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Convergence of uniform noncrossing partitions
toward the Brownian triangulation

Jérémie Bettinelli∗1
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nique

Abstract. We give a short proof that a uniform noncrossing partition of the regular n-
gon weakly converges toward Aldous’s Brownian triangulation of the disk, in the sense
of the Hausdorff topology. This result was first obtained by Curien & Kortchemski, us-
ing a more complicated encoding. Thanks to a result of Marchal on strong convergence
of Dyck paths toward the Brownian excursion, we furthermore give an algorithm that
allows to recursively construct a sequence of uniform noncrossing partitions for which
the previous convergence holds almost surely.

In addition, we also treat the case of uniform noncrossing pair partitions of even-sided
polygons.

Keywords: noncrossing partition; noncrossing pair partition; lamination; Brownian
triangulation; Brownian excursion; Dyck path

1 Introduction

Configurations of noncrossing diagonals of a regular polygon have been the focus of
many studies, from a geometrical, from an enumerative and from a probabilistic point
of view. Various natural models have been studied (see for instance [3] and the references
therein). Among these models, noncrossing partitions are of particular interest as they
bear many applications in a wide range of areas; see for instance [11] for a survey of the
topic.

We denote by Pn the regular n-gon of the complex plane with vertex coordinates
ωk

n := e2iπk/n, k ∈ {0, 1, . . . , n− 1}. A noncrossing partition of Pn is a partition of the set
{ω0

n, . . . , ωn−1
n } such that the convex hulls of its blocks are pairwise disjoint; a noncrossing

pair partition of Pn is a noncrossing partition of Pn whose blocks are all of size exactly 2
(see Figure 1). Note that the latter only exists for even values of n.

A (geodesic) lamination is a closed subset of the unit disk D :=
{

z ∈ C : |z| ≤ 1
}

that
can be expressed as a union of chords whose intersections with the open unit disk D are
pairwise disjoint. For two complex numbers z, z′, we denote by [z, z′] the Euclidean line
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Figure 1: Left. The noncrossing partition
{

{ω
0
7, ω

2
7, ω

3
7}, {ω

1
7}, {ω

4
7, ω

6
7}, {ω

5
7}
}

of P7.

Right. The noncrossing pair partition
{

{ω
0
10, ω

3
10}, {ω

1
10, ω

2
10}, {ω

4
10, ω

5
10}, {ω

6
10, ω

9
10},

{ω
7
10, ω

8
10}

}

of P10.

as a lamination as follows. With the block
{

ω
i1
n , ω

i2
n , . . . , ω

ik
n
}

, where i1 < i2 < . . . < ik,

we associate the polygon [ωi1
n , ω

i2
n ] ∪ [ωi2

n , ω
i3
n ] ∪ . . . ∪ [ωik

n , ω
i1
n ]. The lamination is then

defined as the union over the partition blocks of the associated polygons.

Recall that the Hausdorff distance between two closed subsets A, B ⊆ D is defined as

inf
{

ε > 0 : A ⊆ B(ε) and B ⊆ A(ε)
}

,

where, for any X ⊆ D, we denoted by X(ε) := {z ∈ D : d(z, X) ≤ ε} the ε-enlargement

of X. Endowed with the Hausdorff metric, the set of all closed subsets of D is a compact

metric space. Moreover, it is not hard to check that the set of all laminations is a closed,

thus compact, subset of this metric space.

We are interested in the limit of sequences of larger and larger noncrossing parti-

tions, seen as laminations, for the Hausdorff topology. The above setting was proposed

by Aldous [1, 2] for the study of random triangulations; it was later used by Kortchem-

ski [6], Curien & Kortchemski [3], Curien & Le Gall [4], Kortchemski & Marzouk [8, 7]

for the study of many models, including uniform noncrossing partitions and uniform

noncrossing pair partitions.

In many cases, the limiting object is a random compact set called the Brownian trian-
gulation B defined as follows. Let (et)0≤t≤1 be a normalized Brownian excursion2 and,

2A normalized Brownian excursion is a standard Brownian motion on [0, 1] starting from 0 and condi-

tioned on being at 0 at time 1 and staying positive on (0, 1). As this is a zero-probability event, some care
is needed for a proper definition: see e.g. [13, Chapter XII].

