to experimentally-observed structures.

Fig. 3: Typical equilibrium aggregates obtained from Monte-Carlo simulation of 20
identical point-like anisotropic curvature-inducing inclusions. Each panel represents
a different set of (J,K) values. Reproduced from Ref. [12].

Coarse-grained molecular-dynamics simulations of the highly anisotropic curvature-
inducing N-BAR domain proteins adhering on membranes have demonstrated linear
aggregation of these proteins on the membrane. This is a first self-assembly step,
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which then yields the formation of meshes enabling budding [31]. This is qualita-
tively in good agreement with the predictions of Ref. [12].

The influence of the long-range elastic repulsion between isotropic inclusions
that break the up-down symmetry of the membrane on their aggregation was also
discussed in Ref. [32], but within a less specific framework including other types
of interactions. In this work, this repulsive interaction (Eq. 3) plays the role of an
energetic barrier to aggregation.

In Ref. [33], the collective behavior of inclusions locally penalizing local cur-
vature (either only mean curvature or also Gaussian curvature) was studied us-
ing a mean-field theory for the inclusion concentration and Monte-Carlo simula-
tions. Since the inclusions considered retain both up-down symmetry and in-plane
isotropy, the only membrane-mediated interaction at play is an attractive fluctuation-
induced one similar to that in Eq. 4. Direct interactions were also included. Aggre-
gation was found to occur even for vanishing direct interactions, provided that the
rigidity of the inclusions was sufficient [33]. Hence, fluctuation-induced interactions
may be relevant for aggregation, at least in the absence of other, stronger, interac-
tions. Note that Eq. (4) shows that the amplitude of fluctuation-induced interactions
is quite small. For instance, d = 4a yields U2 ≈ 0.02kBT (all the results discussed
so far are strictly relevant only for d� a).

In Ref. [14], the general effective field theory framework was used in the case
of in-plane isotropic inclusions. The leading-order and next-order three-body in-
teraction terms due to the ground-state membrane deformation between up-down
symmetry-breaking inclusions were obtained, as well as the leading three-body and
four-body fluctuation-induced interactions.

2.2.3 Membrane tension

Until now, we have focused on the regime where bending rigidity dominates over
membrane tension. This is appropriate for length scales below

√
κ/σ . As σ is in

the range 10−6− 10−8 N/m for floppy membranes, while κ ' 10−19 J, this length
scale is then of order 1 µm. However, membrane tensions can span several orders
of magnitude [34] depending on external conditions (e.g. osmotic pressure), so it is
relevant to go beyond

√
κ/σ . For small deformations around a planar shape, the

quadratic Hamiltonian of a membrane including tension reads

H[h] =
∫

drrr
{

κ

2
[
∇

2h(rrr)
]2
+

σ

2
[∇∇∇h(rrr)]2

}
, (7)

where notations are the same as in Eq. 2, and where the Gaussian curvature term has
been discarded. Note that, in a self-assembled membrane not submitted to external
actions, each lipid adopts an equilibrium area. Hence, a membrane has no intrinsic
surface tension (contrary to a liquid-gas interface), and stretching the membrane
has an energy cost quadratic in the area variation. However, one usually considers a
patch of membrane in contact with a reservoir made up by the rest of the membrane,
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so the tension term in Eq. 7 can be interpreted as arising from the chemical potential
of this reservoir.

For length scales much larger than
√

κ/σ , tension dominates and Eq. 7 can be
simplified into

H[h] =
σ

2

∫
drrr [∇∇∇h(rrr)]2 . (8)

This case applies to a tense membrane at large scales, but also to a liquid interface
(neglecting gravity). From a formal point of view, techniques similar to those em-
ployed in the bending-dominated case can be used, since the Hamiltonian is also
quadratic with a single term.

Let us first focus on inclusions that do not break the up-down symmetry of the
membrane. In Refs. [27, 8], the fluctuation-induced interaction between two distant
up-down symmetric rigid thin rods embedded in such a surface was calculated. It
was found to be similar to the analogous bending-dominated case (see above), with
the same 1/d4 power law, but with a different angular dependence.

Refs. [35, 36] considered the tension-dominated case of ellipsoidal colloids
trapped at a fluid interface. In the case where the colloid height fluctuations are
included but their contact line with the fluid is pinned, long-range fluctuation-
induced interactions were obtained. This case is analogous to that of rigid in-plane
anisotropic membrane inclusions preserving the up-down symmetry. Interestingly,
the power law obtained was found to depend on whether or not in-plane orienta-
tional fluctuations of the colloids were allowed. If they are not allowed, the result
of Refs. [27, 8] with the 1/d4 power law is recovered in the limit of full anisotropy.
If they are allowed, a weaker anisotropic interaction with 1/d8 power law is ob-
tained [36]. This strong dependence of the power law of fluctuation-induced forces
on boundary conditions was confirmed in Ref. [16] through the effective field the-
ory method, in the specific case of in-plane isotropic (disk-shaped) rigid inclu-
sions [14, 17]. In the case of membranes, the physical case should allow orienta-
tional fluctuations of the inclusions, and hence the 1/d8 power law should be con-
sidered. It is attractive and reads:

U4(d) =−9kBT
a8

d8 . (9)

Hence, we expect a crossover between a 1/d4 power law (Eq. 4) and a 1/d8 power
law (Eq. 9) as the tension becomes more important.

In Ref. [37], a scattering-matrix approach analogous to the one developed for
the study of Casimir forces [38, 39, 40] was developed, and applied to the full
Hamiltonian in Eq. 7 including both tension and bending. The focus was on
disk-shaped elastic inclusions preserving the up-down symmetry, and on their
fluctuation-induced interaction. The results obtained in the case of rigid inclusions
were consistent with Eq. 4 in the bending-rigidity–dominated regime, and with
Eq. 9 in the tension-dominated regime. Moreover, the crossover between these two
regimes was studied numerically. The method developed in Ref. [37] can potentially
deal with more general cases, involving multiple complex inclusions. It appears to
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be complementary to the effective field theory method of Refs. [14, 17], and was
more straightforward in the transition regime where both tension and bending are
relevant [37].

Let us now focus on the interaction due to the ground-state deformation of the
membrane. Ref. [41] studied the case of conical inclusions breaking up-down sym-
metry but retaining in-plane isotropy, and considered the full Hamiltonian in Eq. 7.
They showed that for non-vanishing tension, this interaction has a sign that de-
pends on the relative orientation of the cones with respect to the membrane plane
(i.e. on the signs of the angles they impose), contrary to the vanishing-tension case
(see Eq. 3). Furthermore, at long distances between inclusions, the interaction is
exponentially cut off with a decay length

√
κ/σ (it involves Bessel K functions).

