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aLaboratoire de mécanique des solides, CNRS, Institut Polytechnique de Paris, France
bSchool of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA

Abstract

This paper addresses localization of the deformation due to buckling that occurs immediately following
the onset of bifurcation in the axisymmetric buckling of a perfect spherical elastic shell subject to external
pressure. The localization process is so abrupt that the buckling mode of the classical eigenvalue analysis,
which undulates over the entire shell, becomes modified immediately after bifurcation transitioning to an
isolated dimple surrounded by an unbuckled expanse of the shell. The paper begins by revisiting earlier
attempts to analyze the initial post-buckling behavior of the spherical shell, illustrating their severely limited
range of validity. The unsuccessful attempts are followed by an approximate Rayleigh-Ritz solution which
captures the essence of the localization process. The approximate solution reveals the pathway that begins
at bifurcation from the classical mode shape to the localized dimple buckle. The second part of the paper
presents an exact asymptotic expansion of the initial post-buckling behavior which accounts for localization
and which further exposes the analytic details of the abruptness of the transition.

Keywords: A. Buckling, B. Shells and membranes, C. Stability and bifurcation, C. Asymptotic analysis

1. Introduction

Mechanical localization phenomena are more common than is generally appreciated. Necking in a long
bar or rod subject to tensile stretching is perhaps the best known example. Prior to the onset of necking
relatively uniform straining occurs along the entire length of the bar, but once necking sets in the additional
deformation localizes in the neck which typically has a length on the order of the bar diameter. Pipes,
tubes and straws subject to overall bending distribute the curvature along their length until suddenly the
additional curvature changes localize at one section whose length is again on the order of the diameter of the
member. This paper addresses buckling localization in shells, specifically in elastic spherical shells subject
to external pressure. Our primary aim is to expose the abrupt transition from a buckling mode that is
distributed over the entire shell at the onset of buckling to a buckling mode that is a localized dimple in a
small region of the shell and unbuckled outside that region.

There are two features common to nearly all mechanical localization phenomena: a competition between
two well separated deformation scales, an overall scale and a local scale, and a diminishing load carrying
capacity attained at some stage with increasing deformation at the overall scale. For necking of the long
tensile bar, the two scales are the length and the diameter of the bar. The second feature is met for most
metals and some polymers because a bar of these materials displays a maximum load followed by decreasing
load under uniaxial tension. For long cylindrical shells undergoing elastic bending, the two scales are again
the length and the diameter. These structural entities display a maximum moment in overall bending
followed by decreasing moment, either due to cross-sectional ovalization or to a short wavelength buckling
mode on the compressive side of the shell. In spherical shell buckling of interest here, the two scales are
the characteristic wavelength of the buckling mode, which is on the order of

√
Rt with R as the shell radius

and t as its thickness, and the size of the shell itself, of order R. The second feature making spherical
shell buckling susceptible to localization is the drop in pressure carrying capacity which coincides with
the onset of buckling. In each of these cases, a physical argument applies analogous to that put forward
by Considère (1885) to explain necking localization in a long bar stretched in tension. Namely, a slight
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imperfection somewhere along the bar causes the maximum load to be attained at that location and, then,
with continuing deformation at that location, the load falls at the other locations along the bar because
the maximum load is never reached in those locations. Outside the neck the bar unloads. Tvergaard and
Needleman (1980) have interpreted the corresponding scenario for bending localization in cylindrical tubes
and shells along the lines laid out by Considère, while the book by Kyriakides and Corona (2007) reports
both numerical studies and an extensive series of experiments on bending localization in pipelines.

The importance of localization in the elastic buckling of cylindrical shells subject to axial compression
has recently emerged in the published work of Horák et al. (2006); Kreilos and Schneider (2017); Groh and
Pirrera (2019). Localization in cylindrical shells has features in common with that in the spherical shell,
however, cylindrical shell buckling is inherently two dimensional involving variations in both the axial and
circumferential directions. As a consequence the behavior of the cylinder is governed by partial differential
equations and the analyses noted above have been numerical. For the perfect elastic cylindrical shell under
axial compression, stable localized dimple-like buckles have been shown to exist at loads above those the shell
can support for more widely distributed buckle patterns suggesting that cylindrical shells with a sufficiently
low level of imperfection may be capable of carrying higher loads that the design codes currently allow. An
attractive feature of spherical shells is that an important set of buckling localizations can be studied for
shells undergoing axisymmetric deformation such that the behavior is governed by ordinary, not partial,
differential equations. This, in turn, increases the possibility of obtaining insight from analytical solution
methods of various kinds, as well enabling simpler numerical methods. In this paper we will exploit both
analytical and numerical methods to expose the nature of localization in the elastic buckling of a perfect
spherical shell subject to uniform external pressure.

1.1. Background preliminaries to localization in spherical shells

As background to the present study, we begin by citing basic results for the classical elastic buckling
of a thin, perfect spherical shell subject to external pressure. The axisymmetric response of the spherical
shell fully captures the localization phenomena of interest here, and throughout this paper attention will be
restricted to axisymmetric behavior. Let β be the meridian angle measured from the upper pole of the shell.
With p as the external pressure acting on the shell and w(β) as the outward normal deflection of the shell
middle surface, the classical buckling, or bifurcation, pressure and the associated buckling eigenmode are

pc =
2Et2√

3(1− ν2)R2
and w1(β) ∝ Pn(cosβ). (1.1)

Here, E is Young’s modulus and ν is Poisson’s ratio, Pn(x) is the Legendre polynomial of degree n, and n is
the integer most closely satisfying n(n+ 1) =

√
12(1− ν2)Rt . The magnitude of the classical buckling mode

is largest at the poles but the mode extends over the entire shell with a wavelength proportional to
√
Rt.

A collage of some of the details of the localization process in the buckling of an elastic spherical shell under
external pressure is presented in Fig. 1. These results have been computed in the same manner employed in
Hutchinson (2016) using an accurate numerical algorithm for solving nonlinear ordinary differential equa-
tions. The normal buckling displacement is defined throughout as ∆w(β) = w(β) − w0 where w0 is the
uniform displacement of the unbuckled shell due to p:

w0 = − (1− ν)pR2

2Et
. (1.2)

The buckling displacement at the pole δ is defined positive inward such that δ = −∆w(0).
The plot in Fig. 1(b) shows the drop in the pressure as the shell buckles, and this dimensionless curve

becomes independent of R/t and ν after localization has set in for thin shells with R/t > 50. The classical
mode is evident in the buckling deflection in the top middle plot with undulations spread over the entire
shell but already at this very small buckling deflection localization has begun, as will emerge more clearly
in the sequel. When the pressure has dropped to about p/pc = 0.9 and the pole buckling deflection is
about 0.3 times the shell thickness, buckling is fully localized in the form of a dimple at the pole, as seen
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(a)
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Figure 1: The progression of buckling localization in a perfect full spherical shell undergoing axisymmetric deformation that
is symmetric with respect to equator. (a) Geometry of the spherical shell. (b) Normalized pressure, p/pc, versus the dimen-
sionless buckling deflection at the pole,

