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Abstract

Ageing’s sensitivity to natural selection has long been discussed because of its

apparent negative effect on an individual’s fitness. Thanks to the recently described
(Smurf) 2-phase model of ageing ([40]) we propose a fresh angle for modeling the
evolution of ageing. Indeed, by coupling a dramatic loss of fertility with a high-
risk of impending death - amongst other multiple so-called hallmarks of ageing - the
Smurf phenotype allowed us to consider ageing as a couple of sharp transitions. The
birth-death model (later called bd-model) we describe here is a simple life-history
trait model where each asexual and haploid individual is described by its fertility
period z; and survival period z4. We show that, thanks to the Lansing effect, the
effect through which the “progeny of old parents do not live as long as those of
young parents”, z; and x4 converge during evolution to configurations x, — x4 =~ 0
in finite time.
To do so, we built an individual-based stochastic model which describes the age and
trait distribution dynamics of such a finite population. Then we rigorously derive
the adaptive dynamics models, which describe the trait dynamics at the evolutionary
time-scale. We extend the Trait Substitution Sequence with age structure to take
into account the Lansing effect. Finally, we study the limiting behaviour of this
jump process when mutations are small. We show that the limiting behaviour is
described by a differential inclusion whose solutions x(t) = (z4(t), z4(t)) reach the
diagonal {x, = 24} in finite time and then remain on it. This differential inclusion
is a natural way to extend the canonical equation of adaptive dynamics in order
to take into account the lack of regularity of the invasion fitness function on the
diagonal {z, = x4}.

1 Introduction

Ageing is commonly defined as an age-dependant increase of the probability to die af-
ter the maturation phase ([19]). It affects a broad range of organisms in various ways



ranging from negligible senescence to fast post-reproductive death (reviewed in [18]). In
the recent years, a new 2-phases model of ageing proposed by [40] described the ageing
process not as being continuous but as made of at least 2 consecutive phases separated by
a dramatic transition. This transition, dubbed “Smurf transition”, was first described in
drosophila ([33], [34]). In short, this transition occurs in every individuals prior to death
and is marked by a series of associated phenotypes encompassing high-risk of impending
death, increased intestinal permeability, loss of energy stores, reduced fertility ([34]). It
was later showed to be evolutionarily conserved in Caenorhabditis elegans and Danio rerio
([9], [35]). Such broad evolutionary conservation of a marker for physiological age raises
the question of an active selection of the underlying mechanisms throughout evolution.
Since the beginning of ageing studies, the question of its ability to appear through evo-
lution has been raised. In fact, since the Darwinian theory of evolution stipulates that
species arise and develop thanks to the natural selection of small, inherited variations
that increase an individual’s ability to compete, survive, and reproduce ([10]), numerous
researchers suggested that ageing - and more precisely senescence - could not be actively
and directly selected thanks to evolution ([I3]). One of the first to publicly address the
question of the evolution of ageing was August Weismann who proposed in 1881 that the
life expectancy was programmed by “the needs of the species” ([43]). Numerous theoret-
ical works have been developed about ageing for the past 60 years in order to recenter
the selection of an ageing process on the individuals more than on the population. Here
we will focus our attention on the capability of a process such as ageing to be selected
through evolution.

If fitness alone - as an individual’s reproductive success or its average contribution to
the gene pool of the next generation - were at play in the evolution process, the best
adapted individuals would have infinite fertility as well as longevity. Nevertheless, this
situation is never observed mainly because organisms adapted to constant variations of
environmental conditions and physical limitations of resources availability. Thus, an ac-
tive mechanism for the elimination of these fitness-excessive individuals would represent
a selective advantage in an environment where scarcity is the rule. The Lansing effect
is a good candidate for such a mechanism. It is the effect through which the “progeny
of old parents do not live as long as those of young parents” first described in rotifers
([22], [23]). More recently, it has been shown that older drosophila females and in some
extent males tend to produce shorter lived offspring ([31]), zebra finch males give birth to
offspring with shorter telomere lengths and reduced lifespans ([29]) and finally in humans,
“Older father’s children have lower evolutionary fitness across four centuries and in four
populations” ([2]).

In the present article, we decided to approach the problem of ageing selection and evolu-
tion by using an extremely simplified version of a living organism. It is an haploid and
asexual organism carrying only two traits, x;, that defines the duration of its ability to
reproduce and x4 that defines the duration of its ability to maintain its integrity - stay
alive (see Figure . We will further discuss the properties of this simple model in the
next part. Although quite simple, it allows the modeling of all types of observed age-
ing modes : negligible senescence, sudden post-reproductive death, or post-reproductive
“menopause-like” survival as well as the smurf phase.

The main result of the present article is that a pro-senescence program can be selected
through Darwinian mechanisms thanks to the Lansing effect. Indeed, our main mathe-



matical result (see Theorem shows that evolution drives the trait (z,, ;) towards
configurations x, = x4. It means that the individuals can enjoy all their reproductive
capacity, and then are quickly removed from the population. Moreover, this result shows
that after reaching the configurations z, = x4, the traits z; and x4 continue to increase
with decreasing speed, while maintaining x;, = x4. This decrease in the speed of evolu-
tion is a consequence of the fitness gradients being decreasing functions of the traits (see
Remark . It is related to the well-known fact that the strength of selection decreases
with age, i.e that a mutation having an effect on the reproduction or mortality rates at
a given age will have all the more impact as this age is small ([16], [25], [I7]). Indeed, in
our model a perturbation of the trait z;, (resp. z4) is equivalent to a perturbation of the
birth rates at age z; (resp. death rates at age z4).

We build an individual based stochastic model inspired by [39]. It describes an asexual
and haploid population with a continuous age and a continuous life-history trait structure.
In this model, the life-history trait of every individual is thus a pair of positive numbers
(zp,24) € R7. An individual with trait (z;,z4) reproduces at rate one as long as it is
younger than x, and cannot die as long as it is younger than x, (see Figure |1)). This

Birth rate Death rate

Ty age Tq age

Figure 1: Life-history associated to the trait x = (zp, xq).

model leads to three configurations: =4 < xy, 4 = x, and x4 > x}, (see Figure . From
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Figure 2: Three typical configurations of the model. (a) 'Too young to die’ : it corresponds to
configurations (xy, xq) which satisfies xqg < xp ; (b) "Now useless’: it corresponds to configurations
(xp, xq) which satisfy xzp = x4; (¢) "Menopause-like’: it corresponds to configurations (xp,xq)
which satisfies xq > xp.

one generation to the next, variation on the trait (z},z4) is generated through genetic
mutations. In addition, natural selection occurs through mortality due to competition for
resources thanks to a logistic equation defining the maximum load of the medium. Finally,
we model an epigenetic effect of senescence through the Lansing Effect. It introduces a



source of phenotypic variation at a much faster time-scale than genetic mutations. In that
aim, we assume that an individual that reproduces after age x4 transmits to his descen-
dant a shorter life expectancy (see Section 2 for details). Therefore, only individuals with
trait x4 < x;, are affected (see Figure [2| (c)). That creates an adaptive trade-off which
impacts the phenotypic evolution of the population.

The purpose of the present article is to study the long-term evolution of the trait x =
(xp, x4) and to determine whether it concentrates on x, — x4 = 0. To do so, we are in-
spired by the theory of adaptive dynamics ([28], [27], [11]) which studies the phenotypic
eco-evolution of large populations under the assumption that genetic mutations are rare
and have small effects. A central tool in that theory is the concept of invasion fitness.
The invasion fitness is a function 1 — z(y, x) informally defined as the probability that
an individual with trait y survives in a resident population with trait x at demographic
equilibrium. In section 4, we prove that the invasion fitness satisfies the simple relation
1 —z2(y,z) = (My) — A(z)) v 0 where A(x) is the Malthusian parameter, describing the
adaptive value associated with the trait z (see Section 3.1 (9] for the definition). This
allows us to introduce the Trait Substitution Sequence process (T'SS) which is a pure jump
process describing the successive invasions of successfull mutants in monomorphic pop-
ulations at the demographic equilibrium. The TSS has been heuristically introduced in
[27], [11] for a trait structured population. In [5], it has been rigorously derived from an
individual based model and generalised in [26], to age-structured populations. Our case
differs from [26] by mainly two aspects: the additional Lansing effect and the specific form
of the mutations kernel which is not absolutely continuous with respect to the Lebesgue
measure on R? (as assumed in [5], [26]). In the usual case, the TSS is approximated by
the solution of the Canonical equation of adaptive dynamics when the size of mutations
is small and on a longer time-scale ([4], [7], [26]). This limit theorem requires the Lip-
schitz regularity of the fitness gradient. In our model this assumption is not satisfied.
Nonetheless, we prove that the limiting behaviour of the T'SS when mutation are small is
captured by a differential inclusion, using an approach developed in [14]. A differential
inclusion is an extension of ordinary differential equation to set-valued time-derivatives,
which extends Cauchy-Lipschitz theory to non regular gradient cases. In our model, the
gradient is smooth except on the diagonal {x, = z4}. We prove that the solutions are
well-defined until they reach the diagonal which they do in finite time. Indeed, the drift
towards the diagonal is due to on one side (z, < x4) to the fact that the individuals with
larger x;, will reproduce more and thus tend to invade ; and on the other side (x4 < x3) to
the Lansing effect because old individuals produce short-lived offsprings. Hence, there is
no advantage associated with an increasing x;, only when associated with an increasing x4
that maximizes survival. Then the trait (z}, z4) evolves following the diagonal. The drift
of the differential inclusion depends on the derivatives of the Malthusian parameter with
respect to the trait variable. These derivatives are expressed as functions of the stable
age distribution and reproductive value as in [I7], [3] (see Remark [4.4)).