This property was confirmed in Ref. [42]. Hence, at long distances, the fluctuation-
induced force in Eq. 9 should dominate over the force due to the ground-state de-
formation. Conversely, in the case of colloids or inclusions with anisotropic cross-
sections, Refs. [28] and [16] demonstrated the existence of a long-range interaction
due to the ground-state deformation of the membrane. The leading term of this in-
teraction is anisotropic and decays as 1/d4.

In Ref. [43], the effect of tension on the aggregation of the highly anisotropic
curvature-inducing N-BAR domain proteins adhering on membranes was investi-
gated through coarse-grained molecular-dynamics simulations. Increasing tension
was shown to weaken the tendency of these proteins to linear aggregation, in agree-
ment with the predicted weakening of the ground-state membrane-mediated inter-
action.

2.2.4 Summary of the interaction laws

Table 1 presents a summary of the power laws of the leading-order term of the
membrane-mediated interactions in the various situations discussed until now.

2.2.5 External forces and torques

Until now, we have only discussed cases where inclusions couple to the membrane
shape through its curvature, either explicitly or implicitly (e.g. through rigidity).
This is the relevant case in the absence of external forces or torques. External forces
can yield local constraints directly on the height of the membrane, e.g. quadratic
ones in the case of local trapping or linear ones in the case of local pulling [10].
More specifically, inclusions may experience direct mechanical constraints if they
are attached to the cytoskeleton, and torques in the presence of electrical fields be-
cause of their dipole moments [13]. In these cases, one expects membrane-mediated
interactions to be enhanced, because the ground-state deformations will generically
be stronger than in the case where inclusions can freely reorient to minimize them,
and because the constraints imposed on fluctuations will be stronger too.
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Dominant term in Fluctuation-induced Interaction due to the
the Hamiltonian Geometry interaction ground-state deformation –

in Eq. 7 Vanishes if up-down symmetric

Bending rigidity κ

Disks 1/d4 [5, 9, 12] 1/d4 [5, 9, 12]

Disks 1/d4 [9, 12] 1/d2 [9, 12]
+anisotropy
Distant rods 1/d4 [27, 8]

Tension σ

Disks 1/d8 [36, 37] Exponentially suppressed

Disks 1/d8 [36, 37] 1/d4 [28, 16]
+anisotropy
Distant rods 1/d4 [27, 8]

Table 1: Summary of the power laws obtained for the leading-order terms of the
two types of membrane-mediated interactions, as a function of the separation d be-
tween the inclusions, in the regime of small deformations of a flat membrane and
distant inclusions. Different inclusion geometries are considered. In the case labeled
“disks+anisotropy”, the anisotropy can be either in the inclusion shape (e.g. ellip-
soidal [9]) or in the constraint it imposes (e.g. an anisotropic local curvature [12]).

The case of inclusions subject to external torques was studied in Ref. [13], for
point-like inclusions setting a curvature tensor, in in-plane isotropic case. Both ex-
ternal fields strong enough to effectively pin the orientations of the inclusions, and
finite external fields that set a preferred orientation, were considered. In both cases,
membrane-mediated forces are strongly enhanced, even more in the strong-field
case. A logarithmic fluctuation-induced interaction was obtained, as well as an in-
teraction due to the ground-state deformation which either scales as 1/d2 if the
preferred orientations are the same for both inclusions, or logarithmically if they are
different. Interestingly, these interactions depend on the relative orientation of the
preferred curvatures set by the inclusions, while in the torque-free case, the interac-
tion only depends on their absolute values (see Eq. 3) [13].

In Ref. [35], colloids at a fluid interface were considered, with different types of
boundary conditions. In the case were the position of the colloids is considered to
be frozen (both in height and in orientation), strong logarithmic fluctuation-induced
interactions are obtained.

2.2.6 Fluctuations of the interactions

Until now, we have discussed the average values at thermal equilibrium of membrane-
mediated forces. Thermal fluctuations already play an important part since they are
the physical origin of fluctuation-induced forces. But membrane-mediated forces
themselves fluctuate as the shape of the membrane fluctuates. The fluctuations of
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these forces have been studied in Ref. [44], using the stress tensor of the mem-
brane [45, 46]. This approach is inspired from those used previously for the fluc-
tuations of Casimir forces [47], and of Casimir-like forces between parallel plates
imposing Dirichlet boundary conditions on a thermally fluctuating scalar field [48].

The case of two point-like membrane inclusions that locally impose a curvature
tensor was studied in Ref. [44], for in-plane isotropic inclusions but including the
up-down symmetry breaking case. Integrating the stress tensor on a contour sur-
rounding one of the two inclusions allowed to calculate the force exerted on an
inclusion by the rest of the system, in any shape of the membrane [49]. The average
of the force obtained gives back the known results Eqs. 3 and 4 that were obtained
from the free energy in previous works. The variance of the force was also calcu-
lated, showing that the membrane-mediated force is dominated by its fluctuations.
The distance dependence of the fluctuations, present in the sub-leading term of the
variance, was also discussed. Interestingly, it shares a common physical origin with
the fluctuation-induced (Casimir-like) force [44].

2.3 Dynamics

Fundamental interactions, e.g., electrostatic ones, are usually considered as instan-
taneous, in the sense that they propagate at a velocity much higher than that of the
particles experiencing them. This is not the case for membrane-mediated interac-
tions, as the spreading of membrane deformations involves slow dissipative phe-
nomena. The dynamics of membrane-mediated interactions is a promising subject
for future research. Studying out-of-equilibrium membrane-mediated interactions
intrinsically requires taking into account the dynamics of the membrane. Taking
care both of the motion of the membrane and of that of the inclusions is very diffi-
cult. Hence, the first theoretical study in this direction to our knowledge, Ref. [50],
considered two immobile inclusions that simultaneously change conformation, i.e.,
that simultaneously create a source of deformation, and therefore trigger a time-
dependent interaction as the membrane deformation spreads dissipatively.

In Ref. [50], inclusions were modeled as simple point-like sources of mean
curvature that are triggered simultaneously at t = 0. One could imagine cylindri-
cal integral proteins such as ion channels transforming into conical ones upon re-
ceiving a chemical signal. The time-dependent Hamiltonian of these inclusions is
Hinc(t) = θ(t)∑i Bi∇

2h(rrri), with θ(t) the Heaviside step function, Bi the curving
strength, and rrri the position of inclusion i. The dynamical reaction of the membrane
to such a perturbation was studied in Ref. [50].

