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Explicit Rieffel induction module for quantum
groups

Damien Rivet

Abstract

For G an algebraic (or more generally, a bornological) quantum group
and B a closed quantum subgroup of G, we build in this paper an induction
module by explicitly defining an inner product which takes its value in the
convolution algebra of B, as in the original approach of Rieffel [Rie74]. In
this context, we study the link with the induction functor defined by
Vaes. In the last part we illustrate our result with parabolic induction
of complex semi-simple quantum groups with the approach suggested by
Clare [Cla13][CCH16].

1 Introduction
Let G be a locally compact group and B a closed subgroup of G. One can build
unitary representations of G from those of B with the unitary induction proce-
dure due to Mackey [Mac52], who also developed the concept of imprimitivity.
Rieffel [Rie74] gave an alternative and more general formulation in the C∗-
algebraic setting by using C∗-Hilbert modules. In short, there exists a Hilbert
C∗(B)-module E(G), with a left unitary action of C∗(G), such that for a uni-
tary representation of B on any Hilbert module V , E(G)⊗C∗(B)V is the induced
unitary representation of G.

In the case where G is a locally compact quantum group and B a closed
quantum subgroup, induction procedures have been developed by Kustermans
[Kus02] and Vaes [Vae05]. Vaes was able to formulate this in a wide framework
and to state imprimitivity theorems. In this paper we develop an approach
closer to the original one of Rieffel, by directly defining the induction module
E(G).

The main difficulty is that, unless B is also an open subgroup of G (the case
treated in [KKSS]), we don’t have an inclusion of C∗(B) into C∗(G) and so it
is not possible to define a conditional expectation from C∗(G) to C∗(B). In his
original paper Rieffel avoided this issue by considering the convolution algebra
Cc(G) of compactly supported functions on G, instead of the full space C∗(G).
Then he defined a weak conditional expectation Cc(G)→ Cc(B).

The bornological setting for quantum groups developed by Voigt [Voi08]
allows us to consider algebras with comparable properties and then to define
an analogue of the weak conditional expectation. One of the main goals of this
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paper is to show that, in this particular case, the induction functor we obtain is
the same as the one defined by Vaes. We thus get a more direct way to compute
induced representations for regular bornological quantum groups and to apply
the powerful imprimitivity theorems. We remark that the class of bornological
quantum groups is an extremely large subclass of locally compact quantum
groups. The only known obstruction to being bornological is non-regularity
and regularity is already a necessary condition in Vaes imprimitivity theorem.
The class of bornological quantum groups includes compact quantum groups,
complex semi-simple qauntum groups and classical locally compact groups.

In the last part, we illustrate the general construction with the example of
principal series representations of a semi-simple complex quantum group Gq
[VY19a]. Specifically, in analogy to the classical case in [CCH16], we build a
module using a Gq-space Gq/Nq, which implements the parabolic induction.
The notation Gq/Nq is meant to suggest a homogeneous space with respect to a
quantum analogue of the classical unipotent subgroup altough we do not actually
use any such subgroup in its definition. As well as giving a noncommutative
geometry perspective on the parabolic induction functor for Gq we can thus
provide a new description of the structure of the reduced C∗-alegebra C∗r (Gq)
following the result of [VY19b].

2 Bornological quantum groups
Bornological quantum groups, defined by Voigt [Voi08], are a generalization
of algebraic quantum groups introduced by Van Daele [Dae98] where most of
the interesting properties stay valid. In the section we recall some technical
points on bornological quantum groups. It can be ignored by just replacing
bornological by algebraic quantum groups.

Definition 2.1. A bornological quantum group is an essential bornological ∗-
algebra A(G) satisfying the approximation property, together with a comultipli-
cation ∆ : A(G) → M(A(G) ⊗ A(G)), such that all Galois maps associated to
∆ are isomorphisms, and a faithful left invariant positive functional φG.

We recall that the Galois maps associated to ∆ refer to the four following
maps

γl : f ⊗ g 7→ ∆(f)(g ⊗ 1), γr : f ⊗ g 7→ ∆(f)(1⊗ g),

ρl : f ⊗ g 7→ (f ⊗ 1)∆(g), ρr : f ⊗ g 7→ (1⊗ f)∆(g),

which by assumption are isomorphisms of A(G)⊗A(G).
Remark 1. We modify the original definition of [Voi08] by adding a ∗-structure.
We do not treat technical details in this paper, which will be treated in [Riv20].

Let A(G) a bornological quantum group endowed with a compatible ∗-
structure f 7→ f̄ . (This notation, inspired by the commutative case, is un-
conventional but motivated by the fact that we will use another ∗-structure
denoted by f 7→ f∗ for the convolution algebra).
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Remark 2. In this paper the tensor notation ⊗ designates, either the natural
tensor product in the category of bornological vector spaces (Voigt uses ⊗̂) or
the tensor product of Hilbert modules. The meaning will be clear from the
context.

The hypothesis about Galois maps is the crucial point which allows us to
define what we need for our Rieffel-like approach. In particular we define the
associated convolution algebra D(G) where D(G) = A(G) as a bornological
vector space, endowed with a ∗-algebra structure defined by

f ∗ g = (id⊗ φG)[(1⊗ S−1(g))(∆(f))], ∀f, g ∈ D(G),

f∗ = S(f)δG.

where δG ∈M(A(G)) designates the modular element associated with the Haar
state φG, defined by the property

(φG ⊗ id)(∆(f)) = φG(f)δG ∈M(A(G)), ∀f ∈ A(G).

We also mention the notable property

φG(S(f)) = φG(fδG).

Remark 3. • D(G) has in fact a structure of Hopf algebra, as the dual quan-
tum group of A(G) (with comultipication denoted by ∆̂) but we use it
rarely.

• In [Voi08], D(G) is defined as a subspace of A(G)′ instead of being the
same space as A(G). The way to pass from one picture to another is to
consider the map f 7→ φG(·f), which is a Hopf ∗-isomorphism. In our
picture, the natural pairing between A(G) and D(G) is expressed as

(f, g) = φG(gf), f ∈ A(G), g ∈ D(G).

