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Abstract. This paper reports the design, fabrication, and testing of a centimeter-scale 

(Ørotor=35mm), 250°C-compliant microturbine for aeronautic applications. Dedicated to low-

speed air flows (≈3 m/s and down to 2 m/s), this device is the first flow-driven harvester 

withstanding such high temperatures and high vibration levels (107 cycles at 20G). Furthermore, 

the proposed harvester exhibits the highest output power per unit cross sectional area compared 

to prior art in the cm-scale and low velocity ranges. 

1.  Introduction 

Among small-scale ambient energy sources (light, thermal gradients, vibrations, strains and shocks), 

airflow energy harvesting has revealed a great innovation potential and particularly at small-scale. 

Particularly in environments where light or thermal powers are insufficient, this source of power can be 

relevant to supply Wireless Sensors Nodes (WSN). Moreover, airflow energy harvesting can be a 

reliable source of power as it mainly depends on the fluid velocity amplitude contrary to vibration 

harvesters which are also frequency-dependents. Even if airflow energy harvesters exploiting aeroelastic 

flutter phenomena [1] can be an alternative to lift-based rotors, horizontal axis propellers show better 

aerodynamic efficiencies (Cp above a few percent) and very low cut-in speeds (vstart below a few m/s). 

Furthermore, the classical electromagnetic conversion has been chosen here for its interesting power 

density above a few cubic centimeters. In recent years, many works have been proposed on the 

miniaturization of classical wind turbines, from 2cm to 6cm rotor diameters [2–4] but most of them 

show poor performances at low-speed air flows and/or exhibit large cross-sectional areas. Our work 

aims to compete with previous electromagnetic-based microturbines whose cross-sectional areas are 

below 30cm2 (Ø<6cm) while addressing harsh operational environments. 

Our harvester has been designed to supply a wireless sensor system interfacing with aeronautic-grade 

pressure/strain transducers [5]. Thus, in order to withstand severe aeronautic environment constraints 

such as high temperature values and vibrations amplitudes, particular materials and specific design rules 

have been used. Design, fabrication, performances measurements and ageing tests of the device are 

summarized in the following sections. 
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2.  Design and fabrication 

Our prototype (figure 1) is a horizontal axis wind turbine coupled to a coreless permanent magnet 

generator which converts mechanical rotations into electricity. Indeed, coreless alternators are 

particularly suitable when targeting low cut-in speeds as they do not suffer from cogging torque. 

 The device is composed of several mechanical parts screwed and/or glued together as depicted in 

figure 1 and figure 2. The coreless alternator (figure 2.a) includes a machined shaft (Aluminum), a 250°C 

tolerant copper wire wrapped around two casings slotted together and a drilled cylindrical magnet with 

radial orientation glued to the shaft. The magnet is made of SmCo (Curie temperature: 800°C). Two 

micro ceramics bearings allow the magnet and the shaft to rotate inside the alternator's casings. A 35mm 

diameter three-blade propeller (figure 2.b) is screwed to the shaft and converts the kinetic power of the 

air into rotation. A carter, made of two parts screwed together (figure 2.c) embeds the alternator and 

protects the propeller from unexpected shocks which may occur during the installation. The propeller, 

the alternator’s casing and the carter have been machined in a high-performance polyimide-based plastic 

(Vespel®) withstanding a maximum continuous operating temperature of 260°C. A picture of the final 

assembled prototype is given in figure 2.d.  

The propeller has been optimized thanks to an empirical study performed on several propeller designs 

and based on the Schmitz’s theory. Various pitch angles, chord lengths and blade profiles have been 

tested. This empirical study, which cannot be covered in this paper, led us to choose a flat, 700µm (tip) 

to 1mm (noze) thick, 3-blade propeller and whose projected area is around 70% of the entire flow 

section. Each blade keeps a constant pitch angle of 25° and its chord varies linearly with the radius. This 

design was found to be the best compromise between performance (high power, low cut-in speed), 

mechanical robustness and ease of manufacturing (machining). It is worth mentioning that the carter 

surrounding the propeller has a significant impact on the propeller performances, more than the propeller 

design itself. 