In Section 2, we present the individual-based model. Thanks to simulations, we show
what was suggested by observations: the trait distribution of the population stabilises on
the diagonal z;, — x4 = 0.

In Section 3, we study the deterministic approximations of the stochastic dynamics under
the assumption of large population and rare mutations. These approximations are non-
linear systems of partial differential equations similar to the Gurtin-McCamy Equation



([15]). We study their long-time behaviour and give some results of convergence to the
stationary states.

In Section 4, we state and prove the main mathematical results of this article concerning
the approximation by the T'SS and the canonical inclusion of adaptive dynamics. (Theo-

rem and Theorem [4.17]).

In Section 5, we give some comments on our results.

2 A stochastic model for the evolution of life-history
traits

At time ¢ > 0, the population is described by a point measure on (R%)? x R,

N

1
ZK(dx, da) = % D S (ty.a (v (d, da) (1)
=1

where N = K(ZK 1) is the total population size, K is the order of magnitude of a
population at equilibrium, z*(t) = (x}(t),2%(t)) € (R%)? is the trait of the individual
and a'(t) € R, is its age. The dynamics is defined as a piecewise deterministic Markov
process which jumps as follows:

e An individual (z,a) € (R*)? x R, reproduces at rate 1,<,,. The trait of the descen-
dant y = (yp, ya) is determined by the following two-steps mechanism (see Figure
below for an illustration):

- Step 1: If a < x4, the offspring inherits the trait = (23, z4).

Lansing Effect: if a > x4, we assume that the offspring carries the trait (xy,0).
Let us denote by Z the trait defined as © = x if a < 24 and T = (23,0) if
a > xq. We observe that x; remains unchanged and that only individuals with
configurations x4 < x, are concerned by the second type (x,0) (see Figure
(©)).

- Step 2: Genetic mutations. A mutation appears instantaneously on each trait
xp and 4 independently with probability pgx € 0, 1[. If the trait z;, mutates,
the trait g, of the descendant is y, = x, + hy, where hy, € R is chosen according
to the probability measure k(zy, hy)dhy; if the trait T, mutates, the trait y, of
the newborn is y4 = T4 + hg where hy € R is chosen according to k(24 hg)dhg,
where the mutational kernel k is defined for all w € R, and v € R by

Liov@—1)us1)(u +v)e o

k(u,v) = = (2)
§e Ljov u-1yus1y(u + 2)e” 2 dz

where 02 > 0. Note that for u > 1,

k(u,v) = k(v) =



e An individual with trait (z,a) has a death rate 1,-,, + nN5, with n > 0, mean-
ing that each individual is subjected to the same competition pressure n from any
individual in the population and whatever the value of its trait.

e Between jumps, individuals age at speed one: an individual with age a at time ¢
has an age a + s at time ¢ + s.

Figure [3| summarizes the trait dynamics described above.
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Figure 3: Picture of the reproduction and mutation mechanism. (a): the individual reproduces
at age ag < x4, there is no Lansing Effect. (b): the individual reproduces at age ag > x4, the
Lansing Effect acts.

Numerical simulation. The pictures in Figure [4] represent a simulation of the trait
marginals dynamics of the process Z(dz, da). We consider a monomorphic initial pop-
ulation with trait * = (1.2,2.5) and NF = 10000. We consider a competition rate
n = 0.0005, a probability of mutation px = 0.05 and a variance of mutations o = 0.05.
At time t = 0, the population is monomorphic with trait (xy, z4) = (1.2,2.5). We observe
that before the trait x; reaches the value of 2.5, the trait x,; remains constant. When x;
reaches x4 ~ 2.5, the traits z; and x4 continue to increase by maintaining x, ~ x,.

3 Monomorphic and bimorphic deterministic dynam-
ics

In this section, we study a deterministic approximation of the process Z¥ when K goes
to infinity. We also assume that px goes down to zero: almost no mutation occurs on a
time interval [0,7]. Nonetheless, some phenotypic variation is created by Lansing Effect.
Since our model is density-dependent, the deterministic approximation is a system of
classical non-linear partial differential equations similar to the Gurtin MacCamy Equation
([15]). In the monomorphic case, we show that the dynamics converges to the unique non-
trivial equilibrium. In the bimorphic case, we show the convergence to a monomorphic
equilibrium. We will consider that a monomorphic population with trait x is composed
of two subpopulations with traits (x, z4) and (z,0).
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Figure 4: Simulation of the individual based model (see the script in Appendiz A.4) . (a):
Dynamics of the trait xy, as a function of time. (b): Dynamics of the trait xq as a function of
the trait xy. (c): Population size as a function of time. Parameters: Nf = 10000 individuals
with trait (1.2,2.5), n = 0.0005, p = 0.05, 0 = 0.1.

Notation 3.1. We define I = ( (1) [1) >

3.1 Monomorphic dynamics

Let # = (zp,24) € (R*)? be a phenotypic trait. We consider a monomorphic initial
population such that the sequence (ZI)x weakly converges as K — o to d,n.(a)da
which describes a monomorphic population with trait z. Then, as in [39], we can prove
that the sequence of processes (Z%)x converges in probability on any finite time interval
to the weak solution (n,(t,.),t = 0) = ((nl(t,.),n2(t,.)),t = 0) € C(R,, L*(R,)?) of the
following system of partial differential equations

{@nz(t, a) + 0,z (t,a) = — (Dy(a) + n|n.(t, )| I) n.(t, a) )

n.(t,0) = Sﬂh B.(a)n,(t, a)da



with initial condition given by n,(0,a) = n,(a), where the densities nl(¢,.) and n2(,.)
describe the population distributions with trait (x,, z4) and (s, 0) respectively;

Ina(t, )] = ZJ Ini (£, ) |da
Ry

1€{1,2}

is the total population size and

m- (e 0 ) pao (B 0)

]l:vd <a<zyp laS

are the birth and death interactions. We refer to [42] for the well-posedness theory of
LY(R,)? solutions of Equation (4.

Remark 3.2. Let us comment the different terms in Equation . The transport term on
the left-hand side of the first equation describes the aging of the individuals, the right-hand
side describes the death of the individuals. The renewal condition in a = 0 describes the
births (i.e the individuals with age 0).

We introduce the set of viable traits
V= {513' = (:cb,xd) € (Ri)2 Ty NXTg > 1} (6)

We show that for any trait € V, there exists a unique non-trivial and globally stable
stationary state of . Indeed, the quantity x, A x4 represents the mean number of
descendants with trait (z3, z4) of an individual with trait (z, x4) if there is no competition.

Proposition 3.3. Assume that x € V. There exists a unique non-trivial stationary solu-
tion m, € L*(R})? to Equation ({f)). Moreover, any L'(R)? non negative solution n,(t,.)
of (4) such that nl(t,.) # 0 converges to m, in L'(R,)? ast — oo.

Remark 3.4. In Proposition below, we will give an explicit expression for the sta-
tionary state n,.

The proof of Proposition [3.3]is based on the study of the associated linear dynamics.
We introduce the linear operator

A:D(A)c LY(R,)? — LY (R, )?

u — —u —Dg(a)u

(7)

where D(A) = {u € L'(R;)? : w abs. cont., v’ € L*'(R,)?, = {z, B (a)da}. Tt
is well known that A is the infinitesimal generator of a strongly contlnuous semlgroup of
linear operators [42, Proposition 3.7] which describes the solutions of the linear system of
McKendrick Von-Foerster Equation

{&vw(t, a) + 0gvz(t,a) = =D, (a)v.(t, a)

va(t,0) = §p Ba(@)vx(t, )da. (8)

In [§], a similar linear model is studied. The "entropy method" ([30]) allows the authors
to prove the convergence of the normalised solutions to some stable distribution in some

8



weighted L'-space. We need stronger convergence in order to study the long-time be-
haviour of the masses of the solutions of . Since the birth matrix B, is not irreducible
(it is triangular) and the parameters B, and D, are not smooth, we cannot apply The-
orems 4.9 and 4.11 in [42]. Nonetheless, we easily extend them to our reducible and
non-smooth setting.

We define the Malthusian parameter A(x) associated with some trait = as the unique
solution of the equation

TpATq

J e M@adg = 1. (9)

0
Proposition[3.5|below justifies this definition and shows that A(z) is the asymptotic growth
rate of the dynamics defined by . Its proof is presented in the Appendix.
Let us define for all z € C the 2 x 2 matrix

F(z) = JR + B, (a) exp (— L (Do) + zI)da> da. (10)

Note that it is well-defined since B, has compact support.