See Theorem 1.11 in [VY19a] for consequences of this convention.

• Associated to a left corepresentation α on V of A(G) one can obtain a
representation of D(G) via

f ∗ v = (φG ⊗ id)((ρ(f) ◦ S−1 ⊗ id)(α(v)), f ∈ D(G), v ∈ V.

Where ρ(f) designates the right multiplication by f .

We denote by L2(G) the GNS construction associated with (A(G), φG). Note
we have the remarkable identity

〈f, g〉L2(G) = φG(f̄g) = ε(f∗ ∗ g), ∀f, g ∈ A(G).

We suppose that A(G) has a universal C∗-algebra Cu0 (G) which, endowed
with the extension of ∆ : Cu0 (G) 7→ M(Cu0 (G)⊗̂Cu0 (G)), is a locally compact
group. For technical reasons we always suppose that the unbounded element

3



δ
1
2

G affiliated to Cu0 (G) belongs to M(A(G)) (which seems to be valid for all
examples of our interest). The generality of these points will also be treated in
[Riv20]. The dual locally compact quantum group of Cu0 (G) will be denoted by
C∗(G).
Remark 4. The reader must be careful, in whole paper we juggle with A(G) and
D(G) using everywhere both structures of algebras, which can be confusing.

3 Closed quantum subgroups
Definition 3.1. A bornological quantum group A(B), equipped with a bounded
surjective ∗-morphism of bornological quantum groups π : A(G) → A(B) is
called a closed quantum subgroup of A(G).

Let A(B) such a subgroup with a left Haar state φB (with modular discrim-
inant δB). The map π induces right coaction of A(B) on A(G)

(id⊗ π) ◦∆ : A(G)→M(A(G)⊗A(B))

and and left coaction defined in the same way, but those two coactions do not
induce a unitary map D(B)→M(D(G)). We fix this problem by defining

γ = π(δ
− 1

2

G )δ
1
2

B ∈M(D(B))

which is a group-like element. Now we modify the map π into

E : D(G)→ D(B), E(f) = π(f)γ.

We then set for all f in D(G) and for all h ∈ D(B)

f · h =(id⊗ φB)[(1⊗ S−1(h))((id⊗ E)(∆(f))],

h · f =(φB ⊗ id)[((S−1 ◦ E ⊗ id)∆(f))(h⊗ 1))].

Proposition 3.2. The map E : D(G) → D(B), E(f) = π(f)γ, has the two
following properties :

1. E(f∗) = E(f)∗,

2. E(f · h) = E(f) ∗ h and E(h · f) = h ∗ E(f).

Proof.

E(f∗) = E(S(f)δG)

= S(π(f))π(δG)γ

= S(π(f))π(δ
1
2

G )δ
1
2

B

= S(π(f)γ)δB = E(f)∗.

E(f · h) = E((id⊗ φB)[(1⊗ S−1(h))(id⊗ π)(∆(f))(1⊗ γ)])

= (id⊗ φB))[(1⊗ S−1(h))(π ⊗ π)(∆(f))(1⊗ γ)(γ ⊗ 1)])

= (id⊗ φB))[(1⊗ S−1(h))(∆(π(f)γ))]

= E(f) ∗ h.
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The last equality can be shown in the same way.

Now we set π̂ : D(B) → M(D(G)), where for h ∈ D(B), π̂(h) is defined as
a multiplier by π̂(h) ∗ f = h · f and f ∗ π̂(h) = f · h. To make sure that for
h ∈ D(B), π̂(h) indeed defined a multiplier we check that

(g ∗ f) · h = g ∗ (f · h) and h · (f ∗ g) = (h · f) ∗ h ∀f, g ∈ D(G).

The compatibility between the right and left action follows directly from the
second point of 3.2.

Proposition 3.3. The map π̂ is a ∗-morphism.

Proof. The morphism property follows from the associativity

(k ∗ h) · f = k · (h · f) and f · (k ∗ h) = f · k) · h,

where f ∈ D(G))and h, k ∈ D(B). This can be checked directly. The compati-
bility with the ∗-structure can be expressed as the equalities

π̂(h∗) ∗ f = (f∗ ∗ π̂(h))∗ and f ∗ π̂(h∗) = (π̂(h) ∗ f)∗.

which are clearly true.

Proposition 3.4. The extension π : Cu0 (G) → Cu0 (B) identify L∞(B) as a
closed quantum subgroup of L∞(G) (in the sens of Definition 2.5 of [Vae05]).

Proof. The map π̂ : D(B) → M(D(G)) naturally extends to the following two
morphisms

C∗(B)

��

π̂ // M(C∗(G))

��

L(B)
π̂ // L(G)

and one can check that the density of D(B) in C∗(B) and L(B) ensure that the
diagram commutes.

4 The induction module E(G)

We equip the space D(G) with the right action of D(B) defined above (induced
by π̂).

Proposition 4.1. The sesquilinear map 〈 , 〉D(B) defined for f, g ∈ D(G) by

〈f, g〉D(B) = E(f∗ ∗ g),

defines a D(B)-valued inner product.
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The D(B)-linearity and compatibility with the involution of the above sequi-
linear map follow immediately from proposition 3.2. It only remains to check
the strict positivity, which we obtain by first proving the following result.

Proposition 4.2. The map ρ• : D(G)→ B(L2(B), L2(G)) defined by

ρf (η) = f · η, , ∀f ∈ D(G),∀η ∈ D(B),

verifies
〈f, g〉D(B) = ρ∗fρg,

where 〈f, g〉D(B) is seen as an element of B(L2(B)).