Thanks to finite element simulations, the Von Mises stress of all parts (propeller alone and assembled 

device) at 20G have been kept below 20MPa for all their resonant frequencies in the x, y and z directions. 

Furthermore, several design iterations led us to thicken the arms' casing and their fillets and to increase 

the number of arms (from 3 to 4) to reject the resonant frequencies as much as possible above the [0-

2kHz] band at 250°C. These choices slightly disadvantage the device performances but they allow its 

operation in harsh aeronautic environment.  

3.   Power performances and ageing tests in temperature 

In a dedicated low speed wind tunnel, 50 resistive loads [5Ω to 10 MΩ] were successively connected to 

the generator at constant wind velocity. The RMS output voltages were measured to compute the AC 

 

 

 

Figure 1. Cross-sectional view of the proposed 

harvester and its overall dimensions 

 Figure 2. a) to c) main parts of an unassembled 

harvester and d) photograph of the final 

harvester 
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electrical power (Vrms
2/Rload). The rotation frequency of the harvester is also measured. It enables to plot 

the output power vs the Tip Speed Ratio (TSR), shown in figure 4. The TSR corresponds to the ratio 

between the tangential speed of the blade tip and the actual speed of the wind. Four harvesters have been 

assembled and characterized at room temperature in a wind tunnel at various wind velocities (2 to 4 m/s) 

and up to 10 m/s. Their performances in the low speed range are plotted in figure 5. The harvester has a 

cut-in speed of 2.5m/s and outputs 350µW @ 2 m/s and up to 4.5mW @ 4 m/s at maximum power 

points (figure 4 and 5). 

After fabrication, accelerated ageing tests in the x, y and z directions have been carried out in a 

vibration chamber (figure 3) during 107 cycles at 20G / 250°C on each resonant frequencies in the [0-

2kHz] band. Ageing tests at 180°C (200 hours) and 250°C (4 hours) have been performed with an air-

jet actuating the propeller inside the climatic chamber, showing a permanent power decrease of about 

8% at 180°C and 34% at 250°C and validating its good operation in harsh environments.  

 

 
 

Figure 3. Photograph of the harvester under 

tests in the vibration chamber (x direction) 

Figure 4. Electrical power as a function of the Tip 

Speed Ratio (Harvester n° 1) for various air speeds at 

room temperature 

 

Figure 5. Electrical output power 

measurements of the 4 harvesters at 

maximum power point vs air speed at 

room temperature 

 

 

 

4.  Comparison to the state of art 

Figure 6 shows the power density, i.e the maximum electrical power per unit cross sectional area of the 

harvester as a function of the air speed. It should be clarified that the two lower velocity values (vair = 2 

and 2.25 m/s) have been measured after launching the propeller at 2,5 m/s (cut-in speed). Its cut-off 

speed is around 1,9 m/s. A suggested improvement could be the downsizing of the generator to reduce 

the influence of the rotor’s inertia and the Earth’s magnetic field on the cut-in speed of the device. 

Regarding the power density, our harvester exhibits the highest performances compared to prior art 

[2–4,6,7] in the cm-scale (Ø<6cm) and low velocity (vair<5 m/s) ranges. This is moreover the first one 

to be compatible with harsh aeronautic environments, that is to say high temperature (250°C) and high 

accelerations (20G). 
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Figure 6. Performance comparison for air flow harvesters reported in the literature 

5.  Conclusion 

This paper presents a cm-scale (Ø=35mm), low wind velocity (down to 2m/s) and 250°C compliant 

airflow-driven harvester dedicated to aeronautic applications. It is based on a horizontal axis propeller 

coupled to a permanent magnet (magnet – air coil) converter. Its compliance to harsh environments was 

achieved by the use of dedicated materials (Vespel®, SmCo), thermal/vibration analysis thanks to FEM 

modelling and specific tests in vibration chamber. In this dimension and flow velocity range, our 

harvester exhibits the highest performances compared to prior art while withstanding high temperature 

and high acceleration. It also provides a practical solution to harvest power from low-speed air flows in 

highly constrained environments where batteries cannot operate, as well as more conventional 

applications like inside buildings equipped with ventilation (HVAC). 
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