N
N

N

HAL

open science

On the Proof-Oriented Design of a Context-Switching
Service in the Pip Protokernel

Florian Vanhems, Narjes Jomaa, Samuel Hym, David Nowak

» To cite this version:

Florian Vanhems, Narjes Jomaa, Samuel Hym, David Nowak. On the Proof-Oriented Design of a
Context-Switching Service in the Pip Protokernel. ENTROPY 2019, Jun 2019, Stockholm, Sweden.

hal-02347481

HAL Id: hal-02347481
https://hal.science/hal-02347481
Submitted on 5 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02347481
https://hal.archives-ouvertes.fr

On the Proof-Oriented Design of a Context-Switching Service
in the Pip Protokernel

Florian Vanhems, Narjes Jomaa, Samuel Hym, David Nowak
CRIStAL, CNRS & Lille University, France

Abstract—The Pip protokernel is a kernel whose trusted
computing base is reduced to its bare bones. The goal of
such minimisation is twofold: reduce the attack surface and
reduce the cost of the formal proof of security. In particular,
multiplexing is not implemented in the kernel but in a
partition whose code is executed in user mode. This of
course assumes that the kernel provides minimal services
dedicated to signal sending. In this paper, we describe a
streamlined service designed to allow for inter-partition
communication through userland structures that mimic the
traditional Interrupt Descriptor Table.

1. Introduction

Control flow transfer mechanisms are vital compo-
nents of a system. Transfers occur thousands of times a
second in our modern computers. Providing a robust —
and efficient — control flow transfer mechanism is there-
fore paramount in most systems. Yet, numerous software
attacks targeting the execution flow exist, notably through
memory corruption (use-after-free, buffer overflow, heap
overflow, etc.). Formally proving that no illegal accesses
are made to the system’s memory is a strong protection
against those attacks. Pip is a one-of-a-kind kernel that
provides formally proven memory isolation. In this paper,
we report on the design of Pip’s control flow transfer
service.

Related work sel4 [7] is the world’s first formally veri-
fied general usage microkernel. It provides virtual memory
management, thread scheduling, inter-process communi-
cation and access control. Whereas in the case of the
Pip protokernel those last two features are to be imple-
mented in userland. CertiKOS [5] provides a certified
programming method to formally develop kernels in Coq,
targeting an extension of CompCert Clight and assembly
code. It has been used to prove noninterference results [1].
Prosper [2] is a separation kernel that supports dataflow
functionalities of the ARMv7 processor, including inter-
partition communication, scheduling. Security properties
have been proved in HOL4. Bisimulation is used to
carry higher-level proofs, based on an abstract model
including communication channels, over to a concrete
one based on an intermediate language that represents
the ARM instruction set [3]. The security property about
the communication between isolated entities is the goal
of formal verification. This information flow property [4]
is verified at the binary code level using HOL4. In [8],
the theoretical verification framework XCAP is used to
formally verify a realistic x86 implementation of machine
context management.

QOutline This paper is structured as follows. First, in
Section 2, we give an overview of the Pip protokernel and
its security properties. Then, in Section 3, we describe how
we designed the context switching service and provide
some insight on how this service is meant to be used.
We focus in Section 4 on the formal proof of security
and the impact of our context switching mechanism on
it. Finally, we illustrate in Section 5 the usability of this
context-switching service.

2. About the Pip protokernel
2.1. Pip’s philosophy

Pip is a minimal operating system kernel where the
minimisation of its size is motivated by the reduction of
both the cost of proof and the attack surface, while allow-
ing for efficiency and usability. The code of Pip is written
in Gallina (the language of the Coq proof assistant). More
precisely, we restrict ourselves to a monadic code that
allows for a word-for-word translation into C code.

The primary goal of Pip is to provide memory isolation
to applications that run inside memory partitions (that
we simply call partitions). At boot, Pip creates a single
partition congregating the system’s whole memory, called
the root partition.

At any time, a partition can decide to create another
partition. We refer to the newly created partition as a child
of the first partition, while we refer to the first partition
as the parent of the new partition.

In order to create a child partition, a parent has to share
a part of its own memory, and provide it to its child. The
memory shared this way is accessible to both the child and
its parent, except for a tiny amount requisitioned by Pip to
maintain its internal structures. The memory requisitioned
by Pip is no longer accessible to any of the partitions.

These parent-child relation between the partitions cre-
ate a partition hierarchy called partition tree. Fig. 1 shows
a partition tree where P,,, is the root partition, that
has P; and P, as children partitions. In a partition tree,
we say that two partitions are incomparable if none of
them is an ancestor of the other. For example in Fig. 1 P
and P; 1 are incomparable.

Note that only Pip’s code is allowed to run in ker-
nelland. Any other piece of code (such as the code of a
partition) runs in userland, with no privilege.

