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Estimate for PtD for the stochastic Burgers
equation.

Giuseppe Da Prato ∗and Arnaud Debussche †

November 13, 2014

Abstract

We consider the Burgers equation on H = L2(0, 1) perturbed by white noise
and the corresponding transition semigroup Pt. We prove a new formula for
PtDϕ (where ϕ : H → R is bounded and Borel) which depends on ϕ but not
on its derivative. Then we deduce some consequences for the invariant measure
ν of Pt as its Fomin differentiability and an integration by parts formula which
generalises the classical one for gaussian measures.

1 Introduction

We consider the following stochastic Burgers equation in the interval [0, 1] with Dirich-
let boundary conditions,

dX(t, ξ) = (∂2ξX(t, ξ) + ∂ξ(X
2(t, ξ)))dt+ dW (t, ξ), t > 0, ξ ∈ (0, 1),

X(t, 0) = X(t, 1) = 0, t > 0,
X(0, ξ) = x(ξ), ξ ∈ (0, 1).

(1)

The unknown X is a real valued process depending on ξ ∈ [0, 1] and t ≥ 0 and
dW/dt is a space-time white noise on [0, 1]× [0,∞). This equation has been studied
by several authors (see [BeCaJL94], [DaDeTe94], [DaGa95], [Gy98]) and it is known
that there exists a unique solution with paths in C([0, T ];Lp(0, 1)) if the initial data
x ∈ Lp(0, 1), p ≥ 2. In this article, we want to prove new properties on the transition
semigroup associated to (1).
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We rewrite (1) as an abstract differential equation in the Hilbert space H =
L2(0, 1),

dX = (AX + b(X))dt+ dWt,

X(0) = x.
(2)

As usual A = ∂ξξ with Dirichlet boundary conditions, on the domain D(A) =
H2(0, 1) ∩ H1

0 (0, 1), b(x) = ∂ξ (x2). Here and below, for s ≥ 0, Hs(0, 1) is the
standard L2(0, 1) based Sobolev space. Also, W is a cylindrical Wiener process on
H. We denote by X(t, x) the solution.

We denote by (Pt)t≥0 the transition semigroup associated to equation (2) on
Bb(H), the space of all real bounded and Borel functions on H endowed with the
norm

‖ϕ‖0 = sup
x∈H
|ϕ(x)|, ∀ ϕ ∈ Bb(H).

We know that Pt possesses a unique invariant measure ν so that Pt is uniquely ex-
tendible to a strongly continuous semigroup of contractions on L2(H, ν) (still denoted
by Pt) whose infinitesimal generator we shall denote by L . Let EA(H) be the linear
span of real parts of all ϕ of the form

ϕh(x) := ei〈h,x〉, x ∈ D(A).

We have proved in [DaDe07] that EA(H) is a core for L and that

Lϕ =
1

2
Tr [QD2

xϕ] + 〈Ax+ b(x), Dxϕ〉, ∀ ϕ ∈ EA(H). (3)

Here and below, Dx denotes the differential with respect to x ∈ H. When ϕ is a real

valued function, we often identify Dxϕ with its gradient. Similarly, D2
x is the second

differential and for a real valued function D2
xϕ can be identify with the Hessian.

In this paper, we use a formula for PtDxϕ which depends on ϕ but not on its
derivative. To our knowledge, this formula is new.

For a finite dimensional stochastic equation a formula for PtDx can be obtained,
under suitable assumptions, using the Malliavin calculus and it is the key tool for
proving the existence of a density of the law of X(t, x) with respect to the Lebesgue
measure, see [Ma97]. Concerning SPDEs, several results are available for densities of
finite dimensional projections of the law of the solutions, see [Sa05] and the references
therein. For these results, Malliavin calculus is used on a finite dimensional random
variable. Malliavin calculus is difficult to generalize to a true infinite dimensional
setting and it does not seem useful to give estimate on PtDxϕ in terms of ϕ. The
formula we use allows a completely different approach. It relates PtDx to DxPt. In
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the recent years several formulae for DxPtϕ independent on Dxϕ have been proved
thanks to suitable generalizations of the Bismut–Elworthy–Li formula (BEL). Thus,
combining our formula to estimates obtained on DxPt implies useful information on
PtDx. As we shall show, these can be used to extend to the measure ν a basic
integration by parts identity well known for Gaussian measures.

Let us explain the main ideas. Let u(t, x) = Ptϕ(x), under suitable conditions, it
is a solution of the Kolmogorov equation

Dtu(t, x) =
1

2
Tr [QD2

xu(t, x)] + 〈Ax+ b(x), Dxu(t, x)〉,

u(0, x) = ϕ(x).