Proposition 3.5. Assume that x € V. Then the linear operator A admits a unique pair of
simple principal eigenelements (A(z), N,) € R} x D(A) where the stable age distribution
N, satisfies

N;(CL) _ 6—(/\(J:)a+(a—wd)v0)’ Ng(a) _ [F()\($))]21 6—(1-‘4-)\(:5))(1‘
22

Moreover, for any non-negative solution v.(t,a) of (@ in LY(R,)?, there exists a positive
constant c(v,(0,.)) such that e @t (t,.) — c(v,(0,.))N, in L' (Ry)? as t — +00.

Let us now give a lemma which will be used to study the long-time behaviour of the
masses of the solutions of and whose proof is postponed to the Appendix.

Lemma 3.6. Let (mq1, M2, man) € R xRy x R*. Let Dy1(t), Dra(t), Daa(t) be continu-
ous functions from R, to R which tend to zero ast — oo. Let us denote

- () 20 (5ol ol )

Then any solution (2(t),t = 0) of the equation

dz(t)
dt

= (M +D(1))2(t) —nl=(t)l1 2(t) (11)

started at z(0) € R} x Ry converges to a vector Z which satisfies

1
i Zy = — 2L o (12)

m )
n 14+ mip — M2

zZ1 =

We conclude this section by proving Proposition [3.3]



of Proposition[3.5. We prove the first assertion. Let x € V and let A(x) be the principal
eigenvalue of A given by Proposition . Let 7, be the (unique) principal eigenvector of A
which satisfies |7, 1 = A(x). It is obvious that 7, is a non-trivial stationary state of (4.
Reciprocally, let m be a stationary state of (4). Then we have necessarily A(z) = n ||,
and that 7 is an eigenvector of A associated with the eigenvalue \(z) that allows us to
conclude. We now study the long-time behaviour of the solutions. Let us define

weltia) = exp (3 [ ol s ) ol ).

It is straightforward to prove that v, is a solution of the linear equation . By Proposition
B.5 we have e @)y, (t,.) — ¢(v,(0,.))N, in L'(R;)? as t — oo. We deduce that for
i € {1,2} and denoting p’(t) = |n’(t,.)|:,

i) §e e @it a)da . Ni(a)da

in L'(R,) as t — +o0. We now study the behaviour of the masses p,(t). By taking the
derivative under the integral, we obtain that for ¢ € {1,2}

dp,(t) _ ZJR ([Bo(a)];; — [Da(a)],;)ni (t, a)da — npk (1) s (8]

S350 [ (B, = Da@)]) ™D b0 — gt ()1 )1
R px(t)

Hence we obtain by that

dps (t)
dt

where A = (a;;) and for (i, j) € {1,2}?,

= (A + A®)px(t) = nlp2 () 1x(1)

) e @)
0= | ([But@l, D], ) =y (1)

and A(t) is a continuous function decreasing to zero as t tends to infinity. Since aj; =
AMz) > 0, asy = 0, aj2 = 0 and ag < 0, Lemma allows us to conclude that p,(t)
converges to p,, which is defined as the unique solution of the equation Ap, —n|p,|1p, = 0.
We easily solve this system and we obtain that p, satisfies

A(z) 1 a1

_1 -2 —=1

z T a ) = NN . Pz 15
P n 1 + )\(x)Q—lagg p )\(l’) — a22p ( )

]

We conclude this section by writing more explicit formulas for the stationary state 7.

10



Proposition 3.7. Let x € V then we have

N, (a) Nz (a)
—1 — x —2 —2 T
M,(a) = Dot Mal@) = Por—rar v
§r, Ni(@)da §r, Ni(@)da
where
51 _ M) 1 pQ _ as1 ﬁl
’ /r/ 1 + )\(332_10»22 7 ’ )\(aj) B a22 "
N, is defined in Proposz'tz'on and a;; are defined in .
Proof. 1t is a direct consequence of and . O]

Biological interpretation 3.8. Fquation describes the dynamics of a large monomor-
phic population with trait x. Proposition[3.5 shows that the age distribution of the popula-
tion stabilizes around the equilibrium n, = (0L, n2). The equilibria . and 0% describe the
age equilibria of the population with trait (xy, x4) and (xy,0) respectively. We observe that

if Ty, < x4, then asy = 0 = p2 and Proposition leads to the equilibrium m, = (W},0).

3.2 Bimorphic dynamics

Let © = (xp,24) € V and y = (yp, yq) € V. We consider a bimorphic initial population such
that the sequence (Z{)x weakly converges to d,n,(a)da+3d,n,(a)da as K tends to infinity.
Using similar arguments as in [39], we can prove that the sequence of processes (Z%)x
converges in probability, on any finite time interval, to the solution ((n,(t,.),n,(t,.)),t =
0) e L'(R,)* of the following system of non-linear partial differential equations

O (t, @) + Oana(t, a) = = (Da(a) + n(na(t, )l + [ny (@, ) |)D) 7:(L, )

n,(t,0) = §5 Bu(a)ng(t, a)da

Ony(t, a) + dany(t, a) = — (Dy(a) + n(llna(t, )l + [y (¢, ) [0)T) ny (L, )
ny(ta O) - SR+ B ( ) (tv Oé)de,

(16)

with initial condition given by (n,(0,a),n,(0,a)) = (n,(a),n,(a)). Equations de-
scribe the dynamics of a dimorphic population with traits  and y interacting through
competition. We prove the following proposition.

Proposition 3 9. Let x,y € V such that xy, A xq < Yy A yq. Then any L'(R,)*-solution
(ng(t,.),ny(t,.)) of @) satisfying n, (t,.) # 0 converges to (0,m,) in L'(R;)* ast — oo,

Proof. Let x,y € V such that z, A 24 < Y A yg. Then by (9), we have A(z) < A(y). For
u € {x,y} we define

vua,a):exp( funx( M+ Iy (5, )l >ds)nu<t ).

The functions vx and v, are solutions of the linear systems (§). We deduce from Proposi-
tion [3.5] that e =Wty (t, ) — c(v,(0,.))N, in L'(R,)? as t — +oo for a positive constant
c(vu(O, .)). Hence, we obtain that e @) SR+ vl(t, o)da converges to a positive limit. Since

11



Ay) > A(z) it comes that e *®)? SR+ vl(t,a)da converges to 0 as t — +o00. We deduce

that
p;(t) e~ At SR+ U;(t, a)do .
= — +00.
pi(t)  ePWES wi(t, a)da

Since p,(t) is bounded we deduce that p)(t) — 0 and similarly that p3(t) — 0. Then
the population with trait  becomes extinct. Using similar arguments as in the previous
proof we obtain that n,(¢,.) — 7, in L'(R)? which allows us to conclude. O

Biological interpretation 3.10. Equation (@) describes a competition dynamics be-
tween two infinite monomorphic populations with trait x and y. Proposition shows
that if x, A xq < yp A Yq, then the population with trait y invades and becomes fized while
the population with trait x becomes extinct. That gives us an invasion-implies-fization
criterion.

4 Adaptive dynamics analysis

In this section, we study the model introduced in Section 2 under the different scaling of
the adaptive dynamics. We generalise the Trait Substitution Sequence with age structure
([26]) to take into account the Lansing Effect. Then we study the behaviour of the T'SS
on a large time-scale when mutations are small. We show that the limiting behaviour of
the TSS is described by a differential inclusion which generalises the canonical equation
of adaptive dynamics ([I1], [4], [7]) to non-regular fitness functions. We first state some
properties of the demographic parameters and introduce the invasion fitness function.

4.1 Malthusian parameter and invasion fitness

Let us introduce the following sets: Uy = {x € V 1z, < x4}, Uy = {x €V : x4 < 2} and
H={xeV:x, =14}

Tq

U;

U,

Figure 5: Picture of V = Uy U H u Us.
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4.1.1 Malthusian parameter
We now give some properties of the Malthusian parameter A(z) defined in (9).

Proposition 4.1. (i) Forallz eV, 0 < A(z) < 1.

(i) The map x € V — \(x) is continuous. It is differentiable on Uy U Uy and satisfies

Ve l, VA . 17

x e Uy, \Y% (IE) = (C;(x), 0) ( )
\ e*)\(x)l“d

Vo e UQ, \Y (l’) = <O, G(I) )

where G(z) = §3*" ™ ae=*®da.
(iii) We have sup,ep, v, |VA(x)| < +00. Moreover, for alli e {1,2}, the fitness gradient
VA is Lipschitz on Uj.

Remark 4.2. Note that the Malthusian parameter \(x) is not differentiable on the di-
agonal H, which can be easily obtained by computing left and right partial derivatives on

H.