√
1− ν2δ/t. (c) Dimensionless normal buckling displacement,

√
1− ν2∆w/t, as a

function of β at three values of p/pc labeled A, B and C immediately following the onset of buckling. (d) Distribution of
the dimensionless elastic strain energy/area, UR2/D, at the same three values of p/pc. These dimensionless results have been
computed numerically for a shell with R/t = 103.5 and ν = 0.3 (n = 18), however the dimensionless results for p/pc versus√

1− ν2δ/t become independent of R/t and ν after localization occurs.

in the bottom middle plot. Not only is localization fully established long before the dimple at the pole has
‘inverted’, which occurs at δ ≈ 10t (Hutchinson and Thompson, 2017), but it is even fully established well
before the local curvature at the pole becomes flat, which occurs when δ ≈ t. Asymptotic formulas valid
for deflections greater than about one shell thickness have been derived by Evkin et al. (2016) for dimple
buckling. Very recently, Baumgarten and Kierfeld (2019) have also obtained a complete set of asymptotic
results in the weakly post-buckled regime where localization is present, i.e., up to δ ≈ t/10. Their approach
allows them to obtain directly the deflection at the pole without calculating the solution in the full domain,
and they do not address localization per se. The realization that localized dimple buckles existed in spherical
shells without an understanding of how they relate to the classical buckling mode dates back to some of the
earliest studies with von Kármán and Tsien (1939) citing experimental observations, the numerical solutions
for buckled deep spherical caps of Bushnell (1965), and the early numerical axisymmetric solutions for full
spherical shells of Bauer et al. (1970).

The abruptness of this localization process will be investigated here. This study will shed light on the
difficulty encountered by earlier attempts such as those of Thompson (1964) and Koiter (1969) to analyze
the post-buckling behavior of the spherical shell using expansion methods that employ the classical buckling
mode as the dominant contribution to the deflection. Included in Fig. 1(d) are plots of the distribution
of the strain energy per area U in the shell at the same three post-buckling states in dimensionless form
UR2/D where D = Et3/[12(1− ν2)] is the bending stiffness. Immediately following bifurcation undulations
reflecting the classical mode are evident, but as localization progresses the energy density becomes uniformly
distributed away from the pole and equal to that of the uniform unbuckled solution.

The organization of the paper is as follows. The equations employed to model the shell are listed at
the end of this introduction. Results of two initial post-buckling expansions of the type promulgated by
Koiter (1945, 1969) are presented in Section 2. These highlight the limited range of validity of the Koiter
expansions for spherical shell buckling. An approximate Rayleigh-Ritz solution which captures localization
is presented in Section 3 providing an approximate solution with a much larger range of validity. The last
section of the paper present an exact (asymptotic) expansion which reveals analytically the progression of
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Figure 2: Geometry of a shallow shell.

the localization process immediately following the onset of buckling.

1.2. The shallow shell model

Analytically it is easier to deal with the equations of shallow shell theory for the spherical shell as
opposed to the equations of moderate rotation theory for the full shell. Moreover, the essential features of
buckling localization for the spherical shell under external pressure are fully revealed by shallow shell theory
for spherical caps with sufficient height because continuing deformation localizes to the vicinity of the pole.
This is the model which will be analyzed in this paper. Once localization occurs the solution predicted using
shallow shell theory coincides to high accuracy with that of moderate rotation theory for the full spherical
shell (Hutchinson and Thompson, 2017). The range of pressures for which the shallow shell and the full
shell models agree will be specified in the discussion (§5).

Let s be the meridional distance along the middle surface of the spherical cap and let u(s) and w(s) be
the tangential and outward normal displacements of the middle surface, as sketched in Fig. 2. The stretching
and bending strains in shallow shell theory for a perfect spherical cap deforming axisymmetrically are

Eθ =
du

ds
+
w

R
+

1

2

(
dw

ds

)2

(1.3)

Eω =
u

s
+
w

R
(1.4)

Kθ = −d2w

ds2 (1.5)

Kω = −1

s

dw

ds
. (1.6)

The work conjugate resultant in-plane stresses and bending moments are

(Nθ, Nw) = Et
1−ν2 (Eθ + νEω, Eω + νEθ)

(Mθ,Mw) = D(Kθ + νKω,Kω + νKθ).
(1.7)

The principle of virtual work (with p positive inward) is∫ s0

0

{MθδKθ +MωδKω +NθδEθ +NωδEω + pδw}sds = 0, (1.8)

where s0 is the distance from the pole to the edge of the shell. The boundary conditions introduced below
produce no work on the shell edge.

4



1.3. Dimensionless shallow shell equations

The dimensionless forms of these equations used in the analysis make use of scaled variables that are
denoted without an over-bar,

s = (12(1−ν2))1/4√
Rt

s

w = (12(1−ν2))1/2

t w

u = (12(1−ν2))3/4

(1+ν)t

√
R
t u

(Eθ, Ew) = (12(1− ν2))1/2R
t (Eθ, Ew)

(Kθ,Kw) = R(Kθ,Kw)
(Nθ, Nw) = (12(1− ν2))1/2 R

Et2 (Nθ, Nw)
(Mθ,Mw) = 12(1− ν2) R

Et3 (Mθ,Mw)

p = (12(1− ν2))1/2 R2

Et2 p

(1.9)

We consider a thin shell, in the sense that the wavelength ∼
√
Rt of the initial buckling mode is much

smaller than the shell’s dimension s0: s0 �
√
Rt. This implies that the scaled radius is a large number,

s0 � 1. (1.10)

The existence of a large number in the problem is at the heart of the asymptotic method capturing the onset
of localization, as presented in Section 4.

In terms of the scaled variables, the stretching and bending strains write

Eθ = (1 + ν)u′ + w + 1
2w
′2

Eω = (1 + ν)us + w
Kθ = −w′′
Kω = −w

′

s ,

(1.11)

with primes denoting differentiation with respect to the scaled arc-length, (·)′ = d(·)/ds. The constitutive
law take the scaled form

(Nθ, Nw) = 1
1−ν2 (Eθ + νEω, Eω + νEθ)

(Mθ,Mw) = (Kθ + νKω,Kω + νKθ),
(1.12)

and the principle of virtual work becomes∫ s0

0

{MθδKθ +MωδKω +NθδEθ +NωδEω + pδw}sds = 0. (1.13)

With this choice of variables, the only parameters are s0 and ν plus the dimensionless pressure p.
The equilibrium equations generated by (1.13) are

1

s
(sMθ)

′′ − 1

s
M ′ω − (Nθ +Nω) +

1

s
(sNθw

′)′ − p = 0 (1.14a)

(sNθ)
′ −Nω = 0. (1.14b)

The boundary conditions for the spherical cap require that the solution is well behaved at the pole. At both
the pole (s = 0) and the edge (s = s0) the displacements satisfy

u = 0 w′ = 0

(
1

s
(sw′)′

)′
= 0, (1.15)

where the last condition follows from (sMθ)
′ −Mω = 0 which ensures there is no concentrated force at the

pole and no force per unit edge length. The uniform solution of the unbuckled shell (u0, w0) satisfies the
field equations and these boundary conditions with u0(s) = 0 and w0(s) given by (1.2).
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The in-plane equilibrium equation (1.14b) is automatically satisfied by stresses generated by a stress
function, f(s), with

Nθ =
1

s
f Nω = f ′. (1.16)

Compatibility of the in-plane strains requires(
1

s
(sf)′

)′
= w′ − 1

s

w′2

2
. (1.17)

2. Koiter’s initial post-buckling expansions

In this section, we present Koiter’s initial post-buckling expansion, both in the standard and extended
forms, for the shell model presented in Section 1.3, namely shallow spherical shells under external pressure
undergoing axisymmetric deformations. Note that a translation of the Koiter’s disseration is available in
English (Riks, 1970).