Proof. First we claim that as an operator, (ρf )∗ is equal to 〈f, ·〉D(B). For this,
note that using εB(E(x)) = εG(x), for any x ∈ D(G), we obtain εB(E(x ∗ y)) =
εG(x∗ ∗ y) = 〈x, y〉L2(G) for any y ∈ D(G). Therefore, for all η ∈ A(B) and
ξ ∈ A(G) we have

〈ρfη, ξ〉 = 〈f · η, ξ〉L2(G)

= εB(〈f · η, ξ〉D(B))

= εB(η∗ ∗ 〈f, ξ〉D(B))

= 〈η, 〈f, ξ〉〉L2(B) .

We also have :

〈f, g〉D(B) ∗ η = 〈f, ρgη〉D(B)

= ρ∗fρgη.

This concludes the proof of Proposition 4.1.

Definition 4.3. The Hilbert C∗(B)-module completed from D(G) with respect to
the inner product is denoted E(G) and we call it the induction module (associated
to B).

See [Lan95] for details about the completion. The space E(G) is innately
equipped with a left C∗(G)-action, which commutes with the right C∗(B)-action.
We then get our induction bi-module

C∗(G)E(G)C∗(B).

Now, for α a representation of C∗(B) on a A-Hilbert module K (where A is
any C∗-algebra) we consider, following Rieffel’s definition for induced represen-
tations in [Rie74], the A-Hilbert module

IndGBV = E(G)⊗C∗(B) V,

where the tensor product is completed with respect to the interior inner product
([Lan95]).
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5 Link with Vaes’ approach to induction
Still considering our quantum groups G and B, we illustrate in what follows the
induction procedure of [Vae05]. We start with L∞(G) seen as a Von Neumann
algebraic group and its closed subgroup L∞(B) and we consider a representation
of B on an A-Hilbert module V , seen as a ∗-morphism α : Cu0 (B)→ B(V ). From
this we take in consideration the Hilbert module

L2(G)⊗ V,

equipped with a left action βl : L(B) → B(L2(G) ⊗ V ), a right action βr :
L(G) → B(L2(G) ⊗ V ) and also a right action L∞(G) → B(L2(G) ⊗ V ),
determined on dense subspaces by

• βl(h)(ξ ⊗ v) = (π̂ ⊗ α)(∆̂(h))(ξ ⊗ v), h ∈ D(B), ξ ⊗ v ∈ L2(G)⊗ V ,

• βr(f)(ξ ⊗ v) = (ξ ∗ f∗)⊗ v, f ∈ D(G),

• (ξ ⊗ v).f = ξf ⊗ v, f ∈ A(G).

One then considers the L(G)-L(G)-bimodule

I ⊗L(B) (L2(G)⊗ V ),

where I is defined by

I = {u ∈ B(L2(B), L2(G)), ux = π̂′(x)u ∀x ∈ L(B)′}

and naturally equipped with a L(G)-L(B)-bimodule structure. The Hilbert
module I⊗L(B)(L2(G)⊗V ) has a structure of equivariant L(G)-L(G)-correspondence
so it can be written ([Vae05, Proposition 3.7]) as

I ⊗L(B) (L2(G)⊗ V ) = L2(G)⊗ Ind V

where Ind V is a canonically defined A-Hilbert module, and defines the induced
representation in the sens of Vaes. The aim of this section is to establish an
equivalence of representations

Ind V ∼= E(G)⊗C∗(B) V

For that purpose we equip L2(G) ⊗ E(G) ⊗C∗(B) V with its natural L(G)-
L(G)-correspondence structure (see [Vae05, section 3]) with actions given for
ξ ⊗ f ⊗ v ∈ L2(G)⊗ E(G)⊗C∗(B) V by

• γl(g)(ξ ⊗ f ⊗ v) = [(λ⊗ λ)(∆̂(g))(ξ ⊗ f)]⊗ v,∀g ∈ D(G),

• γr(g)(ξ ⊗ f ⊗ v) = ξ ∗ g∗ ⊗ v,∀g ∈ D(G),

• (ξ ⊗ f ⊗ v).h = ξg ⊗ f ⊗ v,∀h ∈ A(G).

Here λ designates the convolution action, that is λ(g)f = g ∗ f .
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Proposition 5.1. We have an equivalence of equivariantW ∗-L(G)-L(G)-bimodules

I ⊗L(B) (L2(G)⊗ V ) ∼= L2(G)⊗ E(G)⊗C∗(B) V.

Lemma 5.2. The morphism ρ• (4.2) defines a injection with dense image
E(G)→ I (with respect to the weak topology of B(L2(B), L2(G))). Its image is
denoted I0.

Proof. D(G)op can be embedded in L(G)′ via

ι(f)ξ = ξ ∗ f, f ∈ D(G), ξ ∈ D(G).

Likewise for D(B) in L(B)′. Moreover, the map π̂′ defined in section 4 of [Vae05]
restricted as a morphism D(B)→ L(G)′ is given by

π̂′(h)ξ = ξ · h, h ∈ D(B), ξ ∈ D(G).

Thus, for x = ρf and u = ι(h) (f ∈ D(G), h ∈ D(B)) and η ∈ D(B), we have

x(u(η)) = x(η ∗ h)

= f · (η ∗ h)

= (f · η) · h
= π̂′(x)(u(η))

So it is clear that E(G) embeds in I. It remains to show that the image is dense.
Let ξ ∈ L2(G) and η ∈ L2(B). Suppose we have

〈ξ, f · η〉 = 0

for all f ∈ E(G). Let then u ∈ I. We want to obtain that 〈ξ, u(η)〉 = 0. Let
ε > 0, there exist

1. a ∈ A(B) s.t. ‖η − a‖L2(B) ≤ ε (density of A(B)),

2. b ∈ A(B) s.t. ‖b ∗ a− a‖L2(B) ≤ ε (approximation property),

3. c ∈ A(G) s.t. ‖u(b)− c‖L2(G) ≤ ε (density of A(G)).

Now, there exist k1, k2, k3 > 0 (depending only on the norms of ξ, η and u) s.t.