Notation 4.3. For all h € R we define (h); = < g ) and (h)y = ( 2 )

Proof. (i) Since j, A 24 > 1 we obtain from the definition (9) that A(z) > 0. Assume that
A(z) = 1. Then we obtain that 1 = {*"** e=2@)edq < 1 —e~**¢ which is a contradiction.
(ii) We prove the continuity. Let € V and let (x,,) be a sequence of V such that 2" — x.
By (i), A is bounded and we can extract a subsequence (still denoted z™ by simplicity)
such that A(z") — A*. We deduce that 1 = {70 "% e A@"edq — {7 e=X*dq = 1 which
allows us to conclude. Differentiability properties are a direct consequence of the Implicit
Function Theorem. For each i € {1,2} we apply implicit function Theorem to the map

Ty ATg

(A, z) e RxU; — e da — 1.
0

We deduce that A is differentiable over U; u U, and that

e~ A@)(Tp ATq)
Vi e {1,2}, Vo e Ui, V)\(l') = (CM)Z
(iii) It is straightforward to check that for all z € V,

o M) (@A) 1
G -
(z) So ae~%da

which allows us to obtain that sup,.;, o, [VA(z)| < +00. Moreover, the gradient VA is

obviously differentiable on U;. Since G is bounded below by Sé ae”*da, we deduce that
VA has bounded derivatives on U; and that V\ is Lipschitz on Uj. ]
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Remark 4.4. Formulae describe the sensitivity of the Malthusian parameter to small
variations of the trait x as well as the strength of selection at ages xy, and x4 for a popu-

lation with Lansing effect. The quantity G(x) can be interpreted as the mean generation
time associated with the trait x. Moreover and Pmposition yield

Vie{1,2), Vrel, VA(w)z(W) (18)

where N} is the stable age distribution. In [3], Caswell obtains similar formulae for
derivatives of the Malthusian parameter with respect to some little perturbations on the
intensity of birth or death at some given age while our formulae are obtained considering
a small perturbation on the duration of the reproduction phase (not on the intensity which
remains constant equal to one).

The following proposition recalls a simple link between the Malthusian parameter and
the stationary state of the monomorphic partial differential equation (4)).

Proposition 4.5. (i) For all z € V, we have \(x) = n |-
(i) The map x € V — 1,(0) is continuous and bounded.

Proof. (i) has been proved at the beginning of the proof of Proposition .
(ii) By (i) we have
M) =1 (Mg (0)ui(z) + 75 (0)uz(z)) (19)
where
+00 a +00
ui(x) = f exp (—J Loy do — )\(ZB)(I) da ; us(x) = J exp (—(1 + A\(x))a) da.
0 0 0
Moreover 7,.(0) is a solution of
1:(0) = F(A()) 72(0) (20)
where F is defined in . From and we obtain by simple computation that
A(x) 1

—1
. (0) = Y
n u(z) + U2(1‘)%

which is a continuous function of . Boundedness is obvious arguing that m.(0) < |7, /;.
[l
4.1.2 Invasion fitness

We extend the definition of the invasion fitness for age-structured populations introduced
in [26], Section 3] to take into account the Lansing effect.

Definition 4.6. For all y € R} and x € V, the invasion fitness 1 — z(y, x) is defined as
the survival probability of a bi-type age structured branching process with birth rates and
death rates defined in (D)), respectively equal to

B,(a) and Dy(a)+ n|n,|IL
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The next proposition gives a precise and precious relation between the invasion fitness
and the Malthusian parameter.

Proposition 4.7. Let y € R} and x €V, then the invasion fitness satisfies
1—z(y,x) = (My) — AMz)) v 0. (21)

Proof. Let Zy(da) = (Z}(da), Z2(da)) be an age- structured branching process with birth
rates B,(a) and death rates Dy(a) + n |7,;|I = D,(a) + A(z)I. The process Z; becomes
extinct if and only if the process Z! becomes extinct. Indeed, if Z} = 0, the process Z?
evolves as a sub-critical branching process. The process Z} is an age structured branching
process with birth rates and death rates respectively

[By(a)]n = ]laéybAyd and [Dy(a)]n + )‘("E) = ILa>yd + )‘(x)

We deduce that z(y,x) equals the smallest solution of the equation z = F(z) where

F(z) = JR (=1 5 [By(@)], da (IDy(a)]y; + A=) o 55 (Dy (@)l +A() )der g
+

Yb NYd Y
_f /\<J/’)6(3_1_)‘(I))ada—|—e(z_1)(yb/\yd)f /\<l.)e—>\(a:)ada

0 YbNYd
400

T DA (1 4 A()) J a1 A@a gy

Yd

Yb AYd
= el A 4 (1) J o(a=1-X@)a g,
0
+ e(z—l)ybAyd(e—k(x)(ywyd) — e_’\(x)yd) + Do rya) 4 o(z=1)(ysAya) o —A(@)ya
Yb AYd
=1+ (z— 1)J eI A@e g,
0

We have obtained that the equation z = F\(z) is equivalent to

Yo ANYd
z—1=(2—-1) J eFm17A@egq, (22)
0

If AM(y) > A(x), Equation admits two solutions z = 1 and z = A\(z) — A(y)+1 < 1. If
Ay) < A(zx), Equation admits a unique solution z = 1. That allows us to conclude
the proof. O

Remark 4.8. [t is interesting to note that in our model, the invasion fitness (which is
a concept from adaptive dynamics theory) and the Malthusian parameter are connected

thanks to the simple relation .

The following proposition characterises the set of traits y which can invade some given
trait z.

o 2
Proposition 4.9. For allz eV, y e RY,

1—2(y,7) > 0= Ay) > \M2) == Yy A Ya > Tp A Tq.
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Proof. From the definition @ of the Malthusian parameter, we easily deduce the following
equivalences:

(A(y) = A@) v 0> 0 e Ay) — A(x) > 0
:}f “AWadg < 1
= ITp NTqg < Yp N Yd,

which concludes the proof. O]

4.2 Trait Substitution Sequence with age structure

We first generalise the definition of the Trait Substitution Sequence (TSS) with age struc-
ture defined in [26] to take into account the Lansing Effect.

Definition 4.10. We define the measure valued process (Ty(dx,da),t = 0) by
Ti(dz,da) = 5X(t)(dx)ﬁ§((t)(a)da + (5(Xb(t)70)(dx)ﬁ§((t)(a)da
where (X (t),t = 0) = ((Xp(t), Xa(t)),t = 0) is defined as the pure jump Markov process

on V with infinitesimal generator L defined for all measurable and bounded function ¢ :

V—->RandzeV by
Lo(z) = J(R )2(90(1‘ +h) — () (Mz + h) = M) 7,(0) p(dh) (23)

where

u(dh) = k(hy)dhy @ do(dhq) -12- do(dhy) ® k’(hd)dhd’
k being defined in (3).

The process X will be called the Trait Substitution Sequence.

Remark 4.11. The process (T;,t = 0) describes the evolution of the phenotypic structure
of the population at the mutational time-scale. At each time, and because of the Lansing
effect, the population is composed of two sub-populations: the first one corresponds to
viable individuals with trait X (t) = (Xp(t), Xa(t)) € V whose age distribution is given by
ﬁ}((t)(a)da; the second one is composed of individuals generated through the Lansing effect,
with trait (Xy(t),0) and age distribution 7%, (a)da.

Remark 4.12. Figure |6 describes the behaviour of the process (X (t),t = 0).

Any trait x € H is an absorbing state for the process X . Indeed, by Proposition[4.9, for
all ¢ :' V — R measurable and bounded, for all v € H, Lo(x) = 0. That means that when
the trait (xy, xq) satisfies x, = x4, no mutation can invade.

By definition of the measure u(dh) the process evolves horizontally or vertically (which
means that the two traits x, and x4 do not mutate simultaneously). By Proposition
we deduce easily that the process evolves from the left to the right on Uy and from bottom
to top on Us.

Since the jump rates are continuous and tend to zero on H, the process slows down as it
approaches H.
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(a) (b)

1 y 1 X

Figure 6: (a): This picture represents a trajectory of the TSS process. (b): This picture repre-
sents the drift associated with the TSS process.

We now explain the heuristics, rigorously proved in [26], which allow to obtain the
TSS from the individual based model defined in Section 2.1. The main ideas have been
introduced in [5], for a population without age-structure. They are based on the time-scale
separation assumption on mutation probability px: as K — +o

1
vV >0 —KV) = =0 = 24
- epKV) = o). =0 o). (24)
which allows to separate the effect of the natural selection and the appearance of new
mutants. Let z € V and consider a sequence (Z&)f converging to d,n.(0,a)da as K —
+00.

1) Monomorphic approximation. For large K, the process ZX stays close to the
measure 0,1, (t,.) + 0(z,.0n2(t,.) where ng(t,.) = (ng(t,.),n2(t,.)) satisfies the partial
differential equation . By Proposition , the dynamics n,(t,.) converges to m, =
(ml,m2) as t tends to infinity and hence reaches a given neighbourhood of 77, in finite
time. By using large deviation results ([39]), we obtain with probability tending to one
as K tends to infinity that the process Z/ stays in this neighbourhood of 6,7} + 0, 075
during a time e“X for some C' > 0. The left-hand side in Assumption ensures that

the next mutation appears before the process leaves this neighbourhood.