2.1. Elimination of tangent displacement

In dimensionless form, the uniform, unbuckled solution for a perfect shell with the boundary conditions
specified in (1.15) is

w0(s) = −(1− ν)
p

2
u0(s) = 0 f0(s) = −ps

2
. (2.1)

Denote a buckled solution by

w(s) = w0(s) + w̃(s) u(s) = u0(s) + ũ(s) f(s) = f0(s) + f̃(s) (2.2)

The form of the system energy given next, which is expressed in terms of w̃ alone, is particularly useful in
carrying out the Koiter expansions and the approximate localization analysis to follow. In the Supplementary
Materials, we show that the change in energy of the system from the uniform unbuckled state at prescribed
p can be expressed as

Φ(w̃, p) =

∫ s0

0

{
1

2

(
(∇2w̃)2 + w̃2 − p

2
w̃′2
)

+ w̃G2(w̃, s) +
1

2
[G2(w̃, s)]2

}
sds (2.3)

where G2(w̃, s) =
∫ s0
s

(2x)−1w̃′2(x)dx and ∇2w̃ = s−1(sw̃′)′ as the Laplacian associated with the metric∫
·sds. The energy change comprises contributions that are quadratic, cubic and quartic in w̃. Contributions

that depend on Poisson’s ratio have either been absorbed into the dimensionless quantities or integrated to
zero for the boundary condition under consideration. With p as the prescribed pressure, the only parameter
in the energy functional is s0. The geometric boundary conditions on w̃ require that w̃′ = 0 at s = 0 and
s = s0. These are coupled with the natural boundary conditions requiring (s−1(sw̃′)′)′ = 0 at ends of the
interval, see equation (1.15).

The stress function f̃ , which is now auxiliary, is given in terms of w̃ by

f̃(s) = −1

s

∫ s0

s

(w̃(x) +G2(w̃, x))xdx (2.4)

The Euler equation characterizing the buckled states is generated by δΦ = 0 for all admissible δw̃ and is
given by

∇4w̃ + w̃ +
p

2
∇2w̃ = −G2(w̃, s) +

1

s
(f̃ w̃′)′. (2.5)

where ∇4w̃ = ∇2(∇2w̃) and f̃ is given in terms of w̃ by (2.4).
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2.2. The classical buckling mode and pressure

The differential equation for the eigenvalue problem governing the classical buckle problem is given
by (2.5) linearized with respect to w̃:

∇4w1 + w1 +
p

2
∇2w1 = 0 with w′1 = (s−1(sw′1)′)′ = 0 for s = 0, s0. (2.6)

The eigenmodes have the form w1(s) = −J0(µs) where µ is any root of J1(µs0) = 0, with J0 and J1 as
Bessel functions of zeroth and first order. The eigenvalue associated with µ is p = 2(µ2 + µ−2). For r ≥ 0,
denote the ith zero of J1(r) = 0, ordered in increasing magnitude, by ri, i = 0, . . . ,∞ (including µ0 = 0 as
the first root). One sees immediately, that for any s0 equal to one of these positive roots, say s0 = rN , the
minimum eigenvalue, i.e., the classical buckling pressure pc, is given by

pc = 4 (2.7)

with µN = 1. The buckling mode is the eigenmode, w1(s) = −J0(s), and the associated stress function is
f1(s) = −J1(s). Values of s0 that are not equal to one of the roots ri will have a higher minimum eigenvalue,
but for the shells of interest in this study, the dimensionless base radius s0 is large, see equation (1.10) so
that the dimensionless classical buckling pressure is always either 4 or just slightly above.

Without any loss in physical insight, we will focus attention in Sections 2 and 3 on shells with base radius
equal to one of the roots, s0 = rN , where N is large compared to 1.

2.3. Koiter’s initial post-buckling expansion

Koiter’s ‘standard’ method develops an expansion about the bifurcation point in the form

w̃(s) = ξw1(s) + ξ2w2(s) + ξ3w3(s) + · · · p

pc
= 1 + aξ + bξ2 + · · · , (2.8)

with the auxiliary expansion, f̃(s) = ξf1(s) + ξ2f2(s) + ξ3f3(s) + · · · For the standard expansion it is
necessary to specify an orthogonality condition on the higher order contributions, wj , for the expansion to
be unique. Here we require

∫ s0
0
w1wjsds = 0 for j ≥ 2.

The boundary value problem for w2 obtained from the expansion of (2.5) is

∇4w2 + w2 +
pc

2
∇2w2 = −pc

2
a∇2w1 + q2(s) (2.9)

with q2(s) = s−1(f1w
′
1)′ − G2(w1, s). The homogeneous boundary conditions listed earlier apply. The

solution to the second order problem is constructed using the complete set of eigenfunctions generated by
the problem for v(s) on 0 ≤ s ≤ s0: ∇2v + µ2v = 0, with v analytic at s = 0 with v′(0) = 0 and v′(s0) = 0.
The eigenfunctions are

vi(s) = J0(µis),

where µi are the eigenvalues satisfying J1(µis0) = 0 for i = 0, . . . ,∞. With s0 = rN , we have µi = ri/rN and
µN = 1. Further, it is easily shown that each eigenfunction satisfies all four boundary conditions required
for w̃. We expand q2(s) on the eigenfunctions

q2(s) =

M∑
i=0

q
(i)
2 vi(s) with q

(i)
2 =

∫ s0

0

q2(s)vi(s)sds,

where the number M of terms retained in the expansion must be sufficient to ensure accuracy, M � 1.
The existence of a solution to (2.9) requires that the secular term proportional to w1 on the right hand

side of the equation be suppressed, which provides a as

a =
q

(N)
2

2
. (2.10)
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Then

w2(s) =

M∑
j=0

w
(j)
2 vj(s) (2.11a)

with

w
(0)
2 = q

(0)
2 w

(N)
2 = 0 w

(i)
2 =

1

(µ4
i + 1− pcµ2

i )
q

(i)
2 , i ≥ 1(6= N). (2.11b)