As shown in the pioneering works of Refs. [51, 52], the dominant dissipation
mechanism at short length scales is the friction between the two monolayers of the
membrane. The corresponding dissipated power per unit area is b(vvv+−vvv−)2, where
vvv± are the velocities of the two lipid monolayers (the monolayers are denoted by
+ and −) and b ≈ 109 Js/m4 is the intermonolayer friction coefficient. In addi-
tion, the membrane is subjected to viscous forces from the bulk solvent, of viscosity
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η ≈ 10−3 Js/m3, and each monolayer behaves as a compressible fluid with elastic
energy density 1

2 k(ρ±± e∇2h)2. In this expression, ρ± are the monolayer relative
excess densities (normalized by their equilibrium density), measured on the mem-
brane mid-surface, e ≈ 1 nm is the distance between this surface and the neutral
surface of the monolayers (where density and curvature effects are decoupled) and
k ≈ 0.1 J/m2. For most practical purposes, the two-dimensional viscosities of the
monolayers can be neglected [53].

Taking into account all these effects, Ref. [50] showed that the relaxation dy-
namics of a Fourier mode {h(q, t),ρ±(q, t)} in the membrane with two identical
triggered inclusions is given, to linear order, by a set of two first-order dynamical
equations:

2b
∂ (ρ+−ρ−)

∂ t
=−kq2(ρ+−ρ

−)+2keq4h, (10)

4ηq
∂h
∂ t

=−(σq2 + κ̃q4)h+ keq2(ρ+−ρ
−)+F(qqq, t), (11)

where F(qqq, t) is the Fourier transform of −δHinc/δh(rrr, t), σ is the membrane ten-
sion, and κ̃ = κ + 2ke2 the bending rigidity at frozen lipid density [51]. Solving
these linear differential equations for time evolution and integrating over the Fourier
modes qqq yields the time-dependent membrane deformation produced by one or more
inclusions. Then the force f (t) exerted by one inclusion on the other can be obtained
by integrating the membrane stress tensor [45, 46, 54] around one inclusion.

Fig. 4: (a) Force f (t) normalized by B2/(κe3) exchanged by two inclusions sepa-
rated by d versus time t normalized by 4ηe3/κ×103. The parameters are d = 20e,
σ = 10−3κ/e2, ke2/κ = 1 and be2/η = 1000. (b) Dependence of the equilibrium
force, feq, and of the maximum of the dynamical force, fm, as a function of d nor-
malized by e.

Two striking behaviors were observed in Ref. [50] (see Fig. 4): (i) the force f (t)
reaches a maximum fm and then decreases to the equilibrium force feq. (ii) While feq
decreases exponentially with the separation d between the inclusions, the maximum
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force fm decreases as a power-law ∼ d−3 until it reaches feq. Hence fm is long-
ranged. Although these results were obtained with a simplified Hamiltonian for the
inclusions, it is likely that the general trends observed will also apply to more realis-
tic cases. It should be straightforward to extend the model of Ref. [50] to inclusions
that trigger at different times, but considering the movement of the inclusions at the
same time as the movement of the membrane would be more challenging.

2.4 Other geometries

Until now, we focused on the case of inclusions with separation d larger than their
characteristic size, embedded in a membrane with small deformations around the
flat shape. This is the case that has attracted the most attention in the literature,
because of its relevance for proteins embedded in the membrane, and because of its
technical tractability. We now move on to other geometries.

2.4.1 Spherical vesicle

Ref. [55] focused on the membrane-mediated interaction arising from the ground-
state deformation between two disk-shaped inclusions embedded in the membrane
of a spherical vesicle, and imposing contact angles. The case of the spherical vesicle
is practically relevant both in biology and in in-vitro experiments. The energy of
the membrane was considered to be dominated by bending rigidity, which requires
the length scales at play (in particular the vesicle radius) to be small with respect
to
√

κ/σ . The covariant Helfrich Hamiltonian (Eq. 1 with no Gaussian curvature
term) was adapted to small deformations with respect to a sphere.

The interaction was evaluated thanks to an expansion of the energy-minimizing
profile of the membrane, and it was found to be strongly enhanced with respect to
the flat-geometry interaction (Eq. 3) at length scales where the spherical shape of the
vesicle is relevant. At sufficient angular separation, the effective power law of the
interaction is ∼ 1/d1/3 [55]. This sheds light on the strong impact of the underlying
geometry of the membrane on membrane-mediated forces. Qualitatively, in a flat
membrane, the interaction is weaker because the curvature energy in Eq. 1 can be
minimized quite well between the inclusions (with an almost perfect saddle that
has very little curvature energy), which is not possible in the spherical geometry.
Similarly, in the case of external torques (Sec. 2.2.5), the imposed orientations did
not allow for this low-energy saddle, thus enhancing the interaction.

2.4.2 Close parallel rods

We already discussed the case of rigid rods of length L, at a distance d� L [27, 8],
which is close to the point-like case. The opposite regime d� L is also relevant bi-
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ologically, since it can model semi-flexible polymers adsorbed on the membrane. In
Ref. [56], the effect of the reduction of the membrane fluctuations by the presence
of a semiflexible (wormlike) polymer was discussed. An effective nematic interac-
tion was found between different segments of the polymer, and it was shown that
this interaction can yield an orientational ordering transition.

Let us first consider rods that do not break the up-down symmetry of the mem-
brane. The case of such stiff parallel rods in the limit d� L (see Fig. 5a) embedded
in a membrane with energy dominated either by bending rigidity (Eq. 2) or by ten-
sion (Eq. 8) was studied in Ref. [18]. A constant scale-free Casimir-like interaction
per unit length is then expected [57], and indeed the Casimir-like interaction poten-
tial is then proportional to −kBT L/d [18]. This interaction is much stronger than
the one between point-like objects (Eq. 4), because the constraints imposed on fluc-
tuation modes are much stronger in the geometry of parallel close rods. Ref. [18]
further showed that such rods tend to bend toward one another below a certain criti-
cal distance, and that their interaction is screened by out-of-plane fluctuations if the
rigidity of the polymer is finite.

Fig. 5: Rods embedded in membranes. (a) Geometry: two parallel rods of length L
at separation d� L. (b) and (c) Two examples of rod types. All rigid rods impose a
vanishing curvature along them: ∂y∂yh = 0 on the rod. (b) Rod that allows curving
(“c”) and twisting (“t”) across it. (c) Rod that does not allow curving or twisting
across it: it imposes ∂x∂xh = 0 and ∂x∂yh = 0 as well as ∂y∂yh = 0 (see Ref. [58]).