2) Appearance of a mutant. We deduce that the monomorphic population with
trait x creates a mutant with trait:

(i) y = (xp + hp, zq) or y = (2,24 + hg) at a rate approximately equal to 2K pg (1 —
p)7i(0);
(i) y = (zp + he, T4 + hg) at a rate approximately equal to Kp%nL(0);
(iii) y = (wp, hg) or y = (w4 My, 0) at at rate approximately equal to 2K pg (1 —pg)n2(0);

(iv) y = (xp + hy, hg) at rate approximately equal to Kp?%nZ(0).
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where the variables h, and hy are chosen independently with distribution k.

Since p% = o(pr (1 — pk)), the cases (ii) and (iv) cannot be observed on the mutation
time-scale t/2K (1 — pg).

3) Effect of the natural selection. In cases (i) and (iii), the mutant population
dynamics is approximated by a bi-type age structured branching process with birth rates
B, and death rates D, + n|n,|;I. By Proposition , the mutant population survives
with probability

(Aly) = Alz)) v 0.

Let us detail the two different cases.

e Case (i). With probability 1/2, the trait of the mutant is y = (x, + hy, x4). From
Proposition [£.7, we deduce that the mutant can survive if and only if

Mxp + hy, 2q) > M) <= hy > 0 and z € U. (25)
With probability 1/2, y = (xy, x4 + hgq) and can survive if and only if
My, xg + hg) > MNx) <= hy > 0 and z € Us. (26)

e Case (iii) (Lansing effect). The mutant has the trait y = (zp, ha) or y = (2 + hy, 0).
By (B)), we have y,Ayq < 1 which implies that A(y) < 0 and then (A(y)—X(z))v0 = 0.
In this case, the mutant population becomes extinct.

We deduce that the mutant can only survive (with positive probability) in case (i). The
birth rate of such a mutant (on the time-scale t/2px (1 — px)) is given by the intensity
measure on R

71,(0)u(dh)
that leads to the right hand side in (23)). The probability that such a mutant survives
and reaches a size of order K equals

(A(y) = Alz)) v 0.
Moreover and imply that
(M + h) = (@) v 0)u(dh) = (A + h) — (@) Lz (R)u(dh).

This allows to obtain the left hand side of .

If the mutant population becomes extinct, the resident population remains close to its
equilibrium 72,.

If the mutant population survives, then it reaches a size of order K with a probabil-
ity that tends to one and the population dynamics is approximated by the solution
(ng(t,.),ny(t,.)) of the bimorphic system of partial differential equations (16)). In this
case we have necessarily A(y) > A(z). Following Proposition [3.9] the deterministic dy-
namics (n,(t,.), ny(t,.)) reaches a neighbourhood of (0,7,). By using branching processes
approximations and arguments introduced in [5], we can deduce that the resident popu-
lation with trait x becomes extinct. One can prove as in [5] that this competition phase
has a duration of order log(K).

The right hand side of Assumption ensures that the three steps of invasion are com-
pleted before the next mutation occurs.
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The Markov property allows to reiterate the same reasoning for the next mutation oc-
curence. In summary, the following theorem holds.

Theorem 4.13. The following convergence holds in the sense of finite dimensional marginals:

(ZKt ,t>0>—>(Tt,t>0), as K — oo,

2Kpg (1-pk)

where the process T is defined in Definition /.10,

4.3 A canonical inclusion for adaptive dynamics

In this section, we assume in that mutations are small. We study the behaviour of the
process X defined in (23) when the mutation scale equals € > 0 and the time is rescaled
by 1/€2. To this aim, we define the rescaled trait substitution sequence process X¢ and
study the limiting behaviour of the process X¢ as ¢ — 0. In the usual cases (smooth
fitness functions) the canonical equation introduced by Dieckmann-Law can be derived
as limit of X¢ as ¢ — 0 ([7]). As observed in Section 4.1, the fitness function \(x) does
not satisfy these regularity assumptions. To overpass this difficulty, we use the approach
developed in [14] based on differential inclusions. We prove in Theorem that the set
of limit points of the family X°¢ is characterised as the set of solutions of a differential
inclusion.

Definition 4.14. The rescaled TSS process (X€(t),t = 0) is defined as a pure jump
Markov process with infinitesimal generator L€ defined for all measurable and bounded
function ¢ : V - R and x € V by

Lio(a) = j( (o ) = ) (e + ) = AR Oty (D)

€2

Remark 4.15. The process X¢ shows a dynamics similar to the process X. The jump
rates are of order 1/e and the jump sizes are of order €.

We first introduce the set-valued map F : V — P(R?) defined for any x € V by

Vie{1,2}, Veel, F(x)=(f(z1)),
(3 )vemnf e

N —

VeeH, F(z)= {
where for all (z,u) eV x [0,1],

Fla,u) = < L " h2k(h)dh + f 1 huk(h)dh> “2;:)”‘” ”iQ(O); (29)

u

and G is defined in Proposition 4.1}

This set-valued map F' somehow generalises the classical fitness gradient. It is repre-
sented by a picture in Figure [§] (b).
Let us explain the ideas leading to consider this function. Let us consider a compact
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subset K of U;. Since the Malthusian parameter A is differentiable on U;, the following
approximation holds: for all A € R, uniformly for x € K, we have

Az + €(h);) — Ax) ~ €(h); - VA(z), (30)

which leads to the definition of F' on U;. We analyse the case x € H for which the
approximation is not true. Indeed, let x € H and let u € [0, 1] and let us consider a
sequence z¢ = z — €(u);, we have

Az + e(h);) — A(z9) (x + e(h —u);) — Mz — €(u);)

=A
= Mz + e(h—u);) — Ax) + AMz) — Mo — e(u);)
Assume h < u, since A is differentiable on U; we obtain when € tends to 0 that

Az +€e(h);) — AMz) ~ e(h —u);. V() + €(u);.VA(z) ~ €(h);.VA(z),

where VA(z) is defined as the limit of VA(y), y — z, y € U;. That leads to the first
integral in (29). If » > u, we obtain that A(z + e(h — u);) — A(x) = 0 and

Az +€(h);) — A(z9) =~ €(u);. VA(z) < e(h);. VA(z),

which leads to the second integral in . The inequality above means that when the
process evolves near the diagonal ‘H the adaptation slows down. Let us now define what
we do mean by a solution of the differential inclusion driven by the set-valued map F'.

Definition 4.16. A solution of the differential inclusion driven by the set-valued map
F is an absolutely continuous function x : [0,T] — V which satisfies x(0) = ® and for
almost all t € [0,T],

dx(t

Z(t) e F(x(t)). (31)

It generalises the classical canonical equation for adaptive dynamics. For any T" > 0
and z° € V, we denote by Sg(T, 2°) the set of solutions of the differential inclusion .
The following theorem characterises the limit of the process X¢ as the solution of the
differential inclusion (31)).

Theorem 4.17. Let 2° € V. Assume that X(0) — z° in probability as ¢ — 0. For all
T,6 >0,

e—0 zeSp(T,x0) te[0,T]

lim P ( inf  sup |X(t) —z(t)] > 6) =0.

Remark 4.18. Theorem justifies our complete study. Let (x(t),t € [0,T]) be a
solution of . On each Uy, it satisfies

dx(t)
O (Fa®. ) 2 .

The map x € U; — (f(x,1)); is Lipschitz and bounded below by a positive constant. Hence,
uniqueness holds on U; for and any solution reaches in finite time the diagonal H.
On H, the solution satisfies
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Figure 7: We represent 10 simulations of the process (X€(t),t = 0) for e = 0.001, X<(0) =
(2,1.5). (a): We represent X§(t) as a function of X(t). (b): (X;(t),t =0). (¢): (X(t),t = 0).
We observe on (b) and (c) that before reaching the diagonal H the limit behaviour is determin-
istic. On H, the process evolves with speed in F(x) for x € H.

Since for all x € H, F(x) € H, we deduce that any solution stays in H.
Figure[] illustrates Theorem[{.17. We represent some trajectories of the process (X(t),t =
0) started at X<(0) = (2,1.5) for e = 0.001.

The proof of Theorem is based on [14, Theorem 1] recalled in the Appendix, see
Theorem [A.2] We start by writing the process X¢ as a time-changed Markov chain. We
first re-write the generator L€ as follows

Lote) = [ (ot 1) - o)™ Ve (2, dn)

2
+

where k(x,dh) =

Az + h) — )\(x)lf(dh) . U(R )2 (1 Az + gz - A(:&) ME(dg)> o(dh)

€

and p€ is the image measure of p by the map h — eh. The following lemma is proved in
[12, Ch. 4, S. 2, p. 163].

Lemma 4.19 ([12]). Let 7 = sup,o,7-(0). Let (Y<(k),k = 0) be a Markov chain with
Jump law

3 =1 =1

it dn) = 2= g am) + (1 - n(O)) So(dh)

T T

and A® be a Poisson process with intensity 7/e. Then the processes X¢ and Y(A€) have
the same law.