Koiter’s ‘standard’ method (see Supplementary Material) provides the following formulas for the initial
post-bifurcation expansion coefficients, a and b:

a =
3
∫ s0
0 G2(w1,s)w1sds
pc
2

∫ s0
0 w′21 sds

b =
2
∫ s0
0 {w1

∫ s0
s

x−1w′1w
′
2dx+(w2+G2(w1,s))G2(w1,s)}sds
pc
2

∫ s0
0 w′21 sds

(2.12)

Note that a only depends on w1. For the present shell problem, one can show by direct manipulation that
the expression for a in (2.10) is the same as that in (2.12), and, further, that both can be re-expressed as

a =
3
∫ s0

0
w′31 ds

pc

∫ s0
0
w′21 sds

. (2.13)

Plots of a and b as dependent on N with s0 = rN are presented in Fig. 3. Nearly all the integrals such as
those in (2.12) and (2.13) have been evaluated numerically in this paper using highly accurate integration
algorithms in the IMSL codes (Visual Numerics, 1994). It is worth mentioning that a great deal of Koiter’s
1969 paper is taken up with reducing integrals analogous to these so they could be integrated analytically.

While Thompson (1964) and Koiter (1969) analyzed a full spherical shell and the present paper analyzes
a spherical cap, the trends in the post-buckling coefficients for the two cases are very similar. In Fig. 3 it
is seen that a is negative (favoring inward buckling at the pole, since p < pc corresponds to (aξ) < 0, i.e.,
ξ > 0, i.e., w̃(0) ≈ ξw1(0) < 0) and relatively small in magnitude compared to b. Further, a approaches
zero as the dimensionless cap radius s0 becomes large. For fixed dimensional quantities, R and s0, this
implies that a ≈ 0 for thin shells with small t/R, similar to the findings of Thompson (1964) and Koiter
(1969) for the full sphere. This lowest order result suggests weakly unstable buckling behavior with very
little tendency to favor inward rather than outward deflections at the pole, which is very much at odds
with experimental observations for spherical shells. The failure of the lowest order nonlinear expansion to
capture the expected highly unstable buckling behavior drove Koiter to examine the second order terms in
the expansion in considerable depth in his 1969 paper. The second order coefficient b in Fig. 3 is negative
and significantly larger than a. Furthermore, it approaches a finite value (b ≈ −0.132) as s0 becomes large.
Nevertheless, the predicted buckling instability is still rather weak, as Koiter also found from his analysis of
the full sphere. The plot in Fig. 4, which includes the accurate numerical analysis of the shallow cap (similar
to that for the full sphere in the Introduction) and two other results developed later, makes this evident.

Fig. 4 displays curves of p/pc versus the dimensionless inward buckling deflection at the pole,
√

1− ν2δ/t.
Noting that

√
1− ν2δ/t = −w̃(0)/

√
12 and w1(0) = −J0(0) = −1, one finds to second order in ξ
√

1− ν2δ

t
=

1√
12

(ξ − ξ2w2(0)).

This equation together with p/pc = 1+aξ+bξ2 generates the post-buckling curve for a shell with s0 = 29.05
(N = 10) in Fig. 4 labeled as the ‘standard expansion’1. As Koiter (1969) observed for his analysis of the
full sphere, the standard expansion method fails to capture the dramatic loss in post-buckling load carrying
capacity. In fact, Koiter argues that the range of validity of the standard expansion for the spherical shell
buckling problem goes to zero as t/R→ 0.

1The coefficients a and b depend on the normalization of ξ which in turn depends on the way w is rendered dimensionless.
It is more common to have p/pc = 1 + â(δ/t) + b̂(δ/t)2 + · · · , see, e.g., Koiter (1969). The two sets of coefficients are related

by â =
√

12(1− ν2)a and b̂ = 12(1− ν2)b.
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Figure 3: Plot of the initial post-buckling coefficients for values of s0 = rN , 5 ≤ N ≤ 15, as predicted by Koiter’s standard
method, computed with M = 40. As N →∞, a→ 0 (a = −0.653/s0 is a fit to the computed values) and b→≈ −0.132.

Figure 4: Axisymmetric post-buckling response of a shallow spherical shell with s0 = 29.05 (N = 10) subject to external pressure
according to Koiter’s standard post-bifurcation expansion (§2.3), to Koiter’s extended expansion (§2.4), to the approximate
Rayleigh-Ritz solution (§3) and from a direct numerical solution of the shallow shell equations presented in §1.3. These
dimensionless results are independent of ν. The numerical solution has been included over the range of pressures where it is
accurate, i.e., everywhere except in the immediate vicinity of the bifurcation point.
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Figure 5: a) Plots of w2(s, p) for three values of p/pc as computed using Koiter’s extended method. The curve for p/pc = 1 is
the same as that for the standard method. b) Values of b(p) for a range of s0 = rN , 5 ≤ N ≤ 15, computed with M = 40.

2.4. Koiter’s extended post-buckling expansion

In an attempt to extend the range of validity of the post-buckling expansion, Koiter (1969) modified
the standard expansion by evaluating the second order buckling contribution, w2, at p, not at pc as in the
standard method. His rationale for doing so in the case of the sphere is due to the clustering of eigenmodes
at eigen-pressures only slightly above pc. It turns out that this modification is almost trivially implemented
for the present problem. The extended method occupies a substantial section of Koiter’s 1969 paper, in
part, because he includes the extensive analytical reductions of integrals and sums which are bypassed here
with the aid of numerical integration and summation.

Our rendering of the modified expansion of Koiter (1945, 1969) is presented in the Supplementary
Materials. The central results for the shallow shell are as follows. The buckling displacement is expanded
as

w̃(s) = ξw1(s) + ξ2w2(s, p) + · · · (2.14)

where w1(s) = −J0(s) is unchanged but w2 is now evaluated at the current pressure p and not at the
bifurcation pressure pc. The post-buckling expansion then takes the form

p

pc
= 1 + aξ + b(p)ξ2 + · · · (2.15)

The coefficient a remains unchanged, depending only on w1 and given by (2.12); the formula for b, given in
the Supplementary Materials, also reduces to that for the standard expansion in (2.12) when one accounts
for the orthogonality of w2 to w1, but b now depends on p due to the presence of w2.

The boundary value problem for w2 in the extended method differs slightly from that in (2.9) and writes

∇4w2 + w2 +
p

2
∇2w2 = −pc

2
a∇2w1 + q2(s) (2.16)

with the same homogeneous boundary conditions and with q2 as defined earlier. The solution for w2 is

identical to that presented in (2.11a) and (2.11b) except that pc in the formula for w
(i)
2 in (2.11b) is replaced

by p, i.e.,

w
(0)
2 = q

(0)
2 w

(N)
2 = 0 w

(i)
2 =

1

(µ4
i + 1− pµ2

i )
q

(i)
2 , i ≥ 1( 6= N). (2.17)

Plots of w2(s, p) are shown in Fig. 5 for p/pc = 1, 0.95 and 0.9 for a shell with s0 = 29.05 (N = 10).
The plot for p/pc = 1, which is the same as that for the standard expansion, is not localized to the pole.
However, already at p/pc = 0.95, w2 is nearly localized at the pole. Moreover, the amplitude of w2 at the
pole depends strongly on p/pc, as does the second order coefficient b(p) which is also plotted in Fig. 5.