Figure 1: Left. The noncrossing partition
{
{ω0

7, ω2
7, ω3

7}, {ω1
7}, {ω4

7, ω6
7}, {ω5

7}
}

of P7.
Right. The noncrossing pair partition

{
{ω0

10, ω3
10}, {ω1

10, ω2
10}, {ω4

10, ω5
10}, {ω6

10, ω9
10},

{ω7
10, ω8

10}
}

of P10.

segment of the complex plane joining z with z′. A noncrossing partition can thus be seen
as a lamination as follows. With the block

{
ωi1

n , ωi2
n , . . . , ω

ik
n
}

, where i1 < i2 < . . . < ik,
we associate the polygon [ωi1

n , ωi2
n ] ∪ [ωi2

n , ωi3
n ] ∪ . . . ∪ [ωik

n , ωi1
n ]. The lamination is then

defined as the union over the partition blocks of the associated polygons.
Recall that the Hausdorff distance between two closed subsets A, B ⊆ D is defined as

inf
{

ε > 0 : A ⊆ B(ε) and B ⊆ A(ε)
}

,

where, for any X ⊆ D, we denoted by X(ε) := {z ∈ D : d(z, X) ≤ ε} the ε-enlargement
of X. Endowed with the Hausdorff metric, the set of all closed subsets of D is a compact
metric space. Moreover, it is not hard to check that the set of all laminations is a closed,
thus compact, subset of this metric space.

We are interested in the limit of sequences of larger and larger noncrossing parti-
tions, seen as laminations, for the Hausdorff topology. The above setting was proposed
by Aldous [1, 2] for the study of random triangulations; it was later used by Kortchem-
ski [6], Curien & Kortchemski [3], Curien & Le Gall [4], Kortchemski & Marzouk [8, 7]
for the study of many models, including uniform noncrossing partitions and uniform
noncrossing pair partitions.

In many cases, the limiting object is a random compact set called the Brownian trian-
gulation B defined as follows. Let (et)0≤t≤1 be a normalized Brownian excursion1 and,

1A normalized Brownian excursion is a standard Brownian motion on [0, 1] starting from 0 and condi-
tioned on being at 0 at time 1 and staying positive on (0, 1). As this is a zero-probability event, some care
is needed for a proper definition: see e.g. [13, Chapter XII].
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for s, t ∈ [0, 1], declare s e∼ t whenever es = et = minmin(s,t)≤r≤max(s,t) er. The Brownian
triangulation is the set

B :=
⋃
s e∼t

[
e2iπs, e2iπt] . (1.1)

The set B is almost surely a closed subset of D and furthermore a continuous trian-
gulation of D, in the sense that each connected component of D \ B is an open Euclidean
triangle whose vertices belong to the unit circle [9].

Theorem 1.1 ([3, Theorem 3.8]). Let Pn (resp. P̃n) be a random variable uniformly distributed
over the set of all noncrossing partitions of Pn (resp. noncrossing pair partitions of P2n), seen as
a lamination. Then Pn and P̃n both weakly converge toward the Brownian triangulation, for the
Hausdorff topology.

The point of the present work is to provide a more straightforward proof of the
previous theorem. For this reason, we chose not to include too many historical references
on the subject; we refer the reader to the above references and references therein for
more details. In [3], the authors first notice that a noncrossing partition of Pn is close
to a noncrossing pair partition of P2n; as a consequence, the result for noncrossing pair
partitions implies the result for noncrossing partitions. They then encode a noncrossing
pair partition by a tree, which they further encode by a Dyck path; after proper scaling,
this path converges to the normalized Brownian excursion. This approach is quite robust
but needs in particular a nontrivial result stating that the leaves of a conditioned Galton–
Watson tree are asymptotically uniformly spread on the tree.