Then we are led to study the Markov chain (Y¢(k),k = 0). We first define the drift of
the Markov chain Y€ by

ge(x) = E[Y*(1) = Y(0)[Y*(0) = «].
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A simple calculation gives us

Vie (1,2}, Veel, g.(z)= Engcio) JR A+ e(h)) = M@)oy ).an

VeeH, gd(x)=0.
Then, we write the Markov chain Y€ as a stochastic approximation algorithm

Yk +1) = Y(k) + “U*(k) + g"(V“())

where U*€ is a martingale difference sequence. Assumptions of Theorem are clearly
satisfied. In order to apply it, we compute the following set-valued map

VzeV, H(z)=conv {aCCHOTge(x ) Lt — x}

€

where conv(A) denotes the smallest convex set which contains A and acce_,o7g(z¢)/e is
the set of accumulation points of the sequence Tg.(z¢)/€ as € tends to zero.

Lemma 4.20. The set-valued map H satisfies
Vie{l,2), Vel H(z)={(f(s 1))

VeeH, H(z)— {a( f(rgu) ) +(1-a) < f(iv) ) (v, 0) € [0,1]3}

e~ Mz)(To ATa) ﬁglﬂ(o)
Proof. Let i € {1,2}. Let K be a compact subset of U;. Let § > 0. We fix ¢y > 0 such that

for all z € K, € < ¢y and h € [0, 1], we have x + €(h); € U;. The map A is differentiable on
U;. Hence, for all (z,¢,h) € K x [0,€0] x [0,1], there exists 6 € [x,x + €(h);] such that

Az + e(h);) — Mx) = e(h);. VA0).

where

fu h2k(h)dh + f uhk(h)dh) .

0 u

Let z € K, we have

) (f(a1)),

€

7,(0)
2

S

| x|

Ry

th(h)dh’

<O [y wr@)], - (VAW 2o

By Proposition the map VA is Lipschitz on U; with some Lipschitz constant C. We

deduce that

=1
- esupxeénx(mcj h’k(h)dh.
Ry

We obtain that 7¢¢/e converges uniformly on all compact subsets of U; and we conclude
that for all z € U;, H(z) = (f(x,1)),.
Let z € H. We first show that

{accé_,ngif) L — x} = U {(f(z,u)); :uel0,1]}. (32)

ie{1,2}

@) (f( 1),

€
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If the fitness gradient was smooth (i.e Lipschitz), the sets in would be reduced to one
element and we would be in the cases studied in [4], [7] or [26]. We prove the inclusion
from right to left. Let i € {1,2}, let u € [0, 1], we define the sequence z¢ = z — ¢(u);. We
have

79¢(z°) _ (J Mz — e(u); + €(h);) — Mz — e(u);) k(h)(h)-dh> nL(0)
€ Ry € ! 2

B (Ju Mz —e(u); + e(h);) — Mz — e(u);) k(R (h)sdh

" fl Mz — e(u); + €(h);) — Mz — €(u);)

€

n2c(0)

k(h)(h)ﬂh) o

For all h € [0, u], we have [z — €(u);, z — €(u — h);] < U;. Sowe can find 0 € [x — e(u);,x — e(u — h);]

such that A(x —e(u—h);) — Az —€e(u);) = €(h);.-VA(#). By Proposition 4.1 (ii), we deduce
that

[[ A ) Z A= ) g — [T,

as € tends to zero. For all h € [u, 1] we have A(z + e(h —u);) = A(z). We deduce similarly
that

Jl Mz —e(u); + E(he)i) — Az — €(u);) k(h)(h)sdh — e_/\(;)((:)/\m Jl(h)iu k(h)dh

u

as € tends to zero. We conclude the proof of the first inclusion arguing that m..(0) — 7L (0)
as € tends to zero.
We prove the inclusion from left to right. Let x € V. If x € H then we have

g9°(x) = 0. (33)
If x € U;, for some i € {1,2}, then we have

rg“(x) _ 7 (0) f A eh)) =M@y an

€ 2 J €
Moreover for all €, h there exists 6 € [z, + €(h)1] such that AM(z +e(h);) — A(z) < aé\i?) eh
We deduce that (@) L0y [ oxD)
Tg(x n,(0 A 9
—| <= h*k(h)dh 34
e ] O (34)

From and , we deduce easily the second inclusion in . We conclude that

Tgé(me)

conv {aCCHO Dt — :c} = conv {Ujeq 2 {(f(z,w)); s we [0,1]}} = H(z).

€
[

In Lemma [4.22] we prove that differential inclusions associated with H and F have
identical solutions. Before, we give a technical lemma.
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Lemma 4.21. Let z € H. Let (u,v,a) € [0,1]° and let

m:a(ﬂ%’“) ) +(1—a)(f(ﬁv) ) e H(z).

Assume that m ¢ F(x). Then we have af (x,u) # (1 — ) f(z,v).

Proof. We prove the lemma by contradiction. Assume that af(z,u) = (1 — a)f(z,v).

Then we obtain
L ( e
_ x,u)+f(z,v
m=5\ 2feufey |-
f@u)+f(zw)

We assume without loss of generality that f(z,u) < f(x,v). Then we obtain 0 <
Foatien <
zu)+f(zw)

[0,1] to [0, f(z,1)]. Hence there exists w € [0,1] such that f(z,w) = % that
allows us to obtain the contradiction. O

f(z,v). Finally we remark that the map s — f(z,s) is a bijection from

Lemma 4.22. Any solution of

@0 e P(a(t), tel0,T]
{az(O) =2V (35)

is a solution of

{dggt) € H(z(t)), tel0,T]
z(0) = 2°.

and conversely.

Proof. For all x € V, we have F(z) < H(xz). We deduce that if (z(¢),t € [0,T]) is
a solution of then it is a solution of . Assume conversely that there exists a
solution (x(t),t € [0,T]) of which is not a solution of (37]). We deduce that there exists
to € [0, T] such that x is differentiable at to, dz(to)/dt € H(z(to)) and dz(to)/dt ¢ F(z(to)).
Then we have x(t) € H and dxz(ty)/dt ¢ F(z(to)).

We now deduce the contradiction. By Lemma , we obtain that

dzy (to) =~ dzg(to) )

dt dt
Without loss of generality, we may assume that < dmfiito). Since xp(ty) = wa(to),

there exists an interval ]to, ¢1[ such that for all s € Jto, t1[, z(s) € U;. Assume that for all
s € |to, t1[ such that z is differentiable at s, we have

dxy (to

dz4(s)
dt

~ 0. (37)

The solution x of the differential inclusion is absolutely continuous. Hence for all
s € Jto, t1], xa(s) = xq(to) = xp(to). Since z(s) € Uy, we obtain that x,(s) < zp(t). It is
absurd since z; is non-decreasing and hence it contradicts . So, there exists sg € [to, t1]

such that z(sg) € Uy, x is differentiable at sy and satisfies dx‘éi(tso) > 0. However, z is a
solution of that leads to the final contradiction. O

We now give the proof of Theorem [4.17, It is a direct consequence of [I4, Theorem 1]
recalled in Appendix A.3.
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(a) (b)

T4 Ty

Figure 8: (a): Representation of H. (b): Representation of F.

of Theorem[4.17. Let T > 0 be fixed. By Lemma and Theorem [A 2] we deduce that
for all o > 0 we have

€0 2eSF(T,a0) tefo,T

lim P ( inf sup] Y|t /e]) — x(t)] > 5) =0. (38)

We conclude by using similar arguments as in the proof of [I4, Theorem 4]. Since A€ is a
Poisson process with parameter 7/¢, we obtain that for all § > 0,

~~ T <.
t<T € € ')

t ) T
P (sup |A(t) — —T| > T> <= (39)
We have P (inf,es, (1,20) Super | X(t) — z(t)| > 6)

—P ( inf  sup |[YE(AS(H) — a(t)] > 5)

€S (szo) t<T

<P ( inf  sup {|Y€(A6(t)) o <€A;<t>> I+ o <€A;(t)) _ x(t)|} > 5) . (40)

2€Sp(T,x0) t<T

Let z € Sp(T,2°) be a solution of the differential inclusion (31)). For almost all ¢ € [0, 77,
we have dz(t)/dt € F(z(t)). Since sup,ey, sup{F(z)} < +w0, we deduce that there exists
Cr > 0 such that for all y € Sp(T,2°), for all s,t € [0,T], |y(t) — y(s)| < Cr|t — s|. We
deduce that is less than

P ( inf {Sup YE(AS(H)) — 2 (W) |} +Crsup Ay 5)

2eSp(Tx0) ( ¢t<T T

<P ( i sup [Y(A(H) — o (EAjt)) > 5) +P <CT sup A s 5)

zeSp(T)2%) t<T T

and we conclude by using and . O]
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5 Discussion

5.1 General discussion and comments

In the present article, we study the evolution of a population with a trait structure de-
scribing a simple class of life-histories. We build a stochastic individual-based model in
a framework that is continuous in time, age and trait. The trait is a pair of parameters
(xp, x4) characterising the age at end-of-reproduction z;, and the age at transition to a
non-zero mortality risk x4. The model sees two origins of phenotypic variation. First,
the genetic mutations that are supposed to be rare and modify the traits symmetrically -
equal probability to increase or decrease the value of the parameter. Second, we model the
Lansing effect which can be considered as an epigenetic mutation affecting the progeny
of an “old” individual. It is acting on a much faster time-scale - one generation - than
genetic mutations and has only a negative effect on the life expectancy of the progeny.
We highlight that we have chosen to model the Lansing effect by an extremely strong
effect on the descendant. Indeed, it acts on each generation and degrades dramatically
the life-expectancy of the progeny. Nevertheless, a more general and realistic study of
epigenetic modifications on the genetic evolution has to be investigate. Some aspects of
this question have been studied in [21]. The reasoning is based on the fact that epigenetic
modifications are more frequent than genetic mutations ([36]). It would be interesting to
extend adaptive dynamics tools in order to take into account epigenetics modifications
(involving intermediary time scales).