The prediction of the pressure function of the pole deflection δ generated by the extended method using
(2.15) is included in Fig. 4 for a shell with s0 = 29.05 (N = 10). Evidently, while the extended method does
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capture localization in w2, it is not successful in extending the range of the of the post-buckling expansion.
Indeed, for the case in Fig. 4, the range of the extended method appears to be slightly smaller than that
of the standard method. Koiter’s application of his extended method (Koiter, 1969) to the full sphere is
more successful in extending the range of the expansion but, as he emphasizes, its validity remains severely
limited.

3. An approximate localization analysis

In this section, we present an approximate localization analysis of the shallow shell model presented in
Section 1.3.

The purpose is twofold. First, it will reveal very clearly why both variants of Koiter’s method, the
standard one and its extension, have such a small range of validity—the essential reason being that the
dominant term in the expansion, ξw1(s), does not incorporate localization. Secondly, the approximate
method presented in this section captures and clearly reveals the remarkably abrupt nature of the localization
behavior. A rigorous analytical expansion that captures localization will be presented Section 4. Here, an
approximate Rayleigh-Ritz-type method is employed to analyze the initial post-buckling behavior of the
shell.

We use trial functions of the form

w̃(s) = ξ sech(ηs)w1(s) + ξ2w2(s, p) (3.1)

where ξ and η are the two free parameters which will be varied to render the full energy functional Φ(w̃, p)
in (2.3) stationary.

Now, w1(s) = −J0(s) continues to be the classical bifurcation mode, and w2(s, p) is the second order
displacement function obtained in the previous section for the extended method. The relatively simple
choice (3.1) builds upon the extended solution and brings in a new ingredient: the multiplicative function
sech(ηs) = 1/ cosh(ηs) ‘turns off’ the first order buckling contribution at a tunable distance ∼ 1/η from the
pole. This introduces an adjustable amount of localization. For η = 0, the exact expansion to second order
in ξ is recovered. As has already been noted, w2(s, p) from the extended analysis reflects localization at
values of p below pc so it has not been modified.

First order terms analogous to ξ sech(ηs)w1(s) emerge in rigorous analytical localization analyses such as
that of Wadee et al. (1997) who carried out an extensive study of buckling localization of an infinite elastic
beam on a nonlinear elastic foundation, a problem with much in common with the spherical shell problem
but analytically simpler. Wadee et al. (1997) have illustrated the effectiveness of a Rayleigh-Ritz approach
using trial functions suggested by their analytical localization expansion. A first order term qualitatively
similar to ξ sech(ηs)w1(s) will also emerge in the localization analysis carried out in Section 4, including a
prescription for the dependence of η on p. When η = 0, w̃ in (3.1) satisfies all the boundary conditions. When
localization is fully in effect and sech(ηs0) ≈ 0, w̃ also satisfies all the boundary conditions. There is a small
range of η, roughly 0 < η < 2/s0, wherein the natural boundary conditions at s0 are only approximately met
by the term ξ sech(ηs)w1(s), however in the range of interest when localization is in effect, the conditions
are met.

The procedure for rendering Φ stationary for any prescribed p can be described as follows. Given the
function w̃, Φ(ξ, η, p) in (2.3) is evaluated numerically to high accuracy given a prescribed p for any values
of the two free parameters ξ and η. Stationarity requires ∂Φ/∂ξ = 0 and ∂Φ/∂η = 0. These equations are
solved using a Newton iteration method with all derivatives with respect to ξ and η evaluated numerically.
The result of this process for a shell with s0 = 29.05 (N = 10) is included in Fig. 4 for pressure versus pole
buckling deflection. Companion plots of the buckling deflection,

√
1− ν2∆w(s)/t = w̃(s)/

√
12, and of the

localization parameter η as a function of the dimensionless pole buckling deflection are given in Fig. 6.
The relatively simple trial buckling mode in (3.1) coupled with the Rayleigh-Ritz analysis transparently

captures buckling localization in the spherical shell subject to external pressure. Moreover, the results
in Fig. 4 and 6 clearly reveal why the conventional initial post-bifurcation expansions, including Koiter’s
extended method, have such a limited range of validity. Note from Fig. 6 that at pole buckling deflections
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Figure 6: Predictions of the approximate localization analysis (§3) with s0 = 29.05 (N = 10). Top row: The buckling deflection,
∆w(s) = w(s) − w0, in dimensionless form at three values of p/pc displaying the development of localization. Bottom figure:
The localization parameter, η, as a function of the dimensionless inward pole buckling deflection.

as small as 1/10 of the shell thickness, η ≈ 0.1 such that the mode has already undergone significant
localization, i.e., there is a substantial zone around the edge of the shell with w̃ ≈ 0 and w̃ ≈ w0. At pole
deflections on the order of 1/2 the shell thickness the mode is essentially fully localized at the pole with
w ≈ w0 everywhere outside the dimple. The abruptness of the localization is the reason that the standard
initial post-bifurcation expansion has such a small range of validity. These results also explain why Koiter’s
attempt to extend the range of validity by modifying w2 but not w1 could only have modest success. The
asymptotic post-buckling results obtained by Baumgarten and Kierfeld (2019) also reveal a transition in the
response of pressure versus pole deflection associated with localization at the small pole deflections noted
above.

The localization analysis presented in this section generates a reasonably accurate approximation to the
post-buckling response for inward pole deflections as large as one shell thickness, corresponding to pressures
falling to about 60% of the classic buckling pressure. This range could almost certainly be extended with
more elaborate trial functions having more free parameters. That extension is not pursued in this paper
because of the availability of the accurate numerical solution referred to in the Introduction. The primary
objective of this paper is to expose the abrupt nature of the localization process immediately following
bifurcation and to provide insights into the analytical form the localization takes by modifying the classical
buckling mode. We believe the approximate analysis in this section and the more rigorous localization
expansion to follow achieves this objective.

4. An asymptotic solution capturing localization

In this section, we derive a weakly non-linear solution to the shallow shell equations summarized in
Section 1.3. We work in the limit s0 = ∞ where the edge is at infinity, implying that we ignore the
immediate aftermath of bifurcation where the buckling pattern extends beyond the ‘endpoint’ s0. In view
of the above numerical results, this assumption is already reasonably for p/pc = 0.99, and highly accurate
for p/pc = 0.95. It is possible to extend our results to the case of a finite s0 but this does not bring much
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more insight (as discussed in the conclusion) and it is significantly more complicated: it requires handling
boundary conditions at the edge s0. Here, we will simply require that the solutions vanish asymptotically
for s→∞. Our approach complements the recent results of Baumgarten and Kierfeld (2019) by providing
an explicit expression for the post-buckled solution w(s).