Instead, we will give a direct encoding of a noncrossing partition of Pn by a Dyck
path and conclude in a more straightforward manner. In addition, we will give below
a recursive construction of noncrossing partitions and noncrossing pair partitions that
converge almost surely. The algorithms we propose are the transcription in terms of
partitions of an algorithm on Dyck paths due to Marchal [10], which itself is the tran-
scription in terms of Dyck paths of Rémy’s famous algorithm [12] on trees. Let us also
mention at this point that Curien & Le Gall [4] also study some sequences of laminations
obtained by a recursive construction but, in their case, the limiting object is a continuous
triangulation that differs from the Brownian triangulation.

Before presenting our growing algorithms, let us define the Kreweras complement of a
noncrossing partition P of Pn as the partition K of the set {ω1

2n, ω3
2n, . . . , ω2n−1

2n } whose
blocks are given by the connected components of the complement in D of the lamination
corresponding to P (see Figure 2). Up to rotation of −π/n, the Kreweras complement
of a noncrossing partition of Pn is also a noncrossing partition of Pn. Taking again the
Kreweras complement of the latter noncrossing partition of Pn and rotating it by an angle
of π/n yields back the original noncrossing partition.
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Figure 2: The Kreweras complement of the partition
{

{ω
0
10, ω

2
10, ω

3
10}, {ω

1
10},

{ω
4
10, ω

5
10}, {ω

6
10, ω

7
10, ω

8
10, ω

9
10}

}

is
{

{ω
1
20, ω

3
20}, {ω

5
20}, {ω

7
20, ω

11
20, ω

19
20}, {ω

9
20}, {ω

13
20},

{ω
15
20}, {ω

17
20}

}

. For instance, the blocks {ω
0
10, ω

2
10, ω

3
10} and {ω

5
20} are neighbors.

We will see two possible ways of defining a noncrossing partition of Pn+1 from a

noncrossing partition P of Pn and an index k ∈ {0, 1, . . . , 2n} (see Figure 3). The first

operation consists in adding two vertices between ω
k
2n and ω

k+1
2n , and declaring the sec-

ond vertex as belonging to the block of ω
k
2n. We then remap the 2n + 2 vertices onto

the 2n + 2-th roots of unity in such a way that the cyclic order is preserved and ω
k
2n

is mapped to ω
k
2n+2. The resulting noncrossing partition of Pn+1 is said to be obtained

from P by inserting a vertex at position k.

For the second operation, we need to consider the last element in counterclockwise

order before ω
2n
2n that belongs to the same block of P ∪K as ω

k
2n: let

l := max{j ≤ 2n : ω
k
2n and ω

j
2n are in the same block of P ∪K} .

We split each of the vertices ω
k
2n and ω

l
2n into two new vertices and remap the resulting

2n + 2 vertices onto the 2n + 2-th roots of unity in such a way that the cyclic order

is preserved and ω
0
2n is mapped to ω

0
2n+2. We define a noncrossing partition of Pn+1

by declaring any two n + 1-th roots of unity to be in the same block whenever their

preimages were in the same block of P ∪K. Note that the Kreweras complement of this

noncrossing partition is obtained in a similar manner by considering the other 2n + 2-th

roots of unity. Our operation has the effect of slicing the block of ω
k
2n along the chord

[ωk
2n, ω

l
2n] into two blocks, one lying in the noncrossing partition and the other one lying

in its Kreweras complement. We say that the resulting noncrossing partition of Pn+1 is

obtained from P by slicing at position k.

Figure 2: The Kreweras complement of the partition
{
{ω0

10, ω2
10, ω3

10}, {ω1
10},

{ω4
10, ω5

10}, {ω6
10, ω7

10, ω8
10, ω9

10}
}

is
{
{ω1

20, ω3
20}, {ω5

20}, {ω7
20, ω11

20, ω19
20}, {ω9

20}, {ω13
20},

{ω15
20}, {ω17

20}
}

. For instance, the blocks {ω0
10, ω2

10, ω3
10} and {ω5

20} are neighbors.