1. | 〈ξ, u(η)〉 − 〈ξ, u(a)〉 | ≤ k1ε,

2. | 〈ξ, u(a)〉 − 〈ξ, u(b ∗ a)〉 | ≤ k2ε, and we note that u(b ∗ a) = u(b) · a,

3. | 〈ξ, u(b) · a〉 − 〈ξ, c · η〉 | ≤ k3ε,

Finally, since 〈ξ, c · η〉 = 0 we have

| 〈ξ, u(η)〉 | ≤ (k1 + k2 + k3)ε,

So 〈ξ, u(η)〉 = 0 and we are done.
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Lemma 5.2 allows us to consider the linear map

Ψ : D(G)⊗ E(G)⊗C∗(B) V → I ⊗L(B) (L2(G)⊗ V )

ξ ⊗ f ⊗ v 7→ ∆(ξ)(f ⊗ 1)⊗ v

where on the right hand side we identify E(G) with its image in I.
We also need the following lemma to deal with regular vectors in a repre-

sentation

Lemma 5.3. Let K be a representation of C∗(G) on any Hilbert module, the
space

D(G)⊗D(G) K

equipped with the left convolution action of D(G) is a dense sub-D(G)-representation
of K.

Proof. The inclusion is given by the map determined by f⊗v ∈ D(G)⊗D(G)K 7→
f ∗ v. The associativity of the convolution ensures that it is a intertwinner and
the density comes from the fact that D(G) is dense in C∗(G) and that K is an
non-degenerate C∗(G)-module and thus essential.

This module is denoted byK∞ and one can see it as a leftA(G)-corepresentation
where the coaction is given by f ⊗ v 7→ ∆(f)⊗ v.

Proof of proposition 5.1. In this proof we will use Sweedler notation to clarify
the calculations, even though it is not well defined in the bornological framework.
One has to keep in mind that we only use the coproduct when we use convolution
products or actions and so each expression in calculus can be written formally in
terms of Galois maps and then do make sense. For example f(1)g⊗f(2) formally
means γl(f ⊗ g).

First, we show that the map Ψ is compatible with inner-products. Before
beginning the calculation, we observe that for h ∈ D(B), η ∈ A(G) and w ∈ V∞,
one can re-express the diagonal convolution action via

h ∗ (η ⊗ w) = [(π̂ ⊗ α)(∆̂(h))](η ⊗ w)

= φB(S−1(π(η(1))w(1))h)η(2) ⊗ w(2)

= η(2) ⊗ (π(S−1(η(1)))h) ∗ w.

Let ξ ⊗ f ⊗ v and η ⊗ g ⊗ w be in A(G) ⊗ D(G) ⊗D(B) V
∞. Using the above
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calculation in the equality (∗) below, we obtain〈
ξ(1)f ⊗ ξ(2) ⊗ v, η(1)g ⊗ η(2) ⊗ w

〉
I⊗L(B)(L2(G)⊗V )

=
〈
ξ(2) ⊗ v,

〈
ξ(1)f, η(1)g

〉
C∗(B) ∗ (η(2) ⊗ w)

〉
L2(G)⊗V

=
〈
ξ(2) ⊗ v, φG(ξ(1)fη(1)g(1))(π(η(2)g(2))γ) ∗ (η(3) ⊗ w)

〉
L2(G)⊗V

(∗)
=
〈
ξ(2) ⊗ v, φG(ξ(1)fη(1)g(1))η(4) ⊗ (π(S−1(η(3))π(η(2)g(2))γ) ∗ w

〉
L2(G)⊗V

=
〈
ξ(2) ⊗ v, φG(f̄ ξ(1)η(1)g(1))η(2) ⊗ (π(g(2)γ) ∗ w)

〉
L2(G)⊗V

= φG(ξ(2)η(2))
〈
v, φG(f̄ ξ(1)η(1)g(1))(π(g(2)γ) ∗ w)

〉
V

=
〈
ξ ⊗ v, η ⊗ (〈f, g〉C∗(B) ∗ w)

〉
L2(G)⊗V

= 〈ξ, η〉L2(G)

〈
v, 〈f, g〉C∗(B) ∗ w

〉
V

= 〈ξ ⊗ f ⊗ v, η ⊗ g ⊗ w〉L2(G)⊗E(G)⊗C∗(B)V .

Now we can extend Ψ : L2(G) ⊗ E(G) ⊗C∗(B) V → I ⊗L(B) (L2(G) ⊗ V ). It
is clear that this map Ψ intertwines the right action of L∞(G)′ and L(G). we
check for left actions. We have

[(λ⊗ λ)(∆̂(g))](ξ ⊗ f)⊗ v = φG(S−1(ξ(1)f(1))g)ξ(2) ⊗ f(2) ⊗ v

and its image under Ψ is

φG(S−1(ξ(1)f(1))g)ξ(2)f(2) ⊗ ξ(3) ⊗ v = g ∗ ξ(1)f ⊗ ξ(2) ⊗ v

so we are done.
To finish we check that Φ : I⊗πl (L2(G)⊗V )→ L2(G)⊗E(G)⊗αV defined

for f ∈ D(G), ξ ∈ A(G) and v ∈ V by Φ(f ⊗ ξ ⊗ v) = τ((S−1 ⊗ id)(∆(ξ))(f ⊗
1))⊗ v (where τ is the flip map), is the inverse bijection of Ψ.

Theorem 5.4. The representations Ind V and E(Gq)⊗C∗(Bq) V are equivalent.

Proof. We still follow proposition 3.7 of [Vae05], which establishes the link be-
tween representations and correspondences and apply it to proposition 5.1.

6 Parabolic Induction
In this section we give an explicit Rieffel induction module associated to the
functor of parabolic induction for complex semi-simple quantum groups. This
is an analogue of the construction due to Clare in [Cla13] for classical semi-
simple Lie groups.
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6.1 Preliminaries
We follow the notations and conventions of [VY19a]. Let g be a complex semi
simple Lie algebra and let Gq be the associated simply connected complex semi-
simple quantum group and Kq its maximal compact quantum subgroup (with
its multiplicative unitary W ∈M(A(K̂q)⊗A(Kq)). We write Uq(g) for the as-
sociated quantized enveloping algebra and UR

q (k) for the same algebra equipped
with the involution ∗, seen as the complexification of the quantized enveloping
algebra of the compact form Kq. We recall that the algebra of representative
functions on the Drinfeld double Gq = Kq ./ K̂q is defined by (see [VY19a,
Definition 3.18])

A(Gq) = A(Kq)⊗A(K̂q),

with coproduct

∆Gq (a⊗ f) = W−132 (a(1) ⊗ f(1) ⊗ a(2) ⊗ f(2))W32.