(4)

Set vh(t, x) = Dxu(t, x) · h, the differential of u with respect to x in the direction h.
Then formally vh is a solution to the equation

Dtvh(t, x) = L vh(t, x) + 〈Ah+ b′(x)h,Dxu(t, x)〉,

vh(0, x) = Dxϕ(x) · h.
(5)

We notice that formal computations may be made rigorous by approximating ϕ with
elements from EA(H). By (5) and variation of constants, it follows that

vh(t, x) = Pt(Dxϕ(x) · h) +

∫ t

0

Pt−s(〈Ah+ b′(x)h,Dxu(s, x)〉)ds, (6)

which implies

Pt(Dxϕ(x) · h) = DxPtϕ(x) · h−
∫ t

0

Pt−s(〈Ah+ b′(x)h,Dxu(s, x)〉)ds. (7)

This formula allows to obtain the following estimate: For all ϕ ∈ Bb(H), δ > 0 and
all h ∈ H1+δ(0, 1), we have

|Pt(Dϕ · h)(x)| ≤ cect(1 + t−1/2)(1 + |x|L4)8 ‖ϕ‖0 |h|1+δ, (8)

where | · |1+δ is the norm in H1+δ(0, 1). We will not prove this formula here, it could
be proved by similar arguments as in section 3.

Integrating with respect to ν over H and taking into account the invariance of ν,
yields ∫

H

(Dxϕ(x) · h)dν =

∫
H

(DxPtϕ(x) · h) dν

−
∫ t

0

∫
H

(〈Ah+ b′(x)h,DxPsϕ(x)〉)dν ds.

(9)

Using identity (9) we arrive at the main result of the paper, proved in Section 2.
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Theorem 1. For any p > 1, δ > 0, there exists C > 0 such that for all ϕ ∈ Bb(H)
and all h ∈ H1+δ(0, 1), we have∫

H

Dxϕ(x) · h ν(dx) ≤ C‖ϕ‖Lp(H,ν) |h|1+δ, (10)

for t > 0, where | · |1+δ is the norm in H1+δ(0, 1).

For a gaussian measure, it is easy to obtain such estimate. In fact, if µ is the
invariant measure of the stochastic heat equation on (0, 1), i.e. equation (2) without
the nonlinear term, then the same formula holds with δ = 0. Thus our result is not
totally optimal and we except that it can be extended to δ = 0.

Also, identity (9) is general and we believe that it can be used in many other
situations. For instance, we will investigate the generalization of our results to other
SPDEs such as reaction–diffusion and 2D- Navier–Stokes equations. This will be the
object of a future work.

In section 2, we show that Theorem 1 can be used to derive an integration by part
formula for the measure ν. Theorem 1 is proved in section 3.

We end this section with some notations. We shall denote by (ek) an orthonormal
basis in H and by (αk) a sequence of positive numbers such that

Aek = −αkek, k ∈ N.

For any k ∈ N, Dk will represent the directional derivative in the direction of ek.
The norm of L2(0, 1) is denoted by | · |. For p ≥ 1, | · |Lp is the norm of Lp(0, 1).

The operator A is self–adjoint negative. For any α ∈ R, (−A)α denotes the α power
of the operator −A and | · |α is the norm of D((−A)α/2) which is equivalent to the
norm of the Sobolev space Hα(0, 1). We have | · |0 = | · | = | · |L2 . We shall use the
interpolatory estimate

|x|β ≤ |x|
γ−β
γ−α
α |x|

β−α
γ−α
γ , α < β < γ, (11)

and the Agmon’s inequality

|x|L∞ ≤ |x|
1
2 |x|

1
2
1 . (12)
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2 Integration by part formula for ν

This section is devoted to some consequences of Theorem 1. Here we take p = 2 for
simplicity. In this case (10) can be rewritten as∫

H

((−A)−αDxϕ(x) · h) ν(dx) ≤ C‖ϕ‖L2(H,ν) |h|, ∀ h ∈ H, (13)

where α = 1+δ
2

.

Proposition 2. Let α > 1
2
, then for any h ∈ H the linear operator

ϕ ∈ C1
b (H) 7→ ((−A)−αDxϕ(x) · h) ∈ Cb(H)

is closable in L2(H, ν).

Proof. Let (ϕn) ⊂ C1
b (H) and f ∈ L2(H, ν) such that

ϕn → 0 in L2(H, ν), ((−A)−αDxϕn(x) · h)→ f in L2(H, ν).