We will see two possible ways of defining a noncrossing partition of Pn+1 from a
noncrossing partition P of Pn and an index k ∈ {0, 1, . . . , 2n} (see Figure 3). The first
operation consists in adding two vertices between ωk

2n and ωk+1
2n , and declaring the sec-

ond vertex as belonging to the block of ωk
2n. We then remap the 2n + 2 vertices onto

the 2n + 2-th roots of unity in such a way that the cyclic order is preserved and ωk
2n

is mapped to ωk
2n+2. The resulting noncrossing partition of Pn+1 is said to be obtained

from P by inserting a vertex at position k.
For the second operation, we need to consider the last element in counterclockwise

order before ω2n
2n that belongs to the same block of P ∪K as ωk

2n: let

l := max{j ≤ 2n : ωk
2n and ω

j
2n are in the same block of P ∪K} .

We split each of the vertices ωk
2n and ωl

2n into two new vertices and remap the resulting
2n + 2 vertices onto the 2n + 2-th roots of unity in such a way that the cyclic order
is preserved and ω0

2n is mapped to ω0
2n+2. We define a noncrossing partition of Pn+1

by declaring any two n + 1-th roots of unity to be in the same block whenever their
preimages were in the same block of P ∪K. Note that the Kreweras complement of this
noncrossing partition is obtained in a similar manner by considering the other 2n + 2-th
roots of unity. Our operation has the effect of slicing the block of ωk

2n along the chord
[ωk

2n, ωl
2n] into two blocks, one lying in the noncrossing partition and the other one lying

in its Kreweras complement. We say that the resulting noncrossing partition of Pn+1 is
obtained from P by slicing at position k.

Remark. Observe that, whenever l = k, the noncrossing partitions obtained from P by
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Remark. Observe that, whenever l = k, the noncrossing partitions obtained from P by

slicing and by inserting a vertex at position k are the same. Note also that the result is

not the same when k = 0 and when k = 2n. In fact, the partitions obtained by insertion

only differ by a rotation of 2π/n and the ones obtained by slicing differ by complement

and rotation of π/n.

We iteratively construct a sequence of random noncrossing partitions (Pn)n≥1 using

the following algorithm.

Algorithm 1 (Constructing a sequence of noncrossing partitions).

1. Let P1 =
{

{ω
0
1}

}

be the only partition of P1.

2. Generate Pn+1 from Pn as follows:

(a) choose an integer k uniformly at random in {0, 1, . . . , 2n};

(b) with probabilities 1/2 - 1/2, set Pn+1 to be obtained from Pn

• either by inserting a vertex at position k,
• or by slicing at position k.

Proposition 2. Let (Pn)n≥1 be constructed by Algorithm 1. Then, for each n, the partition Pn is
uniformly distributed over the set of noncrossing partitions of Pn. Moreover, seen as a lamination,
Pn almost surely converges toward the Brownian triangulation, for the Hausdorff topology.

We can play a similar game for noncrossing pair partitions (see Figure 4). Let P be

a noncrossing pair partition of P2n and let k ∈ {0, 1, . . . , 2n}. It will be more convenient

Figure 3: The noncrossing partitions obtained by inserting a vertex and by slicing at
position k.

slicing and by inserting a vertex at position k are the same. Note also that the result is
not the same when k = 0 and when k = 2n. In fact, the partitions obtained by insertion
only differ by a rotation of 2π/n and the ones obtained by slicing differ by complement
and rotation of π/n.

We iteratively construct a sequence of random noncrossing partitions (Pn)n≥1 using
the following algorithm.

Algorithm 1.2 (Constructing a sequence of noncrossing partitions).

1. Let P1 =
{
{ω0

1}
}

be the only partition of P1.

2. Generate Pn+1 from Pn as follows:

(a) choose an integer k uniformly at random in {0, 1, . . . , 2n};
(b) with probabilities 1/2 - 1/2, set Pn+1 to be obtained from Pn

• either by inserting a vertex at position k,
• or by slicing at position k.