It is equipped with a left Haar state φKq ⊗ ψK̂q , where φKq is the Haar state
on A(Kq) and ψK̂q the right Haar state on A(K̂q) (dual to the right Haar state
ψKq .

Let P is the weight lattice associated to g and UR
q (t) = span{Kλ, λ ∈ P}.

For each µ ∈ P we define eµ ∈ UR
q (t)′ by

eµ(Kλ) = q(λ,µ).

In this way we can identify the algebra of functions on the torus subgroup T of
Kq as

A(T ) = span{eµ, µ ∈ P} ⊂ UR
q (t)′,

where P is the weight lattice associated to g and where eµ is defined by
T is naturally identified with spec(A(T )) and we note that for any λ ∈ t∗

we obtain a character of the ∗-algebra A(T ) by

(Kiλ, e
µ) = qi(λ,µ)

and this yields an identification T ∼= i(t∗/ 2π
log(q)Q

∨) where Q∨=Hom(P,Z) is the
coroot lattice, see [VY19a, Section 5.11]. We will not use this identification in
what follows.
We define the restriction map π : A(Kq)→ A(T ) via

π(a) = a|UR
q (t)

.

The Borel subgroup Bq = T ./ K̂q is defined via A(Bq) = A(T ) ⊗ A(K̂q)
(see [VY19a, section 3.7] with coproduct

∆(a⊗ f) = W̃−132 (a(1) ⊗ f(1) ⊗ a(2) ⊗ f(2))W̃32,
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twisted by the bicharacter W̃ = (π⊗ id)(W ). It is a closed subgroup of Gq with
restriction map

π ⊗ id : A(Gq)→ A(Bq).

We denote by φT the Haar functional on A(T ). The functional φT ⊗ψK̂q is left
invariant on A(Bq) (it will be denoted φBq ) and we have

δBq = 1⊗K−4ρ

for the associated modular element (see the proof of [VY19a, Propopistion
3.19]). We thus obtain our map E : D(Gq)→ D(Bq), E(a⊗f) = π(a)⊗fK−2ρ,
for all a⊗ f in D(Kq)⊗D(K̂q). We also note that the convolution algebra can
be explicitly defined in as D(Bq) = D(T ) ./ D(K̂q) with twisted product given
for x ./ u and y ./ v ∈ D(T ) ./ D(K̂q) by

(x ./ u)(y ./ v) = x(y(1), u(1))y(2) ./ u(1)(y(3), S
1(u(3)))v,

where we consider here the coalgebra structures of D(T ) and D(K̂q) and the
natural pairing between those two Hopf algebras. The coproduct on D(Bq) is
simply the untwisted coproduct of D(T )⊗D(K̂q).

For the discrete quantum group A(K̂q) we denote by 1̂Kq the element cor-
responding to the Haar state φKq ∈ D(Kq) (where here D(Kq) is seen as a
subspace of A(Kq)

′). It is the identity element for the convolution in D(K̂q).

The quotient map

In the classical case, with G = KAN , principal series representation are induced
from characters of the the Borel subgroup B = MAN . Explicitly, we choose
first a character µ of M and λ of A and the identification MA = B/N allows us
to extend µ⊗ λ to a character of B. In this way we obtain the principal series
representation

IndGB µ⊗ λ.
In the quantum case we don’t have an analog for the subgroup N . But we do
have a quotient map

K̂q � Aq,

where Aq is simply a notation for the weight latticeP, which serves as a quantum
analog for A.

There are now two versions of the map π. First with the canonical identifi-
cation of ∗-algebras A(Kq) = D(K̂q) and A(T ) = D(Aq), one can consider

π : D(K̂q)→ D(Aq),

which is a ∗-morphism and induces a structure of left D(K̂q)-module on D(Aq).
Secondly, using the identifications of vector spacesA(K̂q) ∼= D(K̂q) andA(Aq) ∼=
D(Aq) one can also look at

π : A(K̂q)→ A(Aq)

12



which is a conditional expectation is the sense of Proposition 3.2 (observing that
Kq and T are unimodular) and in particular π(fKλ) = π(f)Kλ. This map has
also the notable property

φK̂q (f) = φAq (π(f)),

where φK̂q (resp. ϕAq ) is the left Haar measure on K̂q (resp. Aq) s.t. φK̂q (1̂Kq ) =

1 (resp. ϕAq (1̂T ) = 1). Indeed observe that writing FKq (a) : A(Kq) → A(K̂q)
the Fourier map, we have φK̂q (FKq (a)) = ε(a) for all a ∈ A(Kq). This last
version of π is what we call the quotient map.
Remark 5. We claim that the ∗-morphism π : D(K̂q) → D(Aq) makes D(Aq)

into a left D(K̂q)-module. Later, we will need to convert (see remark 3) this
structure on D(Aq) into the corresponding left A(K̂q)-comodule structure on
A(Aq) and it can be expressed simply as

αA(Aq) : π(f) 7→ f(1) ⊗ π(f(2))

for any f ∈ A(K̂q). It is not clear a priori that this map is well defined but it
follows from the fact that for g ∈ D(K̂q) and π(f) ∈ A(Aq), the action of g on
π(f) is given by

g ∗ π(f) = π(f ∗ g)

= φ̂(S−1(f(1))g)π(f(2))

Therefore we identify the expression of the associated coaction. With the same
kind of argument we can also express αA(Aq)(h) = π̂(h(1))⊗ h(2), h ∈ A(Aq).