The critical value of the pressure corresponding to s0 =∞ is used in this section, namely

pc = 4

4.1. Expansion strategy

The approach inspired by the classical work on localization of elastic buckling modes in extended struc-
tures (Amazigo et al., 1970; Potier-Ferry, 1983; Hunt et al., 1993; Coman, 2006). Here ‘extended structures’
refer to structures whose dimensions are much larger than the typical wavelength of their linear bifurcation
mode: a shallow shell is an extended structure in this sense, in the limit s0 � 1 considered here, see the
discussion above equation (1.10).

In extended structures, the buckling mode, initially spreading over the entire domain, often localizes in
the post-buckling regime. This localization has been described in extended systems such as elastic struts on
a nonlinear foundation (Amazigo et al., 1970; Hunt et al., 1993) or on a fluid foundation (Pocivavsek et al.,
2008; Audoly, 2011). In these works, the localization has been analyzed by means of a two-scale expansion:
the buckling mode is sought in terms of a ‘fast’ variable s capturing the rapid oscillations already present
in the linear buckling mode, as well as as a ‘slow’ variable x = ξs capturing an amplitude modulation. The
connection x = ξs between the slow and fast variables makes use of the same expansion parameter ξ as that
appearing in Koiter’s expansions, |ξ| � 1, representing an arc-length along the bifurcated branch in the
bifurcation diagram. In the two-scale expansion, the fast variable s is ultimately averaged out, which leads
to so-called amplitude equations involving the slow variable only. These amplitude equations can be solved
and they capture the localization effectively, as we shall show.

The above is a general strategy to address localization. In the particular case of shallow axisymmetric
shells, there is an additional complication: localization takes place at the pole s = 0, which happens to
be a singular point of the ordinary differential equations (1.14a–1.14b) governing the equilibrium. As a
result, the two-scale expansion cannot yield directly the boundary conditions applicable at the pole for
the amplitude equations: the amplitude equation brings in divergences at the poles, and boundary layer
analysis is required to resolve these divergences. Boundary layer equations need to be derived, which replace
the boundary conditions used in simpler extended structures. They play a key role: the nonlinearity that
ultimately selects the buckling amplitude arises from the polar layer, as we shall show.

4.2. Expansions

This strategy is carried out by postulating the following expansions.

• The load p is expanded as before in terms of an ‘arc-length’ parameter ξ, see equation (2.8),

p

pc
= 1 + aξ + bξ2 + · · · (4.1)

where pc = 4.

• The solution for the tangential and outward normal displacements u(s) and w(s) is sought in the outer
region (s � 1) in the form wout(s) = w0(s) + w̃out(s) and uout(s) = u0(s) + ũout(s) where w0(s) and
u0(s) = 0 represent the uniform solution, see equation (2.1), and the buckling displacements w̃out and
ũout are given by a two-scale expansion,

w̃out(s) = ξα<
[
eis
(
W[0](x) + ξW[1](x) + ξ2

2 W[2](x) + · · ·
)]

ũout(s) = ξα<
[
eis
(
U[0](x) + ξU[1](x) + ξ2

2 U[2](x) + · · ·
)] (4.2)
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where
x = ξs

is the slow variable, < represents the real part operator, i is the unit imaginary number i =
√
−1, α

is an exponent to be determined later and W[0](x) and U[0](x) are complex-valued functions.

• The solution in the polar layer, for s = O(1), is sought as a regular (single-scale) perturbation in terms
of the slow variable s,

w̃in(s) = ξβ
(
W̆[0](s) + ξW̆[1](s) + ξ2

2 W̆[2](s) + · · ·
)

ũin(s) = ξβ
(
Ŭ[0](s) + ξŬ[1](s) + ξ2

2 Ŭ[2](s) + · · ·
) (4.3)

where β is a second exponent, to be determined later, and W̆[0](s) and Ŭ[0](s) are real-valued functions.

The exponential term eis in the outer solution accounts for the oscillations seen both in the linear buckling
mode and in the numerical post-bifurcated solutions.

The outer amplitudesW[j](x) and U[j](x), the inner solutions W̆[j](s) and Ŭ[j](s), as well as the coefficients
a and b and the exponents α and β will be determined by inserting these expansions into the shallow shell
equations, and by solving order by order with respect to ξ. As part of the solution process, we will ensure
that the outer and inner solutions can be matched in the so-called intermediate region, defined as the domain
overlapping the inner and outer regions.

4.3. Scaling analysis

Before proceeding to insert the expansions above into the equations of equilibrium, we start by a quali-
tative scaling analysis.

First, we require that the linear buckling mode, which writes w1 = A(ξ)J0(s) in the limit s0 →∞ (i.e.,
by setting µ = 1 in Section 2.2), is consistent with expansions postulated above; here, A(ξ) is the buckling
amplitude, which remains unspecified in the linear bifurcation analysis. A large-s expansion of the Bessel

function J0 writes w1 = A(ξ)
(

cos s
π
√
s

+ sin s
π
√
s

)
+ · · · =

[
A(ξ)

√
ξ

π

]
<
[
eis
(

1−i√
x

+ · · ·
)]

where the dots denote

higher-order terms, of order s−3/2. This expression can be identified with the leading-order term in the
expansion w̃out(s) in the outer region s � 1, see equation (4.2), provided we identify

[
A(ξ)

√
ξ
]
∼ ξα and

W[0](x) ∼ 1−i
π
√
x

. On the other hand, w1 = A(ξ)J0(s) can be identified directly with the inner expansion (4.3)

with A(ξ) ∼ ξβ and W̆[0](s) ∼ J0(s). Eliminating A(ξ) from these two relations, we conclude ξα ∼ A(ξ)
√
ξ ∼

ξβ+1/2, which imposes

α = β +
1

2
. (4.4)

A similar reasoning based on the tangent displacement u1(s) = A(ξ)J1(s) of the linear buckling mode leads
to the same relation between α and β.

Next, we observe that the only nonlinearity present in the variational formulation (1.11–1.13) of the
shallow shell model is the term 1

2w
′2 found in the strain Eθ. This is thus the nonlinearity that will ultimately

enter into the nonlinear equation and will set the buckling amplitude. We know from simulations that the
localization takes place at the pole: we assume that the nonlinearity plays a role in the polar (inner) region.
There, it can be estimated as w̃′2 ∼ w̃′2in ∼ ξ2β . Next, we try to guess which is the other term with which this
nonlinearity is balanced in the equation for the buckling amplitude. If we attempt to balance the nonlinear
term with the other, linear terms present in the strain Eθ, namely win ∼ ξβ and u′in ∼ ξβ , we arrive to
t2β ∼ tβ , i.e., 2β = β; however, this is inconsistent with the requirement β > 0 warranting that the buckling
amplitude goes to zero near threshold (for ξ → 0). As we will see later, this paradox is resolved by balancing
the nonlinear term w̃′2in ∼ ξ2β with the subdominant corrections to the linear terms w̃in and ũ′in entering in
the strain Eθ; both of latter are of order ∼ ξ× ξβ = ξβ+1. The balance then yields ξ2β = ξβ+1, hence β = 1.
With the help of (4.4), this suggests

α =
3

2
β = 1. (4.5)
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Even though we can offer no mathematical proof, we expect that these particular values are the only ones
that can make the asymptotic matching procedure work. In the following, we will use equation (4.5) as a
starting point to derive the leading order terms in the solution. We will check at the end that the predictions
are consistent with the numerical results.