Proposition 1.3. Let (Pn)n≥1 be constructed by Algorithm 1.2. Then, for each n, the parti-
tion Pn is uniformly distributed over the set of noncrossing partitions of Pn. Moreover, seen as
a lamination, Pn almost surely converges toward the Brownian triangulation, for the Hausdorff
topology.
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We can play a similar game for noncrossing pair partitions (see Figure 4). Let P be
a noncrossing pair partition of P2n and let k ∈ {0, 1, . . . , 2n}. It will be more convenient
to rotate the picture by an angle of −π/2n, so that P is now a partition of

{
ω

j
4n, j odd

}
.

We consider the Kreweras complement K of P and we set

l := max{j ≤ 2n : ωk
2n and ω

j
2n are in the same block of K} .

We either add two vertices at the location of ωk
2n or one at the location of ωk

2n and one
at the location of ωl

2n. Then, in both cases, we declare the added vertices to form one
new block and remap the 2n + 2 vertices onto the odd 4n + 4-th roots of unity in such
a way that the cyclic order is preserved and ω2k−1

4n is mapped to ω2k−1
4n+4. We say that

the resulting noncrossing pair partitions of P2n+2 are obtained from P respectively by
inserting a short chord and by inserting a long chord at position k.

6 Jérémie Bettinelli

to rotate the picture by an angle of −π/2n, so that P is now a partition of
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j
4n, j odd

}
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k
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Figure 4: Growing a pair partition.

Similarly as above, we iteratively construct a sequence of random noncrossing pair

partitions (P̃n)n≥1.

Algorithm 2 (Constructing a sequence of noncrossing pair partitions).

1. Let P̃1 =
{

{ω
0
2 , ω

1
2}
}

be the only pair partition of P2.

2. Generate P̃n+1 from P̃n as follows:

(a) choose an integer k uniformly at random in {0, 1, . . . , 2n};

(b) with probabilities 1/2 - 1/2, set P̃n+1 to be obtained from P̃n by inserting at posi-
tion k

• either a short chord,
• or a long chord.

Proposition 3. Let (P̃n)n≥1 be constructed by Algorithm 2. Then, for each n, the partition P̃n

is uniformly distributed over the set of noncrossing pair partitions of P2n. Moreover, seen as a
lamination, P̃n almost surely converges toward the Brownian triangulation, for the Hausdorff
topology.

Figure 4: Growing a pair partition.

Similarly as above, we iteratively construct a sequence of random noncrossing pair
partitions (P̃n)n≥1.

Algorithm 1.4 (Constructing a sequence of noncrossing pair partitions).

1. Let P̃1 =
{
{ω0

2, ω1
2}
}

be the only pair partition of P2.

2. Generate P̃n+1 from P̃n as follows:

(a) choose an integer k uniformly at random in {0, 1, . . . , 2n};
(b) with probabilities 1/2 - 1/2, set P̃n+1 to be obtained from P̃n by inserting at posi-

tion k

• either a short chord,
• or a long chord.
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Proposition 1.5. Let (P̃n)n≥1 be constructed by Algorithm 1.4. Then, for each n, the parti-
tion P̃n is uniformly distributed over the set of noncrossing pair partitions of P2n. Moreover,
seen as a lamination, P̃n almost surely converges toward the Brownian triangulation, for the
Hausdorff topology.

The remainder of the paper is organized as follows. In Section 2, we show how to
encode a noncrossing partition by a Dyck path. Section 3 is devoted to the proof of
Theorem 1.1 and Section 4 to the proofs of Propositions 1.3 and 1.5.

2 Encoding noncrossing partitions by Dyck paths

We encode a noncrossing partition P of Pn by assigning integer labels to ωk
2n, 0 ≤ k ≤

2n − 1, as follows (see Figure 5). We let K be the Kreweras complement of P and we
say that two blocks of P ∪ K are neighbors if there exists an integer k such that ωk

2n
belongs to one block and ωk+1

2n belongs to the other block. We first label the blocks of
P ∪K by assigning label 0 to the block that contains ω0

2n and, inductively, assigning label
`+ 1 to each not yet labeled neighbor of a block labeled `. We then assign to each ωk

2n,
0 ≤ k ≤ 2n− 1, the label of the block to which it belongs.