We study the long term evolution of the trait distribution using adaptive dynamics the-
ory. We extend the age-structured TSS to take into account the Lansing effect. The
main mathematical result of the present work concerns the behaviour of the T'SS when
mutations are small. We show in Theorem that the behaviour of the rescaled TSS in
the limit € — 0 is characterised by a differential inclusion whose solutions are not unique
on the diagonal H = {z;, = x4}. This differential inclusion allows to generalize the Canon-
ical Equation of Adaptive Dynamics [I1],[7] in order to consider the non-smooth fitness
gradient. The proof is based on [14]. Thanks to this approach, we show that the evolution
of our model, whatever its initial configuration, leads to the apparition and maintenance
of configurations (xy, x4) satisfying x, — x4 = 0.

To our knowledge, differential inclusions have never been used before in the adaptive dy-
namics theory. In [4], [7], [26], the fitness gradient is assumed to be a Lipschitz function,
which ensures the uniqueness of the solutions. Our approach seems useful for generalizing
the canonical equation to situations where the fitness gradient is neither Lipschitz nor
continuous.

The drift associated with the differential inclusion depends on the fitness gradient that
satisfies (see Proposition

(41)

oM@ (@ ATa)
Vie (1,2}, VYazel, VA(z)= ()

G(z)

where A(z) is the Malthusian parameter and G(z) the mean generation time associated
to the trait x. Hence the fitness gradient VA(z) describes the speed of evolution of the
trait . It can be related to the seminal work of Hamilton ([I7]) on the moulding of
senescence. In that article, Hamilton states that senescence is unavoidable because the
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strength of selection decreases with age. To show it, he defines the strength of selection
at some given age aq as the sensitivity of the Malthusian parameter with respect to some
little perturbation on the birth or death intensities at age ag. He concludes arguing that
these quantities decrease to zero as ag tends to infinity. Similarly, formula describes
the sensitivity of the Malthusian parameter with respect to some perturbation on the
duration of the reproduction or the survival phase at ages x;, and x4. Then, they can
be interpreted as the strength of selection at ages x;, and z,; and describe the speed of
evolution of the traits z; and x4 in the canonical inclusion .

To conclude, the present article studies a case of birth and death model with a strong
Lansing effect and constant competition applied to asexual and haploid individuals in
order to validate mathematically the convergence of x;, and x4 observed in the numerical
simulations. Further characterisation of this model is in progress, in order to better un-
derstand the influence of its different parameters on the evolution of (xy, z4).

Our initial motivation for developing the bd-model was an attempt to understand whether
a phenomenon leading to a dramatic decrease of an individual’s fitness could be selected
through evolution with simple and no explicitely constraining trade-offs. Indeed, in the
past years, Rera and collaborators have identified and characterised a dramatic transition
preceding death in drosophila ([33], [34]) as well as other organisms ([35], [9]). We show
here that, under uniform competition - i.e. environmental limitation equally affecting all
genotypes - a mechanism coupling the end of reproductive capabilities and organismal
homeostasis can and will be selected thanks to evolution. Thus, at least these two charac-
teristics of senescent organisms can positively be selected through evolution. Concerning
the biological interpretation of our model, our thesis is that individuals with a senescence
mechanism associated to the Lansing effect tend to produce more genetic variants than
those without senescence. Hence, these individuals could show a higher evolvability. This
question is being investigated in a work in progress.

Here we show the positive selection of a property that limits reproduction. It is reminis-
cent of the article by [41] who proposed a new selective mechanism for post-reproductive
life span. The latter relies on the hypothesis that the post-reproductive lifespan can be
selected as an insurance against indeterminacy; a longer life expectancy reducing the risk
of dying by chance before the cessation of reproductive activity. In the present article, the
maintenance of individuals showing Lansing effect is the counterpart of individuals with
post-reproductive survival. As discussed in [20], one of August Weismann’s concepts that
persisted without changes throughout his life is a conviction that “life is endowed with a
fixed duration, not because it is contrary to its nature to be unlimited, but because un-
limited existence of individuals would be a luxury without any corresponding advantage”
([44]). This is what we showed in the present work.

5.2 Generalizations of the model
5.2.1 Lower Lansing Effect

In this article, we model the Lansing effect by a very strong effect since we assume that
the descendants of old individuals with trait (x,, z4) inherits of the trait (zp,0). It could
be interesting to study a more general case like (3, ax,y) for some a € [0, 1].
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5.2.2 Mutation kernel

It would be interesting to consider two different mutation kernels ky(x, h) and k4(x, h)
for the traits x;, and x4. This change should not modify the behaviour of the process.
Indeed, on the sides off the diagonal (x}, # z4), only the speed of evolution of the traits
will be modified. Hence, the trait (x, x4) will converge to the diagonal and will evolve on
it at some speed depending on the variances of the kernels k, and k;. This case is being
studied in an ongoing work mentionned in Section [5.2.1]

A Appendix

A.1 Proof of Proposition 3.5

The proof is based on classical arguments of spectral theory for strongly continuous semi-
groups. Let us denote by (P;);=o the semi-group on L!(R, )? associated with the infinitesi-
mal generator (A, D(A)). Let us denote by o(A) and o.(A) the spectrum and the essential
spectrum of the operator A respectively. Let us denote by « [P;] the measure of non-
compactness of P; [42, Definition 4.14 p 165], and define wy(A) := lim;_,o t ! log(a [P]).
We show that there exists w > 0 such that

max | wy(A), sup Re(z) | <w < Ax). (42)
z€(a(A)N\oe(A)\{A ()}

By using arguments similar to [32, Section 1], we obtain that for all ¢ large enough
alP]<e™
and that
wy(A) = tlirg tlog(a[P]) < —1.

By [42 Proposition 4.13 p 170], we obtain that o.(A) < {z € C : Re(z) < —1}. Let
z € a(A)\o.(A). Then there exists a non-zero u € L'(R,,C)? such that

{u’(a) —D,(a)u = zu(a)

u(0) = §, Ba(a)u(a)da. (43)

By solving the first equation in and by injecting the result in the second equation,
we obtain that u(0) satisfies
u(0) = F(z)u(0) (44)

where

F(2) — fR @) (_ J "(Du(a) + zI)da> da. (45)

0

Equation (44 admits a non-trivial solution «(0) if and only if det [F(z) — I] = 0. Since
the matrix F(z) is triangular we have

det [F(2) — 1] = ([F(2)];; = D([F(2)]p, = 1) (46)
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where [F(2)],, = """ e **da and [F(2)],, = §;* e 1"®*da. We deduce that the Malthu-
sian parameter A(z) is the largest real solution of det [F(z) —I] = 0. By using similar
analytical arguments as in the proof of [42, Theorem 4.10], we deduce that there exists
only finitely many z € C such that Re(z) > 0 and det [F(z) — I] = 0 which allows us to
conclude for (42]). We prove that \(x) is a simple eigenvalue of A by showing that A(z)
is a simple zero of the equation det [F(z) — I] = 0. Indeed we have

ddet [F(\(x)) =T] _ d[F(A(@)]y,
dX - o (FQA@))y, —1) > 0.

Let N, be a principal eigenvector associated with the eigenvalue A(x). By 7 we have
N;(a) = ]\/';l(O)e—((a—acd)\/0)—>\(0[:)a7 Ng(a) _ Ng(O)e_(H’\(I))“

and Equation gives that

2 [F(A(w))]m 1
Nel) = T 2 E e, O

We conclude for the convergence by using arguments similar to proof of [42, Theorem 4.9
p187].