6.2 The parabolic induction module : two constructions
In this section we build a Hilbert module which implements the parabolic in-
duction functor. We first define this module as a balanced tensor product
E(Gq) ⊗D(Bq) D(Lq) (details below). Then we build a geometric picture of
it by introducing a quantum homogeneous space that we denote in by Gq/Nq.

We set Lq = Aq × T (which is a classical group), its convolution algebra is
D(Lq) = D(T ) ⊗ D(Aq) (with the ordinary tensor product hopf algebra struc-
ture). The ∗-morphism (id ⊗ π) : D(Bq) → D(Lq) provides the right D(Lq)-
module D(Lq) with a left D(Bq)-action. For (µ, λ) ∈ P× t∗, one can build the
one dimensional representation of Bq

D(Lq)⊗D(Lq) Cµ,λ,

where Cµ,λ corresponds to the character Cµ ⊗ Cλ of D(Lq) = D(T ) ⊗ D(Aq)
given by a 7→ (a, eµ), a ∈ D(T ) and f 7→ λ(f), f ∈ D(Aq). Because of the
essentialness of D(Lq), it is clear that D(Lq) ⊗D(Lq) Cµ,λ is one dimensional
and we again denote it by Cµ,λ, as a module of Bq. We recall the definition
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of parabolically induced representation associated to this character ( [VY19a,
chapter 5])

IndGqBqCµ,λ = {ξ ∈M(A(Gq)) | (id⊗ πBq )∆Gq (ξ) = ξ ⊗ (eµ ⊗K2ρ+λ)}.

with a inner product given by

〈a⊗ f, b⊗ g〉IndGqBqCµ,λ
= φKq (āb)

.

Proposition 6.1. The representations E(Gq) ⊗D(Bq) Cµ,λ and Ind
Gq
Bq

Cµ,λ of
C∗(Gq) are isomorphic.

Proof. We define the map

E(Gq)⊗D(Bq) Cµ,λ −→ IndGqBqCµ,λ
(a⊗ f)⊗ 1 7−→ (a⊗ f) · (eµ ⊗Kλ),

where for ξ ∈ A(Gq) we set

ξ · (eµ ⊗Kλ) = φBq (S
−1(eµ ⊗Kλ)πBq (ξ(2))(1⊗K−2ρ))ξ(1),

this is analogous to the definition of right action in section 3 except that Kλ

belongs to M(A(K̂q)). We first note that this map is well defined, it follows
from the group-like property of eµ ⊗Kλ and one obtains that for X ∈ D(Bq)
we have X ∗ (eµ ⊗ Kλ) = (µ ⊗ λ)(X)(eµ ⊗ Kλ) therefore (a ⊗ f) · X ⊗ 1 and
(a⊗ f)⊗ (µ⊗ λ)(X) have the same image.
The fact that (a ⊗ f) · (eµ ⊗K2ρ+λ) belongs to IndGqBqCµ,λ is again due to the
group-like property of eµ ⊗K2ρ+λ. Indeed for ξ ∈ A(Gq) we have

(id⊗ πBq )∆Gq (ξ · (eµ ⊗Kλ)) = ξ(1) ⊗ πBq (ξ(2))φBq (S−1(eµ ⊗Kλ)πBq (ξ(3))(1⊗K−2ρ))
(1)
= ξ(1) ⊗ πBq (ξ(2))φBq (S−1(eµ ⊗K2ρ+λ)πBq (ξ(3)))

(2)
= (ξ · (eµ ⊗Kλ))⊗ (eµ ⊗K2ρ+λ).

Here we have used the following properties: (1) KMS property : ψ̂(fg) =

ψ̂(K2ρ ⇀ g ↼ K−2ρf) cf 3.2.3 in [VY19a]).
(2) We write πBq (ξ(2)) = πBq (ξ(2))(e

µ⊗K2ρ+λ)S−1(eµ⊗K2ρ+λ) and we use the
left invariance of φBq .
It is clear that the map intertwines the D(Gq)-actions (because the left D(Gq)-
action on D(Gq) commutes with the right D(Bq)-action).
Finally we show that the map conserves the scalar product. It is enough to work
with elements of the form (a ⊗ 1̂Kq ) ⊗ 1 with a ∈ A(Kq) (its image is a · eµ ⊗
K2ρ+λ). So let (a⊗1̂Kq )⊗1 and (b⊗1̂Kq )⊗1 in E(Gq)⊗D(Bq)(D(Lq)⊗D(Lq)Cµ,λ).
Before starting our calculation we first remark that eµ ∗ 1 = ϕ(S−1(eµ)eµ)1 so

14



eµ acts as the identity on Cµ,λ and we thus have (a⊗1̂Kq )⊗1 = (a·eµ⊗1̂Kq )⊗1.
Therefore,〈

(a · eµ ⊗ 1̂Kq )⊗ 1, (b⊗ 1̂Kq )⊗ 1
〉

=
〈
a · eµ ⊗ 1̂Kq , b⊗ 1̂Kq

〉
∗ 1

= (((a · eµ)∗ ∗ b)⊗ 1̂Kq ) ∗ 1

= φKq (a · eµb(1))ϕT (π(b(2))e
−µ)

= φKq (a · eµ b · eµ)

= 〈a · eµ ⊗K2ρ+λ, b · eµ ⊗K2ρ+λ〉IndGqBqCµ,λ

As announced, we now set Gq/Nq = Kq ×Aq, with function algebra

A(Gq/Nq) := A(Kq)⊗A(Aq),

equipped with its natural structure of untwisted ∗-algebra and with the positive
functional φGq/Nq = φKq ⊗ φAq ( · K−4ρ).
We endow it with a left A(Gq)-coaction given, for a⊗ π(f) ∈ A(Gq/Nq), by

∆Gq/Nq (a⊗π(f)) = W−132 (a(1)⊗f(1)⊗a(2)⊗π(f(2)))W32 ∈M(A(Gq)⊗A(Gq/Nq),

(which is well defined, see remark 5) and a right A(Lq)-coaction

∆′Gq/Nq (a⊗ h) = a(1) ⊗ h(1) ⊗ π(a(2))⊗ h(2) ∈ A(Gq/Nq)⊗A(Lq).