4.4. Main steps of the asymptotic construction

A complete derivation of the asymptotic solution is given in the Supplementary Material. A summary
of the main results is presented here.

4.4.1. Regions

The different regions used in the expansion are defined by
inner region: s�

(
1− p

4

)−1/2

intermediate region: 1� s�
(
1− p

4

)−1/2

outer region: 1� s.

Note that the intermediate region is the intersection of the inner (polar) and outer regions.

4.4.2. Outer solution

By inserting the outer expansion in the equations for the shallow shell, we first obtain

a = 0, (4.6)

which is consistent with the prediction of Koiter’s method for s0 → ∞, see §2 and Fig. 3 in particular. In
view of (4.1), the relation between the load and the expansion parameter ξ becomes

√
−bξ ≈

(
1− p

4

)1/2

. (4.7)

By solving the equilibrium equations for the shell order by order, we find the dominant solution in the

outer region as W[0](x) = C1+iC2√
x

exp

(
−
√
−b
2 x

)
, where the real constants of integration C1 and C2 and

the coefficient b will be determined later by matching with the outer solution. Inserting into (4.2), we find
the buckling deflection as

w̃out(s) = ξ
C1 cos s− C2 sin s√

s
exp

(
−
[

1

2

(
1− p

4

)]1/2

s

)
+ · · · (4.8)

The coefficient in square bracket in the exponential produces a fast localization in the post-buckling regime,
as discussed in §4.5.

4.4.3. Inner solution

The inner solution is found similarly by inserting the expansions (4.3) into the equilibrium equations for
shallow shells. The result is

W̆[0](s) = C3J0(s)

W̆[1](s) = C6J0(s) + C5

2 sJ1(s) +
(
−C4 +

C2
3

4

) (
1− J0(s)− s

2J1(s)
)

+ π
4C

2
3G(s)

where G(s) is a numerical function defined in terms of Bessel functions, defined in the Supplemental material,
and C3, . . . , C6 are constants of integration. By contrast with what happened in the outer region, both
the dominant order solution W̆[0](s) and the subdominant one W̆[1](s) are required in the inner region for
matching, see below.

An expression for w̃in(s) is found by inserting the above solution into (4.3).
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4.4.4. Matching

By requiring that the inner and outer solutions match in the intermediate region, we find two constants
of integration as C1 = C3√

π
and C2 = − C3√

π
, and we obtain

γC2
3 +

√
−b√
2π
C3 = 0, (4.9)

Here, γ a numerical constant,

γ =

√
π

4

∫ ∞
0

(
[J0(u)]2 + [J1(u)]2

4
+

2

u
J ′0(u)J ′′0 (u)

)
uJ0(u)du (4.10a)

whose value is

γ =
3
√

3

16
√
π

= 0.183 226. (4.10b)

By multiplying both sides of equation (4.9) by ξ2, one makes appear the load p from equation (4.7) and
the outward normal displacement at the pole w̃(0) ≈ ξ3/2W̆[0](0) = ξβC3J0(0) = C3ξ. This leads to the
bifurcation equation (

w̃(0) +
1

γ
√

2π

(
1− p

4

)1/2
)
w̃(0) = 0.

It has two solutions: the unbuckled one w̃(0) = 0, and the buckled one.

4.5. Results

The main predictions of the matched asymptotic theory are as follows. The buckling amplitude at the
pole is predicted as

w̃(0) = − 1

γ
√

2π

(
1− p

4

)1/2

, (4.11a)

and the solution for the deflection writes

w̃(s) = w̃(0)×

 J0(s) +
[

1
2

(
1− p

4

)]1/2
sY1(s) + · · · (inner region)

cos(s−π4 )√
πs
2

exp
(
−
[

1
2

(
1− p

4

)]1/2
s
)

+ · · · (outer region)
(4.11b)

Here, Y1 denotes the Bessel function of the second kind. The matching procedure ensures that the alterna-
tives in the right-hand side above are consistent in the intermediate region: there, both can be approximated
as

w̄(s) = w̃(0)
cos
(
s− π

4

)√
πs
2

(
1−

[
1

2

(
1− p

4

)]1/2

s+ · · ·

)
. (intermediate region). (4.11c)

Note that the expansion parameter ξ has been eliminated from this final set of results.
Equation (4.11a) predicts that the deflection is inward at the pole, in accord with the experimental and

numerical observations.
The deflection predicted by Eq. (4.11b) is plotted in Fig. 7 for different values of the pressure. The

exponential in the outer solution produces a fast localization: due to the coefficient appearing in the square

bracket, the amplitude of the oscillations is reduced significantly at a distance of order s ∼
[

1
2

(
1− p

4

)]−1/2

from the pole. This yields the following estimate for the number nosc of oscillations where the cut-off takes
place,

nosc =

[
1

2

(
1− p

4

)]−1/2

/(2π). (4.12)

The set of plots in Fig. 7 (asymptotic method) and in Fig. 6 (approximate method) were produced
using the same set of values of the loading p

4 = {0.99, 0.95, 0.90}. They show very similar results—the
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Figure 7: Progressive localization of the buckling deflection, as predicted by the asymptotic expansion, Eq. (4.11b). Same
parameter values and plotting conventions as in Fig. 6. Note the overlap of the inner solution w̃in (thicker light blue curve)
and the outer solution w̃out (thin black curve).

two figures do not exactly agree, however, as the ansatz in Eq. (3.1) is not asymptotically exact. The
above formula yields estimates nosc = {2.3, 1.0, 0.7} for these respective values of p

4 . This captures how
the number of bumps seen in both sets of figures evolves with p. When the pressure is only 1% less than
the critical pressure, p

4 = 0.99 (first plot), the estimated residual number of bumps, nosc = 2.3, is already
quite small: the asymptotic solution captures the quick localization. For p

4 = 0.95, the predicted number
of oscillations is so small, nosc = 1.0, that the main assumption of the matched asymptotic theory, namely

a clear separation between the scale s ∼ 1 of the oscillations and the scale s ∼
(
1− p

4

)−1/4
, is no longer

satisfied: the asymptotic theory cannot yield accurate results for p/4 less than ∼ 0.95. In accord with this,
the overlap between the outer and inner solutions becomes limited below p

4 ∼ 0.95.
An estimate of the pressure pflat where the curvature at the pole becomes zero, i.e., when the outward

curvature brought about by buckling balances the initial inward curvature, can be obtained by solving
w̃′′in(0) = − 1√

12(1−ν2)
. Using the expression of w̃in in Eq. (4.11b), we can solve this equation as pflat

4 =

1 −
(

2γ
√

2π√
12(1−ν2)

)2

= 0.923 (with ν = 0.3). This pressure is too small for the asymptotic theory to be

accurate, but this suffices to confirm that the buckling is already fully localized by the time the curvature
at the pole changes sign, as discussed in section 1.1.