2.2. Pip’s security properties

Significant works were carried out to formalise se-
curity properties that should be ensured by operating

Py Py P s
P, \ / Py
userland Froot
kernelland Pip

Figure 1. A partition tree example

systems [9], [10]. This includes the isolation between
applications as well as controlling the communications
between them. Therefore, a first step in this verification
process is to require a concise definition of the secu-
rity properties and to identify hardware and software
components on which these properties are founded. In
this context, we are interested in the memory isolation
property. This property ensures that an application cannot
illegally access the memory of another application, nor
the kernel’s. We consider it the most fundamental security
property, because it allows to prove several other security
properties such as ensuring the security of communication
between processes. We decomposed the isolation property
into four lesser properties described below.

Kernel isolation This property mainly defines the iso-
lation of the kernel’s data and code from unauthorised
access that may occur from userland. In our case, this
property is based on memory partitioning. Memory con-
figuration is performed by the kernel and user accesses are
controlled by the hardware component MMU (Memory
Management Unit).

Horizontal isolation This property states isolation be-
tween incomparable partitions (see definition and example
at Sec. 2.1). It guarantees that the configuration of the
address space of a partition does not allow it to access
the physical memory of another incomparable partition.
Like the previous one, this property relies on the MMU
to control user accesses.

Vertical sharing This property ensures that all pages of a
partition are a subset of its parent pages and (recursively)
of its ancestors in the partition tree. It is important to
manage the hierarchical model of the TCB where the
security of a partition relies on the security of its ancestors.

Internal consistency This property states that informa-
tions stored in the kernel structures are consistent with the
current state of the memory. For example, these structures
include the configuration of the MMU for each partition.

3. Designing Pip’s control flow service

We will further refer to the context switching service
as switch. Pip’s philosophy is to reduce the TCB to a
strict minimum. Pushing the microkernel, then exokernel
philosophy further, Pip throws multiplexing outside of the
kernel. This allows for a lighter proof cost as well as a
tighter attack surface [6].

As such, Pip’s sole concern about hardware interrupts
is to forward them to the root partition, which will assume
the multiplexer’s role and process them as it sees fit. In

case of a software interrupt, Pip will handle it only if it is
a call to one of its own services. It will otherwise forward
it to the parent of the caller and pass the execution flow.

It becomes obvious that Pip needs to provide a way
for multiplexers - and generally every partition - to send
signals to each other, and that partitions should be able to
process these signals their own way. This is semantically
close to software interrupts, but each partition should
be able to configure its interrupt handlers independently
from one another. It follows that a per-partition structure
is required to hold the configuration. We decided that
switch would be built on this observation.

3.1. VIDT and contexts

switch uses a structure called ”Virtual Interrupt
Descriptor Table” (VIDT). This structure lives in userland,
in the partition’s virtual address space, to allow partitions
to manipulate it at will. The VIDT holds pointers to CPU
states (mainly snapshots of the CPU registers) that we call
contexts. These contexts are stored in the partition’s own
memory. Each interrupt number is associated to a context
as seen on Fig. 2.

No. Partition VIDT

0 context pointer
1 context pointer |—__ |
! !
| N |
! : ; Context
255 context pointer |- N

Figure 2. A partition VIDT and its pointers to contexts

In order to pass the execution flow from a partition A
to another partition B, switch first creates a context out
of partition A’s CPU state, and stores it inside partition
A’s virtual IDT. Next, it switches to the memory space
of partition B by modifying the page table root register
(CR3) which is stored inside Pip’s structures. Last, it re-
stores a context from partition B’s VIDT, and lets partition
B resume its execution.

Pointers and contexts living in userland implies that
some partitions may try to alter them. Even though, par-
titions can not use this ability to threaten Pip’s security
measures, if Pip carefully checks the data it uses from the
partitions. Those checks include verifying that some pages
are accessible to the memory partition, that the pointers
Pip dereferences actually points inside the partition, etc.
On another side, we do not need to check the “validity” of
the contexts we restore, as they would run in user mode.
Any illegal access to the memory would be prevented by
the MMU, generating a fault.

However, we did find a way to circumvent Pip isola-
tion properties if those checks were not thoroughly made;
we will further discuss this in Sec. 4.

3.2. Calling switch

In this section, we review the different arguments
required to call switch, in order to highlight parts of

its behaviour.