This situation was further studied in Ref. [58]. Rods were modeled as constraints
imposed on the membrane curvature along a straight line, allowing to define four
types of rods, according to whether the membrane can twist along the rod and/or
curve across it (see Fig. 5b-c for two examples of these rod types). The numerical
prefactors of the potential in L/d were obtained for interactions between the differ-
ent types of rods, and they were all found to be attractive, provided that the rods
are rigid, i.e. that they impose ∂y∂yh = 0 along them, with the notations of Fig. 5.
However, repulsion was obtained between objects imposing completely antagonis-
tic conditions (i.e. a rigid rod only imposing ∂y∂yh = 0 along it, see Fig. 5b, and
a non-rigid “ribbon” only imposing ∂x∂xh = 0 along it), which is reminiscent of
results obtained in critical binary mixtures [23]. In addition, the interaction energy
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was studied numerically versus d/L, thanks to a discretization scheme [59], show-
ing the transition between the asymptotic behaviors at large d/L [27] and at small
d/L [58] were recovered. Finally, the bending and coming into contact of the rods
due to the fluctuation-induced interaction was discussed: it was predicted to occur
below a certain value of d [58].

The L� d geometry gives insight into what happens between two generic in-
clusions that are very close to one another, through the proximity force approxi-
mation [60]. This approximation was used in the case of disk-shaped inclusions in
Refs. [37, 58], showing that the fluctuation-induced interaction potential then scales
as 1/d1/2.

In Ref. [61], the interaction due to the ground-state deformation between parallel
rigid cylinders adsorbed on a membrane and interacting with it through an adhesion
energy was studied. The membrane was assumed to be in the regime of small de-
formations, but both tension and bending were accounted for (see Eq. 7), and the
geometry where d� L was considered. The interaction due to the ground-state de-
formation was calculated explicitly in this effectively one-dimensional case. It was
found to be repulsive for a pair of cylinders adhering to the same side of the mem-
brane, and attractive for cylinders adhering to opposite sides (and hence imposing
an opposite curvature). This is at variance with the point-like case, where the in-
teraction only depends on the modulus of the curvatures imposed (see Eq. 3). The
dependence in d is in tanh(d/

√
κ/σ) in the first case, and in coth(d/

√
κ/σ) in the

second one [61].

2.4.3 Large deformation regime

All cases discussed until now focused on small deformations. Then, the Hamilto-
nian of the membrane is quadratic, and the field theory is Gaussian. This provides
tractability, both to solve the Euler-Lagrange equations that give the ground-state
shape, which are then linear, and to compute thermodynamical quantities such as
the free energy. Here, we will discuss the biologically relevant but much trickier
regime of large deformations.

In Ref. [62, 63], the covariant membrane stress and torque tensors associated to
the full Helfrich Hamiltonian [45] were used to determine formal expressions of the
forces between objects adsorbed on fluid membranes that are due to the ground-
state deformation of the membrane. These expressions are valid without assuming
small deformations, but the ground-state shape needs to be determined in order to
obtain a more explicit expression. This is not an easy task in the large-deformation
regime. Equilibrium shapes in the large deformation regime were further investi-
gated in Ref. [64], allowing to plot the force between cylinders, in the case of a
fixed adhesion area between them and the membrane. The direction of the force and
its asymptotic exponential decay at large d/

√
κ/σ were found to remain the same

as in the small-deformation regime [61]. This situation was also investigated numer-
ically in Ref. [65] in the case of cylinders interacting with the membrane through an
adhesion energy, yielding phase diagrams of the system.
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In Ref. [66], the entropic contribution to the membrane-mediated interaction be-
tween two long cylinders adsorbed on the same side of a membrane was studied
in the regime of large deformations, in the case of a fixed adhesion area between
the cylinders and the membrane. The free energy of the system was calculated by
assuming Gaussian fluctuations around the ground-state shape. Interestingly, this
entropic contribution enhances the ground-state repulsion between the two cylin-
ders [66], while the fluctuation-induced interaction between identical rods in the
small-deformation regime is attractive [18, 58]. This is presumably a non-trivial
effect coming from the non-linearities at play in the large deformations. It would
be interesting to go beyond the approximation of Gaussian fluctuations around the
ground-state shape.

Solving the shape/Euler-Lagrange equation for membranes beyond the domain
of small deformations is technically very hard for most geometries, and incorpo-
rating fluctuations too, but numerical simulations can provide further insight. The
coarse-grained molecular-dynamics membrane simulations without explicit solvent
description of Ref. [67] showed that the elastic interaction between two isotropic
curvature-inducing membrane inclusions (quasi-spherical caps) can become attrac-
tive at short separations, provided that the inclusions induce a strong enough cur-
vature. Recall that the interaction due to the ground-state deformation, which is
dominant with respect to the fluctuation-induced one for large enough curvatures
imposed by inclusions, is always repulsive in the regime of small deformations (see
Eq. 3). This hints at highly non-trivial effects of the large-deformation regime. The
attractive membrane-mediated interaction was found to be able to yield aggregation
of the caps and vesiculation of the membrane [67] (see Fig. 6). The case of curved
phase-separated lipid domains was explored in Ref. [68] through coarse-grained
molecular-dynamics simulations. The interaction between domains was found to be
attractive, but the angles imposed by the domains were smaller than those yielding
attraction in Ref. [67].

Fig. 6: Successive snapshots of a coarse-grained simulation of a membrane with
several curvature-inducing inclusions. A process of vesiculation is induced by the
elastic interaction between inclusions, which becomes attractive at short separations.
Reproduced from Ref. [67].
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A numerical minimization via Surface Evolver of the Helfrich Hamiltonian Eq. 1
for a membrane with two in-plane isotropic curvature-inducing inclusions was pre-
sented in Ref. [69], and forces were calculated by studying infinitesimal displace-
ments. A change of sign of the membrane-mediated interaction due to the ground-
state deformation of the membrane was obtained, consistently with Ref. [67]. The
repulsive interaction, agreeing quantitatively with Eq. 3 at large d/a and for small
deformations, turned attractive for d/a of order one, provided that the curvature im-
posed by the inclusions (and hence the membrane deformation) was large enough.
The separation d is defined as the center-to-center distance projected on a reference
plane, while a is the real radius of the inclusions, so that in the large deformation
regime where inclusions are very tilted, it is possible to have d < 2a. Attraction
occurs in this regime, which is inaccessible to the small-deformation approach. Re-
cently, Ref. [70] studied anisotropic protein scaffolds, modeling e.g. BAR proteins,
in the large-deformation regime, through similar numerical minimization methods:
strongly anisotropic attractive interactions were obtained.

Ref. [71] presented a Monte-Carlo simulation of spherical nanoparticles ad-
sorbed on a spherical vesicle modeled as a triangulated surface. Aggregation of the
nanoparticles and inward tubulation of the vesicle were observed, implying strong
attractive interactions. Note however that adhesion might have a strong impact on
these structures [72]. A similar coarse-grained description of a membrane vesicle
was used in Ref. [73] to investigate the collective effects of anisotropic curvature-
inducing inclusions, modeling e.g. BAR proteins. Vesicles were strongly deformed
by the numerous inclusions, with sheet-like shapes or tubulation depending on inclu-
sion concentration, and aggregation and nematic ordering of these inclusions were
observed.