Proposition 6.2. Those two coactions commute.

Proof. We claim that we have

(id⊗ π̂ ⊗ id⊗ π̂)(∆′Gq/Nq (a⊗ h)) = (id⊗ id⊗ π ⊗ id)[∆Gq (a⊗ π̂(h))]

For this we recall the expression for W and W−1. Let (uσij) ∈ A(Kq) denote
the matrix coefficient associated to a weight basis of an irreducible representa-
tion σ of Kq and let (ωσij) ∈ A(K̂q) denote the elements of the dual basis. Then
we have

W =
∑
i,j,σ

uσij ⊗ ωσij , W−1 =
∑
i,j,σ

S(uσij)⊗ ωσij ,

where the sums run over all equivalent classes of irreducible representations. We
have

(id⊗ id⊗ π ⊗ id)[∆Gq (a⊗ π̂(h))]

=
∑

i,j,σ,r,s,ν

a(1) ⊗ ωσij π̂(h(1))ω
ν
rs ⊗ π(S(uσij)a(2)u

ν
rs)⊗ π̂(h(2))

(∗)
=
∑
i,σ,r,ν

a(1) ⊗ ωσiiωνrrπ̂(h(1))⊗ π(S(uσii))π(a(2))π(uνrr))⊗ π̂(h(2))

=
∑
i,σ,r,ν

a(1) ⊗ ωσiiπ̂(h(1))⊗ π(a(2))⊗ π̂(h(2))

= a(1) ⊗ π̂(h(1))⊗ π(a(2))⊗ π̂(h(2))

= (id⊗ π̂ ⊗ id⊗ π̂)(∆′Gq/Nq (a⊗ h)),
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(see the proof of [VY19a, Lemma 5.18] for a similar calculation). For the equal-
ity (∗) we use the fact that the elements of π̂(A(Aq)) ⊂M(A(K̂q)) are diagonal
(keeping in mind that M(A(K̂q)) =

∑
σ End(Vσ)) and then commute with di-

agonal elements ωσii. We have also that (following remark 5)

(id⊗ id⊗ id⊗ π̂)(∆Gq/Nq (a⊗ h)) = ∆Gq (a⊗ π̂(h)).

Now we can prove the proposition and first we rewrite above equalities using
the leg notation

(π̂ ⊗ π̂)24 ◦∆′Gq/Nq = π3 ◦∆Gq ◦ π̂2
π̂4 ◦∆Gq/Nq = ∆Gq ◦ π̂2

Now observe that we have from the one hand

(π̂ ⊗ π̂)46◦(∆′Gq/Nq )34 ◦∆Gq/Nq

= ((π̂ ⊗ π̂)24 ◦∆′Gq/Nq )34 ◦∆Gq/Nq

= (π3 ◦∆Gq ◦ π̂2)34 ◦∆Gq/Nq

= π5 ◦ (∆Gq )34 ◦∆Gq ◦ π̂2
and on the other hand

(π̂ ⊗ π̂)46◦(∆Gq/Nq )12 ◦∆′Gq/Nq

= (∆Gq )12 ◦ (π̂ ⊗ π̂)24 ◦∆′Gq/Nq

= (∆Gq )12 ◦ π3 ◦∆Gq ◦ π̂2
= π5 ◦ (∆Gq )12 ◦∆Gq ◦ π̂2

and we conclude the proof using the coassociativity of ∆Gq and injectivity of
π̂.

Proposition 6.3. The functional φGq/Nq = φKq ⊗ φAq ( · K−4ρ) is invariant
with respect to the left coaction ∆Gq/Nq of A(Gq).

Proof. Before beginning our calculation we remark that, knowing that φT (π(f)) =
φK̂q (f) and ψK̂q(f) = φK̂q (fK−4ρ), we have φAq (π(f)K−4ρ) = φAq (π(fK−4ρ)) =

ψK̂q (f).
Let a ⊗ f ∈ A(Kq) ⊗ A(K̂q). Now, using the invariance of the Haar state
φKq ⊗ ψK̂q on A(Gq), we have

(id⊗ id⊗ φGq/Nq )(∆Gq/Nq (a⊗ π(f))

=(id⊗ id⊗ φKq )(W−132 (a(1) ⊗ f(1) ⊗ a(2))W32)φAq (π(f(2))K−4ρ)

=(id⊗ id⊗ φKq )(W−132 (a(1) ⊗ f(1) ⊗ a(2))W32)ψK̂q (f(2))

=(id⊗ id⊗ φKq ⊗ ψK̂q )(W
−1
32 (a(1) ⊗ f(1) ⊗ a(2) ⊗ f(2))W32)

=φKq (a)ψK̂q (f)1Gq
=φKq (a)φAq (π(f)K−4ρ)1Gq .
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Proposition 6.4. The map id ⊗ π : A(Gq) → A(Gq/Nq) intertwines the left-
A(Gq)-coactions (where A(Gq) is simply considered with its natural comodule
structure).

Proof. This is immediate from the fact that for a⊗ f ∈ A(Gq) we have

(id⊗id⊗id⊗π)(W−132 (a(1)⊗f(1)⊗a(2)⊗f(2))W32) = W−132 (a(1)⊗f(1)⊗a(2)⊗π(f(2)))W32.

One can see A(Gq/Nq) as a D(Lq)-module with the convolution action in-
duced by the right coaction ∆′Gq/Nq of A(Lq) :

(a⊗ f) · (τ ⊗ h) = a · τ ⊗ f · h, τ ⊗ h ∈ D(Lq)

where we set
f · h = φAq (S(h)f(2)K2ρ)f(1).