The inward deflection at the pole scaled by the thickness writes, in our units,√
1− ν2

δ

t
= − w̃in(0)√

12
=

1

γ
√

24π

(
1− p

4

)1/2

=
8

9
√

2

(
1− p

4

)1/2

, (4.13)

and we recover the result obtained by Baumgarten and Kierfeld (2019) by a direct method. In figure 8(a), this
prediction is compared to the predictions of the other models. The range of pressure where the asymptotic
theory roughly agrees with the the approximate Rayleigh-Ritz solution is limited, but consistent with the
estimate 1 ≤ p

4 <∼
0.95 warranting scale separation.

A more detailed comparison of the asymptotic and approximate localization analyses can be made by

identifying the localizing terms sech(ηs) in (3.1) and exp
(
−
[

1
2

(
1− p

4

)]1/2
s
)

in Eq. (4.11b). Using the

equivalent sech(ηs) ∝ exp(−ηs) for large s, this suggests η ≡
[

1
2

(
1− p

4

)]1/2
= 1

0.629
√

2
×
√

1− ν2 δ
t =

1.124
(√

1− ν2 δ
t

)
. This is the dashed blue prediction shown in figure 8(b). The agreement is good up

to deflections of the order one tenth of the thickness, which is in line with the domain of validity of the
asymptotic theory. Note that the asymptotic and approximate localization analyses are not equivalent to
one another, even for small buckling amplitudes: this is why the slope of the dashed blue curve in figure 8(b)
does not exactly match the initial tangent to the full curve; the slopes still agree within about 20%.
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Figure 8: (a) Bifurcation curves showing the deflection at the pole scaled by the thickness versus the dimensionless pressure,
as predicted by the different models; same data as in Fig. 4 except for the new curve corresponding to the asymptotic solution
(thick blue curve). (b) Comparison of the inverse localization length (vertical axis) versus the scaled deflection at the pole for
the asymptotic and approximate localization analyses.

5. Discussion and conclusion

In this paper, we have analyzed the localization of buckling in spherical shell based on the shallow shell
model. If we had instead used a full (i.e., non-shallow, geometrically exact) shell model, we would have
obtained (slightly) different predictions close to the bifurcation threshold, when the post-buckled solution
makes significant oscillations far from the pole. When localization proceeds, however, the oscillations become
limited to the neighborhood of the poles, and the shallow shell model produces equivalent predictions as full
shell models. Quantitatively, this equivalence holds when the size of the localized region is typically less than,

say, half the radius of the shell: in our dimensionless units, this happens when
[

1
2

(
1− p

pc

)]−1/2

�
1
2R√

Rt/121/4
,

i.e., p
pc
<
∼

1 − 2 22

(R/t)121/2 . For the full shell shown in figure 1 having an aspect ratio R/t = 103, this yields
p
pc
<
∼

0.978 which is very close to 1. Only in the immediate aftermath of the bifurcation, for 1 ≤ p
pc
<
∼

0.978,

does the bifurcated solution depend on the details of the shell model and on the equatorial boundary
conditions. As soon as the pressure becomes less, the shallow shell model provides an accurate description.
This equivalence of the different shell models has been reported in the simulations, as summarized in the
Introduction; the localization analysis done in this paper provides explicit ranges of pressure where the
shallow shell model is a good approximation.

Koiter argued that the domain of validity of his expansions goes to zero as the shell’s aspect ratio R/t
becomes large. This domain of validity can be quantitatively assessed as follows. For Koiter’s expansions
to be applicable, the post-buckled solution should bear strong resemblance with the linear buckling mode.
This requires that the localizing exponential in (4.11b) varies little over the entire domain. For instance,

the condition
[

1
2

(
1− p

pc

)]−1/2

> 5R√
Rt/121/4

warrants that the localizing exponential varies by at most

1− e−1/5 = 20% from pole to equator; for a shell with an aspect ratio R/t = 103 as earlier, this shows that
Koiter’s expansion breaks down when the scaled pressure becomes less than p

pc
= 1−2 1

(R/t)52121/2 = 0.9998.

The characteristic wavelengths of the buckles of a spherical shell subject to external pressure are short
compared to the radius of the shell, and the overall pressure carrying capacity attains a maximum when
the shell undergoes buckling. These are the two essential elements giving rise to buckling localization
wherein the classical buckling mode which covers the entire shell rather abruptly transitions to a localized
mode. The qualitative aspects of the phenomenon are similar to those put forward by Considère (1885)
for necking localization in long bars stretched in tension. For the perfect spherical shell, the localization
process begins at bifurcation in the form of the classical buckling mode modulated by a localizer function
which is unity at bifurcation but which begins to alter the shape of the classical buckling mode immediately
upon bifurcation. The abrupt alteration of the classical buckling mode is captured by an exact asymptotic
localization expansion given in Section 4 and by the approximate Rayleigh-Ritz analysis in Section 3. The

18



approximate Rayleigh-Ritz analysis has the advantage that it provides a good approximation to much
larger buckling deflections than the exact asymptotic expansion. In this sense, the spherical shell problem
investigated in this paper has much in common with the problem of the buckling of a compressed beam
on a nonlinear elastic foundation analyzed in depth using both methods by Wadee et al. (1997). In the
Introduction, we have noted that there has been recent progress in exploring localization in the iconic
shell buckling problem, the cylindrical shell under axial compression, by Horák et al. (2006); Kreilos and
Schneider (2017); Groh and Pirrera (2019). These authors have exploited new numerical techniques for
partial differential equations in their studies. The subject of localization phenomena is ripe for developing
new analytical and numerical methods.

The spherical shells in this paper have been taken to be perfect and the recent work on localization in
cylindrical shells alluded to above has also been limited to perfect shells. To obtain a full understanding of
shell buckling and, in particular, to obtain quantitative estimates of load carrying capacities under realistic
conditions, it will be necessary for imperfections to be taken into account. Imperfections, such as initial
distortions from the perfect geometry of the shell in the form of a local dimple, can trigger a buckling
response that is localized from the start. Localized dimple-like imperfections are generally regarded as more
realistic than geometric imperfections assumed to have the shape of a classical buckling mode which extends
in a highly coordinated manner over the entire shell. An extensive experimental and numerical study of the
buckling of spherical shells with isolated geometric dimple imperfections has been recently published (Lee
et al., 2016) which reveals buckling dominated by localized behavior, and the analysis of Baumgarten and
Kierfeld (2019) considers the influence of local dimple imperfections.
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