2.5 Experimental studies

While membrane-mediated interactions have been the object of significant theoreti-
cal and numerical attention, quantitative experimental tests of the theoretical predic-
tions remain scarce to this day. A very active research area in biophysics deals with
the morphological changes of the cell (invagination [74], vesiculation [75], etc.) un-
der the action of various proteins (see [76] for a recent review). However, many
other ingredients than membranes and inclusions are at play in these biological sys-
tems, for instance the cytoskeleton, out-of-equilibrium events, etc., which makes it
hard to isolate membrane-mediated interactions. Biomimetic lipid membranes such
as giant unilamellar vesicles [77] are a good model system to study such effects. In
principle, the inclusions could be real proteins, but these molecules have complex
shapes, which makes it difficult to test predictions of models developed for simple
geometries. Many studies have focused on the simpler and more easily controlled
system of colloids adhering to membranes (see Ref. [72] for a review), and some
have investigated interactions between phase-separated membrane domains [78].
However, even in these simpler cases, membrane-mediated interactions may involve



22 Anne-Florence Bitbol, Doru Constantin and Jean-Baptiste Fournier

other effects, such as adhesion of the colloids, variability of contact angles imposed
by domains, etc.

An experimental study of the aggregation of spherical colloidal particles adhering
to biomimetic lipid membranes was presented in Ref. [79]. The observed aggrega-
tion of two particles was deemed consistent with a short-range (e.g. exponential)
attractive force, and no signature of a longer-range force was obtained. Note that
theoretical studies predict a mostly repulsive membrane-mediated force in this ge-
ometry, except at very high deformations and small distances. Surprisingly, triplets
were observed to form chains, and a linear ring-like aggregate was observed around
the waist of a vesicle. Linear chain-like arrangements were also obtained in sim-
ulations of a very similar situation in Refs. [80, 81], for certain sizes of particles
and adhesion regimes. Ref. [81] used a scaling argument to show that this was not
due to membrane-mediated interactions, but to the adhesion of the particles to the
membrane, as a linear aggregate yields a higher adhesion area than a compact one.
Such a phenomenon would thus not arise in the case of inclusions [72].

Apart from proteins and colloids, another source of membrane deformation is
the presence of phase separated (liquid-ordered/liquid disordered) domains, which
can be partially budded. Contrast between the domains is obtained in fluorescence
microscopy by adding a dye which partitions into one phase [82] or by selec-
tively labeling one lipid species [83]. Selective deuteration can also be used to
induce contrast in small-angle nuclear scattering [84]. In Ref. [78], the stability
of partially budded domains was interpreted as a signature of repulsive interac-
tions, since flat ones rapidly fused. The strength of this interaction was evaluated
by measuring the distribution of inter-domain distance, and then by evaluating the
effective spring constant of the confining potential. It was found to be consistent
with the membrane-mediated interaction arising from the ground-state deformation
of a tension-free membrane in the small-deformation and large-separation regime
(Eq. 3). In Ref. [83], a good agreement was obtained between the observed in-plane
distribution of the domains and the predictions of the elastic theory in the presence
of tension [41] (see Figure 7).

Fig. 7: Shape of the dimpled domains (left), interacting domains on the surface of
the same vesicle (center) and repulsive interaction potential, with a fit to theoretical
predictions from Ref. [41] (right). Adapted from Figures 3 and 4 of reference [83].
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3 Short-range membrane-mediated interactions

In Part 1, we dealt with long-range membrane-mediated interactions between inclu-
sions, which arise from the curvature constraints imposed by rigid inclusions. There
exist several other ways in which inclusions can couple to the surrounding mem-
brane and thus interact with other inclusions through the membrane, but these ef-
fects are generally short-ranged. The study of these interactions was in fact initiated
before that of their long-range counterparts [5]. Membrane proteins were shown ex-
perimentally to tend to immobilize neighboring lipids [85]. A membrane-mediated
attraction between proteins was predicted to arise due to this local ordering [86],
and to decay exponentially above the correlation length of the membrane order pa-
rameter [87]. Proteins can locally perturb the thickness of the membrane due to this
local ordering, but they may also couple preferentially to one component of a lipid
mixture [88].

Here, we are going to focus on the coupling of proteins to membrane thickness.
Intrinsic membrane proteins can have a hydrophobic mismatch with the membrane:
their hydrophobic thickness is slightly different from that of the unperturbed mem-
brane. Hydrophobic mismatch is ubiquitous, and has important biological conse-
quences, since the activity of many membrane proteins has been shown to depend
on membrane thickness [89]. As proteins are more rigid than membranes, the mem-
brane generically deforms in the vicinity of the protein, in order to match its thick-
ness and avoid exposing part of the hydrophobic chains of lipids to water. This local
deformation of the membrane thickness yields a membrane-mediated interaction
between two such proteins.

Membrane thickness deformations are not included in the traditional Helfrich
description of the membrane [4]. Describing them is tricky since they occur on
the nanometer scale, which corresponds to the limit of validity of usual continuum
theories where only long-scale terms are kept. Let us focus on these models before
moving on to the actual interactions.

3.1 Models for local membrane thickness deformations

3.1.1 Early models

The idea that the membrane hydrophobic thickness must locally match that of an
intrinsic protein was first used in theoretical descriptions of lipid-protein interac-
tions that focused on the thermodynamic phase behavior of the lipid-protein system
and on protein aggregation. In Ref. [90], a thermodynamic model called the “mat-
tress model” was proposed in order to describe the phase diagrams of lipid bilayers
containing proteins with a hydrophobic mismatch.

More detailed theoretical investigations of local membrane thickness deforma-
tions and of resulting membrane-mediated interactions were motivated by exper-
imental results on the antimicrobial peptide gramicidin. In lipid membranes, two
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gramicidin monomers, one on each side of the bilayer, can associate to form a dimer,
which acts as an ion channel. While isolated monomers do not deform the mem-
brane, the dimeric channel generically possesses a hydrophobic mismatch with the
membrane [91]. Conductivity measurements yield the formation rate and lifetime
of the channel, which are directly influenced by membrane properties [92, 93, 94].
Hence, gramicidin constitutes a very convenient experimental system to probe the
effects of local membrane thickness deformations.

The first attempt to explain the dependence of gramicidin channel lifetime on the
membrane thickness was provided by Ref. [93]. It is based on the idea that the rel-
evant membrane energy variation upon dimer breaking is mostly due to membrane
tension, which pulls apart the monomers in a membrane with hydrophobic thick-
ness larger than that of the dimer. The resulting estimate of the gap between the
two monomers in the transition state is δ ' 1.8 nm [93]. However, this is far larger
than the separation required for the breaking of the hydrogen bonds that stabilize
the dimer [91], which is of order 1 Å. Hence, this first model was not complete.