Remark 6. We use the notation · even though it has not exactly the same
meaning as in Section 3. The deformation by K2ρ is motivated by the Lq-
relatively invariance of the functional φGq/Nq (see [Cla13, section 2] for the
geometric explanation in the classical case). For us it will be made clear in
calculations by the identity

1̂T · h = hK−2ρ.

which follows from the fact that if we consider g and h in A(Aq) we have
g · h = ϕ̂(S(h)g(2)K2ρ)g(1) = ϕ̂(S(h(1))g)h(2)K−2ρ.

From Proposition 6.4 we obtain a leftD(Gq) convolution action onA(Gq/Nq)
which commutes with the D(Lq)-action defined above. Our goal is now to turn
A(Gq/Nq) into a pre-Hilbert D(Lq)-module, equivalent to D(Gq)⊗D(Bq)D(Lq).
First we check that the map

Λ : D(Gq)⊗D(Bq) D(Lq) −→ A(Gq/Nq)

a⊗ f ⊗ τ ⊗ h 7−→ (a⊗ π(f)) · (τ ⊗ h)

is a surjective map which intertwines the actions of D(Gq). The surjectivity
comes from the surjectivity of π and the fact that the D(Lq)-action is essential.

Finally we equip A(Gq/Nq) with a D(Lq)-inner product. We set

〈a⊗ h, b⊗ k〉D(Lq)
:= π(a∗ ∗ b)⊗ (h∗ ∗ k)K−2ρ.

In Sweedler notation, this would be expressed informally as 〈a⊗ h, b⊗ k〉D(Lq)
=

φ(āb(1))π(b(2))⊗ ϕ̂(h∗k(1))k(2)K−2ρ).
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Proposition 6.5. The map Λ is compatible with this D(Lq)-sequilinear form.
That is, for (a⊗ f)⊗ (τ ⊗ h) and (b⊗ g)⊗ (ζ ⊗ k) in E(Gq)⊗D(Bq) D(Lq), we
have

〈(a⊗ f)⊗ (τ ⊗ h), (b⊗ g)⊗ (ζ ⊗ k)〉D(Lq)
= 〈(a · τ ⊗ π(f) · h), (b · ζ ⊗ π(g) · k)〉D(Lq)

and 〈 , 〉D(Lq)
is therefore an inner product on A(Gq/Nq).

Proof. It is enough to show the equality for two elements of the form (a⊗1̂Kq )⊗
(τ ⊗ h) and (b⊗ 1̂Kq )⊗ (ζ ⊗ k). We observe that we have〈

a⊗ 1̂Kq , b⊗ 1̂Kq
〉
D(Bq)

= E((a⊗ 1̂Kq )
∗ ∗ (b⊗ 1̂Kq ))

= π(a∗ ∗ b)⊗ 1̂KqK−2ρ
= π(a∗ ∗ b)⊗ 1̂Kq

Following Remark 6 we have Λ(a⊗ 1̂Kq ⊗ τ ⊗h) = a · τ ⊗hK−2ρ, so on the right
it gives

〈a · τ ⊗ hK−2ρ, b · ζ ⊗ kK−2ρ〉D(Lq)
= π(τ∗ · a∗ ∗ b · ζ)⊗ ((hK−2ρ)

∗ ∗ kK−2ρ)K2ρ

(∗)
= (τ∗ ∗ π(a∗ ∗ b) ∗ ζ)⊗ (h∗ ∗ k),

(∗) for x, y ∈ A(Aq) we have (x∗y)K−2ρ = φAq (S(x)y(2))y(1)K2ρ = φAq (S(xK2ρ)y(2)K2ρ)y(1)K2ρ =
xK2ρ ∗ yK2ρ.
On the left we have :〈
a⊗ 1̂Kq ⊗ τ ⊗ h, b⊗ 1̂Kq ⊗ ζ ⊗ k

〉
D(Lq)

=
〈
τ ⊗ h,

〈
a⊗ 1̂Kq , b⊗ 1̂Kq

〉
C∗(Bq)

∗ (ζ ⊗ k)
〉
C∗(Lq)

=
〈
τ ⊗ h, ((a∗ ∗ b)⊗ 1̂Kq ) ∗ (ζ ⊗ k)

〉
C∗(Lq)

= 〈τ ⊗ h, (π(a∗ ∗ b) ∗ ζ)⊗ k〉C∗(Lq)
= (τ∗ ∗ π(a∗ ∗ b) ∗ ζ)⊗ (h∗ ∗ k).

We can now state the following result.

Theorem 6.6. The pre-Hilbert D(Lq)-module A(Gq/Nq) can be completed into
a Hilbert C∗(Lq)-module E(Gq/Nq) and we have

E(Gq/Nq) ∼= E(Gq)⊗C∗(Bq) C
∗(Lq)

as Gq-representations. The tensor product E(Gq/Nq)⊗C∗(Lq)− defines a functor
from the category of unitary C∗(Lq)-representations to the category of unitary
C∗(Gq)-representations which coincides with parabolic induction.
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By the Fourier transform, we have

C∗(Lq) ∼= C0(L̂q) = C0(P× T )

such that the characters of C∗(Lq) become the evaluation maps

ev(µ,λ) : C0(P× T )→ Cµ,λ.

Theorem 6.6 shows that the Hilbert space bundle of principal series represen-
tations H = (IndGqBqCµ,λ)µ,λ over P× T is isomorphic to the C0(P× T )-Hilbert
module

E(Gq/Nq)⊗C0(P×T ) C0(P× T ) ∼= E(Gq/Nq).

According to [VY19a], the action of the Weyl group W on P × T extends to
a action by C∗(Gq)-linear maps on H ∼= E(Gq/Nq) and then Theorem 7.1 of
[VY19b] can be can be interpreted as follows.

Corollary 6.7. Let Gq be a complex semi-simple quantum group. Then

C∗r (Gq) ∼= K(E(Gq/Nq))
W

where K indicates the algebra of compact operators in the sense of Hilbert mod-
ules.

In the classical case, this result has been first obtained in [Was87] and refor-
mulated in [CCH16] with the Rieffel induction framework that we used in this
paper.
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