A.2 Proof of Lemma [3.6

Proof. Equation has the form du/dt = f(¢,u) with f(¢t,u) — g(u) as t — 0. So (11)
is called an asymptotically autonomous differential equation ([24], [37]) with the limit
equation

dy(t)

= My®) —nly@)y@). (47)

We first show that any solution y(t) of started at y(0) € R} x Ry converges to a
stationary state. In [I], the proof is given when M is irreducible. We give a slightly
different proof. Let Z be defined in (12)). It is straightforward to prove that Z is the
eigenvector of M associated with the simple eigenvalue my;, which satisfy the condition
|Z|1 = ma1/n. Since z(0) € RY x R, there exists a positive constant ¢(z(0)) such that

emuteMiz(0) — ¢(2(0))z as t — 0. We now write

n(t) _ [emey0)], =z

ya(t)  [emmuteMiy(0)], 7o

We deduce that the w-limit set of any solution of is a subset of A = {z e R? : 2 =
%22}. We conclude by proving that any solution starting from A converges to Z. Let us
consider such a solution (always denoted by y(t)). We have

W g, @) — ) ).

dy;t(t) = ys(1) (7"121;28 + Moy — 77|y(t)]1) :
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Since the w-limit set is an invariant subset, we deduce that

dya(t)
dt

= y2(t) (mu =y (@)]),

that |y(t)|1 — mi1/n and y(t) — Z as t — o0. In order to conclude about the solutions
of we use [37, Theorem 1.2 arguing that Zz is an asymptotically stable equilibrium
of and that for any y(0) € RY, the w-limit set of any solution y(t) of started
at y(0) is not a subset of {0} x R,. The first claim is easily proved by showing that the
Jacobian matrix has negative eigenvalues. For the second claim, let us assume it is not
satisfied. Then y;(t) — 0 as t — o0. Let us show the contradiction. Let € be sufficiently
small and ty such that for any ¢ > ¢,

11 + €

< m
m22—€<m22+D22(t)<m22+6<0
< sm

We introduce

P (y1,92) = y1(ma1 — e —n(y1 + y2))
Q(y1,y2) = y2(mao + € — (v + y2)) + (M12 + €)1

and
A°={y e R}y +y2 < myy — €}

Bez{yeRi:m}

1

% <m22 e —1y1 + A/ (mas + € = ny1)? + dn(miz + 6)@/1) } :
We deduce that there exists ¢; such that for any t > ¢4, dy%p < 0 on B¢ and y;(t) < e.
We deduce that there exists t3 such that for all ¢ = &3, y1(t) + 12(t) < #4==. So for all

t >ty dy(jt(t) > 0 which is absurd. O

A.3 Differential inclusions

In this appendix, we recall the results of [I4] which concern the approximation of Markov
chains by differential inclusions.

Let € > 0 be a scale parameter. Let (Y¢(k), k € N) be a Markov chain with values in R%.
The drift of the Markov chain Y is defined by

9°(x) = E[Y(k+1) - Y(K)[Y(k) = 2].
Let (79)es0 be such that lim. o~y = 0 and let us denote
9°(x)
fyf

One can write the evolution of the Markov chain as a stochastic approximation algorithm
with constant step size ~¢

f(x) =

Y(k+1) =Y(k)+~y(f(Y(k)+U(k+1))
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where U€ is a martingale difference sequence with respect to the filtration associated with
the process Y°.
Let us define

F(z) = conv ({accﬁofe(me) for all ¢ such that limz = x})

€E—>

where conv(A) denotes the convex hull of the set A and acce_,of(z¢) denotes the set of
accumulation points of the sequence f€(x€) as ¢ — 0. Let us denote by Sp(T',2°) the set
of solutions (z(t),t € [0,T]) of the differential inclusion

{dfl@ e F(z(t)), tel0,T]
z(0) = 2°.

(48)

Let us recall the definition of a solution of .

Definition A.1. A map = : [0,T] — R? is a solution of (@ if there exists a map
¢ : [0,T] — R? such that:

(i) For allt e [0,T], (t) = 2° + §; ¢(s)ds,
(ii) For almost every t € [0,T], p(t) € F(x(t)).

In particular (i) is equivalent to saying that x is absolutely continuous. (i) and (ii)
imply that x is differentiable at almost every t € [0, T'] with dz(t)/dt € F(z(t)).

We define the continuous process Y (t) as the piecewise interpolation of Y whose
time has been accelerated by 1/4¢: for all k € N, Y (ky¢) = Y(k) and Y is linear on
[k7¢, (k + 1)7¢]. We have the following theorem proved in [I4, Theorem 1].

Theorem A.2. Assume that:
e There exists a constant ¢ > 0 such that for all y € R, | fe(y)|| < c(1 + |y]).
e U° is a martingale difference sequence which is uniformly integrable.

If Y(0) tends to 2° in probability as € tends to zero, then

inf sup |[Y(t) —x2(®)]| — 0
s o) te[o};] 1Y (t) — x(t)]

in probability as € tends to zero.

A.4 Numerical simulation

We give the Python script for the numerical simulations of the individual based model
described in Section 2. The algorithm is based on a classical acceptation/reject method

([6], [38])
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#parameters

#intensity of competition
competition = 0.0005

#probability of mutation
p_mut = 0.05

#variance of mutations
var _mut = 0.05

#number of jumps
number_ of jumps = 1000000

#initial population size
population_size = 10000

#traits in the initial population

trait = numpy.ones ((population size, 2))
for k in range(len(trait[:, 0])):
trait [k, :] = [1.2, 1.6]

#initial matrix population: [x b,x d, living/dead, birth date, death date, id, id parent,
parent senescent ]

population 0 = numpy.zeros ((len(trait[:, 0]), 8), order="C’, dtype=numpy. float32)
population_0[:, 0:2] = trait
population 0[:, 2] =1
population_0[:, 3: 5] =0
for 1 in range(len(population 0[:, 0])):
population_0[1, 5] = 1+1

#birth rates

def b(x, a):
if a <=x[0]:
u=1
else:
u 0.0
return u
#death rates
def d(x, a):
if a > x[1]:
u=1
else:
u 0.0

return u

# maximal jump intensity by individual (for the acceptation/reject method)

intmax = 2.0 4+ competition

#Lansing effect

def lansing effect(x, u):
if x[1] > O:
if u<x[1]:
r = x
else:
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else:
r =X
return r

#mutation kernel

def dm(x):
g = random. gauss (0, var_mut)
while x + g < 0:
g = random. gauss (0, var_mut)

return x + g

#functions for acceptation/reject method

def acceptation_rejet_clone(t, a, n):
return b(t, a)x*(1—(p_mutsp_mut+2+p_mut+(l—p_mut)))/(intmax=n)

def acceptation_rejet__mutant_1(t, a, n):
return acceptation_ rejet clone(t, a, n)+(b(t, a)=*2xp mut*(1—p_mut)) /(intmax=*n)

def acceptation_rejet_mutant_2(t, a, n):
return acceptation_rejet_mutant_1(t, a, n) + (b(t, a)xp_mut*p mut)/(intmaxxn)

def acceptation_ rejet_mort(t, a, n):

return acceptation_rejet_mutant_2(t, a, n) + (d(t, a) + (n—1)*xintensite__competition)
/(intmax*n)

#transition of the process: it is based on a classical acceptation/reject method
def transition(p, time):
#initialisation for acceptation/reject method

#living individuals
viv = pl(pl:, 2] = 1), i

#population size
n = len(viv([:, 0])

#jump time
jump_time = random.expovariate (1) /(intmax*n*n)

#uniform law on (0,1)
u = random. uniform (0, 1)

#random sampling of one individual
ind = random.randint (0, n—1)
w = time — viv[ind, 3] + jump_time #age of this individual

#acceptation/reject method

while u > acceptation rejet_mort(viv[ind, :2], w, n):
jump_time += (random.expovariate (1) /(intmax*n=n))
u = random. uniform (0, 1)
ind = random.randint (0, n—1)
w = time — viv[ind, 3] + jump_time

#when accepted

s = viv[ind, :]

al = acceptation_ rejet clone(s[:2], w, n)

a2 = acceptation_rejet_mutant_1(s[:2], w, n)
a3 = acceptation rejet mutant 2(s[:2], w, n)
a =20
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if w> s[1]:
a =1

#Lansing effect
s[:2] = lansing_effect(s[:2], w)

#if clonal birth
if u<= al:
cl = [1, time 4+ jump_ time, 0.0, p[—1, 5]+1, s[5], a]
p = numpy.vstack ((p, numpy.append (numpy.array (s[:2]), numpy.array (cl))))

#if birth with mutation (1 trait)
elif al < u <= a2:
x1 = int (numpy.random.randint (1, 3, 1))
21 = [[dm(s[0]), s[1]], [s]0], dm(s[1])]]
c2 = [1, time + jump_time, 0.0, p[—1, 5]+1, s[5], a]
p = numpy.vstack ((p, numpy.append (numpy.array (z1[x1—1]), numpy.array(c2))))

#if birth with mutation (2 traits)
elif a2 < u <= a3:
¢3 = [1, time + jump_ time, 0.0, p[—1, 5]+1, s[5], a
p = numpy. vstack ((p, numpy.append (numpy.array ([dm(s[0]), dm(s[1])]), numpy.array (
¢3))))

#if death
else:
0

H 5} B
= = time 4 jump_ time

NN
NN
(Il

time += jump_ time

return p, time

#for simulating one trajectory of the process of number_of jumps jumps

def trajectoire (p):
population_size = sum(p[:, 2]) time = 0
for cs in range (0, number_of jumps):
if population_size >= 1:
x = transition (p, time)
p = x[0]
time = x[1]
population size = sum(p[:, 2])
print cs
else:
break
pl(pli, 4] — 0), 4] = time
return p, time
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