3.1.2 Huang’s model

The first full continuum model describing membrane thickness deformations was
proposed in Ref. [95]. The Hamiltonian per unit area of the membrane was written
by analogy with a smectic A liquid crystal, in which the elongated molecules orga-
nize in layers with the molecules oriented along the layers’ normal. These two sys-
tems present the same symmetries. The most important energetic terms in smectic A
liquid crystals correspond to compression of the layers, and to splay distortion, i.e.
curvature orthogonal to the layers [96]. In addition, the contribution of the “surface
tension” of the membrane was included [95]. Restricting to symmetric deformations
of the two monolayers, the effective Hamiltonian H of the membrane reads [95]

H =
∫

dxdy
[

Ka

2d2
0

u2 +
γ

4
(∇∇∇u)2 +

κ

8
(
∇

2u
)2
]
. (12)

In this expression, u denotes the thickness excess of the membrane relative to its
equilibrium thickness d0 (see Fig. 8), Ka is the stretching modulus of the mem-
brane, d0 its equilibrium thickness, γ its “surface tension”, and κ an elastic constant
associated to splay. Finally, x and y denote Cartesian coordinates on the mid-plane
of the membrane.

Ref. [95] assimilated γ to the tension of a Plateau border and κ to the Helfrich
bending modulus, which may be questioned (see below). The corresponding typi-
cal values allowed to neglect the contribution of the “tension” term. By minimizing
the resulting membrane Hamiltonian, analytical expressions were obtained for the
membrane deformation profiles close to a mismatched protein such as the grami-
cidin channel, obtaining a decay length of a few nanometers. This model yields a
satisfactory agreement with the experimental results of Ref. [93].
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Fig. 8: Cut of a bilayer membrane (yellow) containing a protein with a hydrophobic
mismatch, represented as a square (orange). The equilibrium thickness of the bilayer
is d0, while the actual thickness is denoted by d0 +u.

3.1.3 Models based on the work of Dan, Pincus and Safran

Refs. [97, 98] proposed another construction of the membrane Hamiltonian associ-
ated to thickness deformations. The energy per lipid molecule in each monolayer of
the membrane was written for small deformations as a generic second-order expan-
sion in the variation of area per lipid and in the local “curvature” of the monolayer
thickness (different from the curvature of the shape of the membrane involved in
the Helfrich model, which disregards thickness). Incompressibility of the lipids was
used to relate the monolayer thickness and and the area per lipid. Using the same
notations as in Eq. 12, and restricting again to up-down symmetric deformations of
the membrane, the membrane Hamiltonian of Ref. [98] reads:

H =
∫

dxdy
[

Ka

2d2
0

u2 +
κ c0

2
∇

2u+
κ

2d0

(
c0− c′0Σ0

)
u∇

2u+
κ

8
(
∇

2u
)2
]
, (13)

where c0 is the spontaneous curvature of a monolayer, while c′0 denotes its derivative
with respect to the area per molecule, and Σ0 the equilibrium area per lipid.

The main difference between this model and that of Ref. [95] is that the effect of
monolayer spontaneous curvature is included in Eq. 13. It was shown in Refs. [97,
98] that this ingredient can yield oscillations in the membrane deformation profile,
and in the resulting interaction potential between two mismatched proteins. Note
that no “tension” term is included in Eq. 13, but the “tension” term in Eq. 12 was
neglected in all the calculations of Ref. [95] too.

The model of Refs. [97, 98] was generalized in Refs. [99, 100], where results
of coarse-grained molecular-dynamics simulations for mismatched proteins in lipid
membranes were also presented. The deformations of the average shape of the
membrane (i.e., those usually described by the Helfrich model), and the small-
scale protrusions were accounted for, as well as the symmetric thickness deforma-
tions [99, 100]. The effect of Gaussian curvature was also included in Ref. [100],
and Ref. [101] added the effect of tilt.

The model of Refs. [97, 98, 99, 100] was further generalized in Ref. [102], where
an additional term, proportional to the squared gradient of thickness, was included
in the initial expression of the energy per lipid molecule in each monolayer of the
membrane. Physically, this term should involve a microscopic interfacial tension
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contribution, associated to variations of the area per lipid. Note that this is different
from the Plateau border tension discussed and discarded in Ref. [95], as in a Plateau
border, molecules can move along the surface and exchange with the bulk, yielding
a smaller tension. Macroscopic membrane tension was also incorporated explicitly
in Ref. [102], through a chemical potential µ set by the rest of the membrane on
the patch considered: σ =−2µ/Σ0 then plays the part of an externally applied ten-
sion. The Helfrich Hamiltonian with tension Eq. 7 was recovered from this model
for average height deformations. In the case where the average shape of the mem-
brane is flat, and integrating out anti-symmetric thickness deformations to focus on
symmetric ones, the Hamiltonian reads:

H =
∫

dxdy
[

σ

d0
u+

Ka

2d2
0

u2 +
K′a
2

(∇∇∇u)2 +
K′′a
2

(∇2u)2
]
, (14)

plus omitted boundary terms (see Ref. [102]), with

K′a =−
κ0

d0
(c0− c′0Σ0)+ k′a , (15)

K′′a =
κ0

4
, (16)

and the same notations as in Eqs. 12 and 13, and where the new contribution k′a
with respect to Eq. 13 arises from the term proportional to the squared gradient of
the thickness u. (The definition of u in Ref. [102] is slightly different from that of
Refs. [97, 98, 99, 100], but it does not affect the present discussion.)

The predictions of the model of Ref. [102] were compared with numerical pro-
files of membrane thickness close to a mismatched protein [99, 100, 103], and with
experimental data regarding gramicidin lifetime [93] and formation rate [94]. This
analysis yielded consistent results for the term stemming from the gradient of the
area per molecule, and its order of magnitude was found to be of order of the con-
tribution of the interfacial tension between water and the hydrophobic part of the
membrane. In addition, the presence of this new term allowed to explain for the first
time a systematic dependence in previous numerical data.

3.1.4 Isotropic cross-section

The first models of short-range interactions between transmembrane proteins as-
sumed that the proteins are coupled to a local order parameter describing the inter-
nal state of the membrane, either the conformational/chain-packing properties of the
lipids, or the bilayer thickness u [86, 87]. Both are equivalent for a fully incompress-
ible membrane hydrophobic core. In Refs. [88, 104], a generic Landau–Ginzburg
expansion of the free energy density in terms of u and its first gradient was used
to investigate the energy of a hexagonal lattice of embedded proteins imposing a
value u0 of the order parameter, i.e., a fixed hydrophobic mismatch, on their edge.
Approximating the Wigner-Seitz cell of the lattice by a circle, which yields cylindri-
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cal symmetry, the authors derived a monotonically attractive short-range interaction
caused by the overlap of the membrane regions deformed by the inclusions.