The caller must first indicate the partition it wants to
call. In order to do so, Pip provides a structure called
partition descriptor, that lives in kernelland. The partition
descriptor’s address is returned by Pip at creation time,
allowing the parent to further refer to its newly created
child. The caller hence uses the partition’s descriptor
virtual address (in its virtual address space) to refer to its
callee. This is fine if the callee is any of its child, as their
accessible memory resides in the caller’s addressing space
by design (although the memory requisitioned by Pip is
not accessible anymore). On the contrary, a caller has no
way to refer to any of its ancestors through an address
since its ancestor’s partition descriptors are stored outside
of its virtual memory (it would otherwise break Pip’s
recursive tree structure, thus breaking invariants required
by the isolation property). That is why we set a particular
address (an address that cannot be used as a partition
descriptor for a child) to allow a partition to send an
interrupt to its parent. We call that particular address the
default address.

Second, the caller partition must provide the interrupt
number it wants to send to the callee. Being able to
choose from different interrupt numbers allows a partition
to have multiple entrypoints, allowing it to declare specific
handlers for specific situations.

Third, it must declare an interrupt number to associate
its current context with. That context will be restored
whenever said associated service is called. The partition
only has to provide an interrupt number. Pip will then
read the address located at the corresponding index in the
VIDT, and then save the context at this address, as seen
on Fig. 3.

No. Caller’s VIDT

Context write location

Associated
interrupt
number

context address

Figure 3. Pip saving a context in the caller’s memory

If the address is invalid (for example if some part
of the context would be written out of the partition’s
accessible memory), Pip will cancel the call and throw
an error to the caller. If the partition wants its context to
be dropped, it can provide an unused interrupt number,
where the default address is written. In that case Pip will
skip saving the partition’s context and will not throw an
error.

Fourth, Pip provides a way for partitions to ignore
specific interrupts. This allows partitions that do not im-
plement some interrupt handlers to ignore the associated
interrupts. It can also be used by partitions to ensure
they are not called on specific handlers when being in
an unstable state. There are two sets of flags to provide
when calling Pip. The first ones are applied to the caller if
the execution flow transfer is to be successful. These flags

are applied until Pip restores one of the caller’s contexts.
The second ones are only useful if the caller chose to
save its context. In that case, these flags will be inserted
in its current context, and restored whenever the context
is loaded again. These flags are applied atomically, which
means they are effective as soon as Pip did transfer the
execution flow. This is akin to the hardware features an OS
kernel uses when it needs to ensure atomicity of sequences
of instructions (by blocking interrupts for some time).

4. Impact on Pip’s isolation properties

Pip’s fundamental security properties. The isolation
proof of switch remains to be written. We can only
give some insight, but we believe there will be no major
obstacle to the isolation’s proof. Indeed, this service does
not deal with Pip’s internal structures, as opposed to Pip’s
other services. We briefly explained in Section 2.2 what
are Pip’s isolation properties, and are going to provide
arguments on why we believe this service does not break
these properties.

While switch needs to access kernel structures to
translate the partition’s addresses, it does not tinker with
them in any way. The service sometimes has to write in
memory, but it only does so inside its caller’s accessible
memory. Moreover, the kernel isolation property assures
that — before the service execution — the partition’s acces-
sible memory is disjoint to Pip’s memory. That implies
that structures tracking memory partitioning remain un-
touched during the service’s execution, therefore making
the whole set of properties trivial to prove (once we proved
that Pip only writes in userland).

Extending Pip’s isolation properties. This section will
focus on security aspects that are not covered by Pip’s
fundamental security properties. As pointed out in Sec-
tion 3.1, without the proper checks, a malicious partition’s
code could use Pip to read into protected memory.

By making a child’s handler context point into kernel
pages, and calling that handler, the malicious partition
would make Pip load part of its kernel pages as if it
were a context. This would most certainly make the child’s
partition fault, and Pip would dump the faulting context to
the child’s VIDT (this dumping mechanism is provided by
Pip, and is required to let parents handle expected faults -
such as stack overflows - from their children). This would
allow the malicious parent to retrieve the faulting context,
thus reading parts of the kernel’s memory. This particular
setup is pictured on Fig. 4.

However, this does not break any of Pip’s fundamental
properties, as this particular attack does not involve con-
figuration pages. It has been shown that those fundamental
properties imply some basic information flow proper-
ties [6]. We do not want them to be too rigid because
each partition should be able to enforce the information
flow policy for itself and its descendants. But still, this
particular example suggests that we should prove a new
security property stating that each address a service de-
references from a partition’s accessible memory needs to
point to that same partition’s accessible memory (beside
the eventual default values for which Pip acts differently).
This property did not appear when dealing with the other

1. Parent creates a child
2. Parent makes

one of its child
handler point to
Pip’s memory

Parent

3. Parent calls
the previously
modified
handler

4. Pip loads the memory pointed
by the handler’s pointer

T

Child Pip

~_

5. Pip data context is loaded, Child partition faults
6. Pip dumps the faulting context to the Child’s
VIDT, and returns to the parent

Figure 4. A partition reading Pip’s supposedly inaccessible data

Pip’s system calls because they only deal with memory
partitioning, and not with the control flow like switch.