Convergence of uniform noncrossing partitions toward the Brownian triangulation 7

The remainder of the paper is organized as follows. In Section 2, we show how to

encode a noncrossing partition by a Dyck path. Section 3 is devoted to the proof of

Theorem 1 and Section 4 to the proofs of Propositions 2 and 3.

2 Encoding noncrossing partitions by Dyck paths

We encode a noncrossing partition P of Pn by assigning integer labels to ω
k
2n, 0 ≤ k ≤

2n − 1, as follows (see Figure 5). We let K be the Kreweras complement of P and we

say that two blocks of P ∪ K are neighbors if there exists an integer k such that ω
k
2n

belongs to one block and ω
k+1
2n belongs to the other block. We first label the blocks of

P ∪K by assigning label 0 to the block that contains ω
0
2n and, inductively, assigning label

ℓ+ 1 to each not yet labeled neighbor of a block labeled ℓ. We then assign to each ω
k
2n,

0 ≤ k ≤ 2n − 1, the label of the block to which it belongs.
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Figure 5: Encoding a noncrossing partition by a Dyck path.

If we denote by ℓk the label assigned to ω
k
2n, 0 ≤ k ≤ 2n, then the path (ℓ0, ℓ1, . . . , ℓ2n)

is a 2n-step Dyck path3. Moreover, this operation yields a bijection between noncrossing

partitions of Pn and 2n-step Dyck paths; the inverse operation goes as follows. Let

(ℓ0, ℓ1, . . . , ℓ2n) be a 2n-step Dyck path. Then the noncrossing partition is given by the

equivalence classes of the relation

ω
i
2n ∼ ω

j
2n ⇐⇒ ℓi = ℓj = min

min(i,j)≤k≤max(i,j)
ℓk (2.1)

3Recall that a Dyck path is a finite sequence (a0, a1, . . . , al) of nonnegative integers such that a0 = al = 0

and |ak+1 − ak| = 1 for all k ∈ {0, 1, . . . , l − 1}.

Figure 5: Encoding a noncrossing partition by a Dyck path.

If we denote by `k the label assigned to ωk
2n, 0 ≤ k ≤ 2n, then the path (`0, `1, . . . , `2n)

is a 2n-step Dyck path2. Moreover, this operation yields a bijection between noncrossing
partitions of Pn and 2n-step Dyck paths; the inverse operation goes as follows. Let

2Recall that a Dyck path is a finite sequence (a0, a1, . . . , al) of nonnegative integers such that a0 = al = 0
and |ak+1 − ak| = 1 for all k ∈ {0, 1, . . . , l − 1}.
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(`0, `1, . . . , `2n) be a 2n-step Dyck path. Then the noncrossing partition is given by the
equivalence classes of the relation

ωi
2n ∼ ω

j
2n ⇐⇒ `i = `j = min

min(i,j)≤k≤max(i,j)
`k (2.1)

for even i, j. Furthermore, the Kreweras complement of this noncrossing partition is
given by the equivalence classes of (2.1) for odd i, j. Note also that, if over the set
[min(i, j), max(i, j)], the function ` only reaches its minimum at the extremities, then the
chord [ωi

2n, ω
j
2n] belongs to the lamination.

Remark. Let us note that this encoding appeared in [14]. It is also easy to check that this
is in fact exactly the Dyck path that encodes the dual tree of the associated noncrossing
pair partition (see Figure 6 and [3], in particular Figure 7) or, equivalently, the (properly
rooted) dual two-type tree of [7] (see Figure 2 therein).

3 Convergence in distribution

Let us start with uniform noncrossing partitions. The proof is very similar to that of [3]
but circumvent some technicalities because of the encoding we use; we give it in full
detail for the sake of self-containment.