As discussed in Sec. 3.1, several models based on the thickness order parame-
ter u have been developed. They have been used to study membrane-mediated in-
teractions. These models essentially introduced terms involving the second-order
derivative of u, based on the (recently questioned [102]) expectation that the term
proportional to (∇∇∇u)2 was negligible. In particular, Ref. [95] introduced a term pro-
portional to (∇2u)2, by analogy with the splay term for smectic liquid crystals. Later,
Ref. [97] introduced additional terms, linear in ∇2u and in u∇2u, which arise from
the spontaneous curvature of the monolayers and its dependence on the area per
lipid. This initiated a series of works [97, 105, 98] aiming to estimate the elastic
energy of a hexagonal lattice of proteins with hydrophobic mismatch. These works
showed that the interaction potential can be non-monotonous, with short-distance
repulsion and a minimum energy at finite separation. These effects can arise from
the spontaneous curvature term, but also from a fixed contact angle between the
membrane hydrophobic-hydrophilic interface and the inclusion, thereafter referred
to as “slope”. The associated multi-body effects were investigated in Ref. [106]
through a Monte-Carlo simulation of inclusions fixing both the membrane thick-
ness and its slope, in a membrane described by the elastic energy in Eq. 12. This
study also demonstrated the interest of the structure factor to test the models. An-
other term involving second-order derivatives of the thickness profile u, proportional
to its Gaussian curvature, was included in Ref. [100], improving the agreement with
coarse-grained molecular-dynamics numerical simulations. Note that oscillations in
the interaction potential were observed in the coarse-grained molecular-dynamics
simulations of Ref. [107].

The term proportional to (∇∇∇u)2 in the elastic energy density was originally dis-
carded on the grounds that it originates from a negligible microscopic surface ten-
sion assimilated to that of a Plateau border [95]. However, it was recently shown
by us to also originate form gradients of lipid density, and therefore to contribute
significantly to the elastic Hamiltonian [102]. Note in addition that the term in u∇2u
introduced in Refs. [97, 98] contributes to the (∇∇∇u)2 term once integrated by parts.

In the end, these models converge towards the most general quadratic expansion
in terms of u and its first and second-order derivatives [102, 108]. In standard statis-
tical field theory, it is justified to neglect higher-order gradients, because the focus is
on large-scale physics and the coarse-graining length is much larger than the range
of the microscopic interactions [109]. However, here, such arguments do not hold
since the distortions around proteins relax on a length comparable with the bilayer
thickness. Therefore, in practice, one should rather rely on comparison with exper-
iments and simulations to determine how many terms to include in the expansion.
Our current understanding is that all linear and quadratic terms involving derivatives
of u up to second order should contribute, and that the best strategy is to try to fit the
parameters of the elastic Hamiltonian and of the protein–membrane coupling using
experimental or numerical data [108].

The focus of this chapter is on membrane-mediated interactions arising from di-
rect constraints on the membrane shape (mean shape and thickness). Hence, we will
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not discuss in detail the role of the underlying lipid tilt degree of freedom [101] in
membrane-mediated interactions [110, 111, 112, 113, 114, 115]. However, tilt cer-
tainly plays a part in these interactions. For instance, proteins with no hydrophobic
mismatch but with a hour-glass shape [110, 111] may induce a membrane deforma-
tion due to the boundary conditions they impose on lipid tilt. A legitimate question,
though, is how necessary it is to include this degree of freedom. Statistical physics
allows to integrate out virtually any degree of freedom [109]. The resulting effec-
tive elasticity for the remaining degrees of freedom takes into account the underlying
distortion energy of the removed ones. For instance, integrating out the tilt degree of
freedom in the presence of an hour-glass shaped inclusion would produce an effec-
tive boundary energy depending on the inclusion thickness and on its angle with the
membrane. What is not clear is how many orders in the derivatives of u, both in the
bulk and in the boundary energy, one would have to introduce in order to properly
account for the removed degrees of freedom. Future works in this direction could
be interesting.

3.1.5 Anisotropic cross-section

While most theoretical studies of short-range membrane-mediated interactions have
considered cylinder-shaped inclusions, actual membrane proteins have various shapes.
As in the case of long-range interactions, in-plane anisotropy may result in direc-
tional membrane-mediated interactions, which may impact the formation of multi-
protein complexes.

In Ref. [116], an analytical method was developed to study membrane-mediated
interactions between in-plane anisotropic mismatched inclusions. The effective
Hamiltonian H associated to membrane thickness deformations was expressed as

H =
∫

dxdy
{

Ka

2d2
0

u2 + γ

[
u
d0

+
(∇∇∇u)2

8

]
+

κ

8
(
∇

2u
)2
}
, (17)

where we have used the notations defined in Eq. 12. This model is based on that
of Ref. [95] (see Eq. 12), but includes an additional “tension” term in u/d0. Such a
term is also included in Ref. [102] (see Eq. 14), but without the assumption that its
prefactor is related to that of the squared thickness gradient term. This assumption
should be viewed as a simplifying hypothesis, given the contribution of monolayer
curvature to the squared thickness gradient term [97, 98, 99, 100] and the difference
between externally applied tension and interfacial tension [102] (see Sec. 3.1.3).

In Ref. [116], the solution of the Euler-Lagrange equation associated with Eq. 17
in the case of a single cylinder-shaped inclusion was expressed using Fourier-Bessel
series. Then, using an ansatz introduced in Ref. [41] in the context of long-range
membrane-mediated interactions, the ground-state shape of the membrane in the
presence of two inclusions was written as a sum of two such series. The coefficients
of the successive terms of these series can be chosen in order to match the boundary
conditions imposed by both inclusions, using expansions in a/d < 1.
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This method was extended to weakly anisotropic inclusions, modeling mechanosen-
sitive channels of large conductance (MscL) in Ref. [116]. The in-plane cross-
section of these pentameric proteins was described as a circle perturbed by a small-
amplitude sinusoidal, with fifth-oder symmetry. Boundary conditions along the edge
of these proteins were expressed perturbatively in the amplitude of the sinusoidal,
allowing to use the method described above. The resulting anisotropic membrane-
mediated interaction features an energy barrier to dimerization, and demonstrates
that the tip-on orientation is more favorable than the face-on one, except at very
short distances. Gating of the MscL channel was also studied in Ref. [116], by
modeling open and closed channels as having different diameters and hydrophobic
thicknesses [117]. The impact of having different oligomeric states of MscL on these
interactions and on gating by tension (see Ref. [118]) was studied in Ref. [119].