5. Application to the real world

This section will illustrate how this service can be
used with a real world example. We will illustrate how a
Linux partition can use Pip to notify a server process that
it should close.

Let’s assume we have a Linux partition somewhere
in Pip’s partition tree, and that Linux has spawned pro-
cesses which are inside their own partitions, including the
aforementioned server. Linux uses Pip’s VIDT structure
to register its system calls, and most notably the exit ()
system call. The server is configured to handle SIGINT
signals.

The setup is pictured on Fig. 5.

Server calls
exit ()

Linux

Linux sends a
SIGINT signal

Lightweight Server

Figure 5. Linux sending a signal to a lightweight server

The model allows for whatever semantic you’d like
behind each interrupt, so let’s arbitrarily pretend Linux
chose interrupt 0xA3 to signal a SIGINT and interrupt
0xB7 to handle an exit () syscall.

Linux calls Pip with the server’s partition descriptor
and interrupt number O0xA3 (in this example, flag argu-
ments have no influence whatsoever, they’ll be omitted).
Pip performs the checks described in Section 3.1, and
loads the server’s context associated with the 0xA3 in-
terrupt.

Note that the server may have disabled this interrupt
through the flags, for whatever reason. Let’s assume this is
not the case, that the interrupt is not masked and a proper
context has been set up to handle the situation correctly.

The server’s handler does its housekeeping, closing
incoming connections and preparing it for deletion. Once
it’s done, the handler calls Linux’s system call exit ()
to notify its termination. It provides Pip with the default
address (to notify its parent), interrupt number 0xB7 (here
flags don’t matter neither). Once again we suppose that
Linux was set up to let this happen.

Linux’s context associated with interrupt 0xB7 is
hence loaded. Linux then proceeds with the deletion of
the process’ partition and collects its memory.

6. Conclusions

In this paper we have described a kernel service de-
signed to allow memory isolated processes to commu-
nicate through signals. It follows Pip’s philosophy as it
only provides for the code that must run in kernelland.
Anything else, such as a multiplexer, is implemented
efficiently in userland by relying on Pip services. We
have argued that Pip’s fundamental security properties are
preserved by the discussed service and that it can be (and
will be) formally proved in Coq without any obstacle. We
have also noticed that the specificity of system call require
an additional information-flow security property.

References

[1] D. Costanzo, Z. Shao, and R. Gu. End-to-end verification of
information-flow security for C and assembly programs. In Pro-
ceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2016, Santa Barbara,
CA, USA, June 13-17, 2016, pages 648—664. ACM, 2016.

[2] M. Dam, R. Guanciale, N. Khakpour, H. Nemati, and O. Schwarz.
Formal verification of information flow security for a simple ARM-
based separation kernel. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, pages 223—
234. ACM, 2013.

[3] A.C.J. Fox and M. O. Myreen. A trustworthy monadic formal-
ization of the armv7 instruction set architecture. In Interactive
Theorem Proving, First International Conference, ITP 2010, Edin-
burgh, UK, July 11-14, 2010. Proceedings, volume 6172 of Lecture
Notes in Computer Science, pages 243-258. Springer, 2010.

[4] J. A. Goguen and J. Meseguer. Security policies and security
models. In 1982 IEEE Symposium on Security and Privacy, pages
11-11. IEEE, 1982.

[51 R. Gu, Z. Shao, H. Chen, X. N. Wu, J. Kim, V. Sjoberg, and
D. Costanzo. CertiKOS: An extensible architecture for building
certified concurrent OS kernels. In OSDI, pages 653-669, 2016.

[6] N.Jomaa, P. Torrini, D. Nowak, G. Grimaud, and S. Hym. Proof-
oriented design of a separation kernel with minimal trus ted
computing base. In I8th International Workshop on Automated
Verification of Critical Systems, Oxford, United Kingdom, Elec-
tronic Communications of the EASST Open Access Journal, 2018.

[71 G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish,
T. Sewell, H. Tuch, and S. Winwood. sel4: Formal verification
of an OS kernel. In Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles, 2009.

[8] Z.Ni, D. Yu, and Z. Shao. Using XCAP to certify realistic systems
code: Machine context management. In Theorem Proving in Higher
Order Logics, pages 189-206, 2007.

[9] J. Rushby. The design and verification of secure systems. In Eighth
ACM Symposium on Operating System Principles (SOSP), pages
12-21, 1981. (ACM Operating Systems Review, Vol. 15, No. 5).

[10] J. Rushby. A trusted computing base for embedded systems. In
Proceedings 7th DoD/NBS Computer Security Initiative Confer-
ence, pages 294-311, 1984.