Proof of Theorem 1.1 for uniform noncrossing partitions. For each n ≥ 1, let Pn be a random
variable uniformly distributed over the set of noncrossing partitions of Pn and let Ln :
[0, 1] → R+ be the function defined as follows. We consider the labeling of the 2n-th
roots of unity given by the encoding of Section 2. For k ∈ {0, 1, . . . , 2n}, we let Ln(k/2n)
be the label of ωk

2n and we extend Ln to [0, 1] by linear interpolation between these values.
A well-known conditioned version of Donsker’s invariance principle due to Kaigh [5,

Theorem 2.6] states that the following convergence holds in distribution for the uniform
topology on the space of continuous real-valued functions on [0, 1]:(

Ln(s)√
2n

)
0≤s≤1

→ (es)0≤s≤1 . (3.1)

Using Skorokhod’s representation theorem, we may and will assume that the previ-
ous convergence holds almost surely. As the set of all closed subsets of D endowed with
the Hausdorff metric is a compact metric space, it suffices to show that any accumula-
tion point of (Pn)n is the Brownian triangulation B, defined by (1.1). Let P be such an
accumulation point.

We first claim that B ⊆ P almost surely. It is a classical fact that the local minimums
of e on (0, 1) are almost surely distinct. On the set of full measure where this property
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holds, if s e∼ t with s < t, we can always find even sn, tn ∈ {0, 2, 4, . . . , 2n} such that
sn < tn,

sn

2n
→ s ,

tn

2n
→ t and Ln

( sn

2n

)
= Ln

( tn

2n

)
< min

[ sn+1
2n , tn−1

2n ]
Ln .

Indeed, this fact is plain if er > es = et for all r ∈ (s, t); otherwise, there exists r ∈ (s, t)
such that er = es = et, so that er is a local minimum and, as a result, neither s nor t
are times of a local minimum and one can find s′ < s and t′ > t arbitrarily close to s
and t such that (s′, t′) falls into the previous case. The latter property implies that the
chord

[
ωsn

2n, ωtn
2n
]

belongs to Pn (recall (2.1) and the discussion thereafter). As a result,
the segment [e2iπs, e2iπt] ⊆ P and the claim follows.

Now, in order to see that P ⊆ B, observe that, as all the Pn are laminations, P is
also a lamination. Then, as B is almost surely maximal for the inclusion relation ([9,
Proposition 2.1]), we necessarily have B = P . This completes the proof.

We now turn to noncrossing pair partitions. We can use the observation of [3] that
there exists a simple bijection between noncrossing partitions of Pn and noncrossing pair
partitions of P2n, such that the corresponding laminations are at Hausdorff distance less
than π/2n (see Figure 6).
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Figure 6: The noncrossing partition of Pn that corresponds to a noncrossing pair parti-

tion of P2n is obtained by identifying ω
2k−1
2n with ω

2k
2n for each 1 ≤ k ≤ n.

Alternatively, we will see that the encoding of Section 2 is well behaved with respect

to the property of being a noncrossing pair partition.

Proof of Theorem 1 for uniform noncrossing pair partitions. Let P be a noncrossing partition

of P2n. As in the introduction, we rotate the picture by an angle of −π/2n and see P
as a partition of

{

ω
j
4n, j odd

}

(plainly, this will bear no effects in the limit). We consider

the Kreweras complement K of P and let (ℓ0, ℓ1, . . . , ℓ4n) be its encoding Dyck path. By

definition, P is a noncrossing pair partition if and only if the equivalence classes given

by (2.1) for odd indices are all of size 2 (where n is replaced by 2n). Equivalently, for each

k ∈ {0, 1, . . . , 2n − 1}, we have |ℓ2k+2 − ℓ2k| = 2, so that the path (ℓ0/2, ℓ2/2, ℓ4/2, . . . ,

Figure 6: The noncrossing partition of Pn that corresponds to a noncrossing pair parti-
tion of P2n is obtained by identifying ω2k−1

2n with ω2k
2n for each 1 ≤ k ≤ n.

Alternatively, we will see that the encoding of Section 2 is well behaved with respect
to the property of being a noncrossing pair partition.