The method developed in Ref. [116] was used in Ref. [120] to study the effect of
membrane-mediated interactions on the self-assembly and architecture of bacterial
chemoreceptor lattices. Chemotaxis enables bacteria to perform directed motion in
gradients of chemicals. The chemoreceptors that bind to these chemicals are trans-
membrane proteins that organize into large honeycomb lattices of trimers of dimers
at the poles of bacteria [121]. In Ref. [120], it was shown that membrane-mediated
interactions between chemoreceptor trimers of dimers, modeled as inclusions with
three-fold symmetry, correctly predict the structure of the arrays observed in exper-
iments. Indeed, at short distances, the face-on relative orientation of the trimers is
favored by these anisotropic interactions. In addition, the collective structure of the
honeycomb lattice, studied approximately through the pairwise nearest-neighbor in-
teractions, was shown to be more favorable than other types of aggregates at realistic
densities of proteins. Gateway states to this lattice were also predicted, and it was
shown that membrane-mediated interactions may contribute to the cooperativity of
chemotactic signaling.

3.2 Numerical studies at the microscopic scale

Continuum models account for the microscopic degrees of freedom (i.e. the po-
sitions and conformations of all molecules involved) in a coarse-grained way, via
effective terms in the elastic energy and the associated prefactors. However, even in
the absence of a mesoscopic deformation due to hydrophobic mismatch, the pres-
ence of an inclusion constrains the configurations accessible to the lipid chains that
surround it [86, 122, 123, 112]. Further insight can thus be gained by treating such
microscopic degrees of freedom explicitly, in particular those describing the con-
formation of the lipid chains. Recent advances in numerical simulations have made
such approaches possible. Here, we give a brief overview of such studies. Note that
numerical studies focusing on larger-scale features were mentioned earlier.

Refs. [123, 124] used the lateral density-density response function of the alkyl
chains, obtained by molecular dynamics simulations of lipid bilayers, to determine
the interaction between “smooth” (no anchoring) hard cylinders inserted into the bi-
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layer. Three values were considered for the cylinder radius. For the largest one (9 Å,
comparable to that of the gramicidin pore, for instance), the long-range interaction
is repulsive for all the lipids studied (DMPC, DPPC, POPC and DOPC), with an
additional short-range attraction for DMPC. This study does not discuss how the
interaction might vary with the concentration of inclusions. Other studies followed
suit [125, 126, 127, 128].

A complete description should in principle combine the effects of hydrophobic
mismatch and of these changes in chain order [129, 114]. Such a complete model
is currently lacking, due to the theoretical difficulties but also due to the dearth of
experimental data that could be used to test and validate it. As in the case of lipid tilt
(see Section 3.1.4), one can wonder how integrating out these underlying degrees
of freedom would affect an effective model written in terms of u, what effective
boundary conditions non-mismatched inclusions would then impose, and whether
such a model would be sufficient.

3.3 Experimental studies

It has proven very difficult to directly measure the interactions between membrane
inclusions.

3.3.1 Electron microscopy

First among such attempts were freeze-fracture electron microscopy (FFEM) studies
[130, 131, 132, 133] that analyzed the spatial distribution of inclusions to determine
their radial distribution function g(r). The data was then described using liquid state
theories [134, 135, 136] in terms of a hard-core model with an additional interaction,
either repulsive or attractive depending on the system.

These pioneering results were not followed by more systematic investigations,
probably due to the intrinsic difficulty of the technique. It is also very difficult to
check whether the distribution function observed in the sample after freezing still
corresponds to that at thermal equilibrium.

3.3.2 Atomic force microscopy

It has been known for a long time that atomic force microscopy (AFM) can resolve
lateral structures down to the nanometer scale [137], but data acquisition used to
be relatively slow. This changed with the introduction of high-speed AFM [138],
which allows taking “snapshots” of the system and determining the radial distribu-
tion function. The latter gives access to [OK?] the interaction potential between in-
clusions, as illustrated by Ref. [139] for ATP-synthase c-rings in purple membranes
(see Fig. 9).
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Fig. 9: Interaction between ATP synthase c-rings. (A) Histogram of the center-to-
center distance of c-rings. (B) Membrane-mediated two-protein interaction energy
landscape. Reprinted from Figure 2 of reference [139].

3.3.3 Small-angle scattering

A promising way of studying membrane-mediated interactions is through small-
angle radiation (X-ray or neutrons) scattering from oriented samples, as demon-
strated by Refs. [140, 141, 142]. This non-invasive technique is very well adapted
to measurements of membrane-mediated interactions since the wavelength used is
of the same order of magnitude as the typical length scales over which one must
probe the system (nanometers). One can thus measure the structure factor of the
two-dimensional system formed by the inclusions in the membrane and obtain the
interaction potential between them.

This strategy was recently used to study alamethicin pores in DMPC membranes
[143], inorganic particles contained in bilayers of a synthetic surfactant [144, 145]
and gramicidin pores in several types of membranes [146].

4 Conclusion

Membrane-mediated interactions between inclusions constitute a very rich topic.
Their study gives insight into the behavior of complex two-dimensional biolog-
ical membranes. In particular, these interactions may have important impacts on
membrane protein aggregation, and on the formation of specific biologically func-
tional assemblies. Interestingly, inclusions can also serve as membrane probes, since
membrane-mediated interactions are in part determined by the properties of the host
membrane.

The field of long-range membrane-mediated interactions has been dominated by
theory, yielding interesting theoretical developments such as the fluctuation-induced
interaction, the general effective field theory and scattering approaches, and the
questions currently raised by the dynamics of these interactions. Some experimen-
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2R r - 2R

Fig. 10: Interaction potential U(r) of BuSn12 particles within DDAO bilayers. The
lower curve is the interaction potential of the particles in ethanol. The solid vertical
line marks the hard core interaction with radius 4.5 Å. Reprinted from Figure 3 of
reference [144].

tal and numerical studies have enriched this field, and we hope for further progress
allowing for more quantitative comparison with theory.

The study of short-range membrane thickness deformations was motivated by
quantitative experiments on gramicidin. Work on these deformations and on the as-
sociated membrane-mediated interactions has led to several developments of the
theoretical description of membrane elasticity at the nanoscale. Importantly, the
small-scale deformations involved are at the limit of the domain of validity of stan-
dard coarse-grained continuum theories, making comparison to precise experimen-
tal and numerical data even more crucially important.

An interesting fundamental feature of membrane-mediated interactions is the ex-
istence of many-body effects, arising from the interplay of the deformations caused
by each of the inclusions. It would thus be particularly interesting to vary the con-
centration of inclusions in experiments.
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