Proof of Theorem 1.1 for uniform noncrossing pair partitions. Let P be a noncrossing parti-
tion of P2n. As in the introduction, we rotate the picture by an angle of −π/2n and see P
as a partition of

{
ω

j
4n, j odd

}
(plainly, this will bear no effects in the limit). We consider
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the Kreweras complement K of P and let (`0, `1, . . . , `4n) be its encoding Dyck path. By
definition, P is a noncrossing pair partition if and only if the equivalence classes given
by (2.1) for odd indices are all of size 2 (where n is replaced by 2n). Equivalently, for each
k ∈ {0, 1, . . . , 2n − 1}, we have |`2k+2 − `2k| = 2, so that the path (`0/2, `2/2, `4/2, . . . ,
`4n/2) is a Dyck path that encodes all the information of the original Dyck path, and
which does not satisfy any constraints (see Figure 7).

10 Jérémie Bettinelli

ℓ4n/2) is a Dyck path that encodes all the information of the original Dyck path, and

which does not satisfy any constraints (see Figure 7).
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Figure 7: The unconstrained Dyck path that encodes a noncrossing pair partition.

As a result, a uniform noncrossing pair partition of P2n is encoded by a uniform 2n-

step Dyck path. By Kaigh’s theorem, after proper rescaling, this path converges to the

normalized Brownian excursion, and the original encoding 4n-step Dyck path clearly

converges toward the same limit, multiplied by
√

2. One then concludes exactly as in

the case of uniform noncrossing partitions (the extra multiplicative factor does not alter

the identifications).

4 Almost sure convergence

In this section, we prove Propositions 2 and 3. In fact, they are both straightforward

consequences of [10] and the encoding we use.

Proof of Proposition 2. In terms of encoding Dyck paths, inserting a vertex at position k
amounts to inserting one up-step followed by one down-step right after time k and

slicing at position k amounts to lifting up by one the part of the path between time k and

the first subsequent time the path becomes strictly lower than its height at time k (see

Figure 8).

These are exactly the moves considered in [10] (see in particular [10, Figure 1]). The

latter reference implies that, for each n, the encoding Dyck path of Pn is uniformly

distributed over the set of 2n-step Dyck paths and that the convergence (3.1) holds al-

most surely for this choice of sequence (Pn)n. As a result, there is no need to apply

Skorokhod’s representation theorem in the proof of Theorem 1, so that Pn strongly con-

verges toward the Brownian triangulation.

Figure 7: The unconstrained Dyck path that encodes a noncrossing pair partition.

As a result, a uniform noncrossing pair partition of P2n is encoded by a uniform 2n-
step Dyck path. By Kaigh’s theorem, after proper rescaling, this path converges to the
normalized Brownian excursion, and the original encoding 4n-step Dyck path clearly
converges toward the same limit, multiplied by

√
2. One then concludes exactly as in

the case of uniform noncrossing partitions (the extra multiplicative factor does not alter
the identifications).

4 Almost sure convergence

In this section, we prove Propositions 1.3 and 1.5. In fact, they are both straightforward
consequences of [10] and the encoding we use.

Proof of Proposition 1.3. In terms of encoding Dyck paths, inserting a vertex at position k
amounts to inserting one up-step followed by one down-step right after time k and
slicing at position k amounts to lifting up by one the part of the path between time k and
the first subsequent time the path becomes strictly lower than its height at time k (see
Figure 8).

These are exactly the moves considered in [10] (see in particular [10, Figure 1]). The
latter reference implies that, for each n, the encoding Dyck path of Pn is uniformly
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Figure 8: Consequences on the encoding Dyck paths of inserting a vertex or slicing at

position k.

Proof of Proposition 3. Inserting a short chord and inserting a long chord at position k re-

spectively correspond on the unconstrained encoding Dyck path of Figure 7 to inserting

one up-step followed by one down-step right after time k and lifting up by one the part

of the path between time k and time l. We conclude as above.
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distributed over the set of 2n-step Dyck paths and that the convergence (3.1) holds al-
most surely for this choice of sequence (Pn)n. As a result, there is no need to apply
Skorokhod’s representation theorem in the proof of Theorem 1.1, so that Pn strongly
converges toward the Brownian triangulation.

Proof of Proposition 1.5. Inserting a short chord and inserting a long chord at position k
respectively correspond on the unconstrained encoding Dyck path of Figure 7 to insert-
ing one up-step followed by one down-step right after time k and lifting up by one the
part of the path between time k and time l. We conclude as above.
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