Let ψ ∈ C1
b (H), then by (13) it follows that∣∣∣∣∫
H

[ψ(x)((−A)−αDxϕn(x) · h) + ϕn(x)((−A)−αDxψ(x) · h)] ν(dx)

∣∣∣∣
≤ ‖ϕnψ‖L2(H,ν) |h|H ≤ ‖ψ‖0 ‖ϕn‖L2(H,ν) |h|H .

Letting n→∞, yields ∫
H

ψ(x)f(x) ν(dx) = 0,

which yields f = 0 by the arbitrariness of ψ.

We can now define the Sobolev space W 1,2
α (H, ν). First we improve Proposition 2.

Corollary 3. Let α > 1
2
, then the linear operator

ϕ ∈ C1
b (H) 7→ (−A)−αDxϕ ∈ Cb(H;H)

is closable in L2(H, ν).

Proof. By Proposition 2 taking h = ek we see that Dk is a closed operator on L2(H, ν)
for any k ∈ N. Set

(−A)−αDxϕ(x) =
∞∑
k=1

α−αk Dkϕ(x) ek, ∀ h ∈ H,
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the series being convergent in L2(H, ν). Then

|(−A)−αDxϕ(x)|2 =
∞∑
k=1

α−2αk |Dkϕ(x)|2

Let (ϕn) ⊂ C1
b (H) and F ∈ L2(H, ν;H) such that

ϕn → 0 in L2(H, ν), (−A)−αDxϕ→ F in L2(H, ν;H).

We have to show that F = 0.
Now for any k ∈ N we have Dkϕn(x)→ ααk 〈F (x), ek〉 in L2(H, ν). So, 〈F, ek〉 = 0

and the conclusion follows.

Let us denote by W 1,2
α (H, ν) the domain of the closure of (−A)−αDx. Then if M∗

denotes the adjoint of (−A)−αDx we have∫
H

((−A)−αDxϕ(x) · F (x)) ν(dx) =

∫
H

ϕ(x)M∗(F )(x) ν(dx). (14)

Set now Fh(x) = h where h ∈ H. By Theorem 1 Fh belongs to the domain of M∗.
Setting M∗(Fh) = vh we obtain the following integration by part formula.

Proposition 4. Let α > 1
2
, then for any h ∈ H there exists a function vh ∈ L2(H, ν)

such that∫
H

((−A)−αDxϕ(x) · h) ν(dx) =

∫
H

ϕ(x) vh(x) ν(dx), (15)

for any ϕ ∈ W 1,2
α (H, ν).

By (15) it follows that the measure ν possesses the Fomin derivative in all direc-
tions (−A)−αh for h ∈ H, see e.g. [Pu98].

If, in (2), b = 0 then the gaussian measure µ = NQ, where Q = −1
2
A−1, is

the invariant measure and vh(x) =
√

2〈Q−1/2x, h〉. Then (15) reduces to the usual
integration by parts formula for the Gaussian measure µ. Note that it follows that,
as already mentionned, Theorem 1 is true with δ = 0 in this case.

We recall the importance of formula (15) for different topics as Malliavin calculus
[Ma97], definition of integral on infinite dimensional surfaces of H [AiMa88], [FePr92],
[Bo98], definition of BV functions in abstract Wiener spaces [AmMiMaPa10], infinite
dimensional generalization of DiPerna-Lions theory [AmFi09], [DaFlRo14] and so on.

We think that Theorem 1 open the possibility to study these topics in the more
general situations of non Gaussian measures.
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3 Proof of Theorem 1

For h ∈ H, ηh(t, x) is the differential of X(t, x) in the direction h and (ηh(t, x))≥0
satisfies the equation

dηh(t, x)

dt
= Aηh(t, x) + b′(X(t, x))ηh(t, x),

ηh(0, x) = h.

(16)

Note that this equation as well as the computations below are done at a formal
level. They could easily be justified rigorously by an approximation argument, such
as Galerkin approximation for instance. The following result is proved in [DaDe07],
see Proposition 2.2.

Lemma 5. For any α ∈ [−1, 0] there exists c = c(α) > 0 such that

e−c
∫ t
0 |X(s,x)|

8
3
L4 ds |ηh(s, x)|2α +

∫ t

0

e−c
∫ t
s |X(τ,x)|

8
3
L4 dτ |ηh(s, x)|21+α ds ≤ |h|2α. (17)

We introduce the following Feynman-Kac semigroup

Stϕ(x) = E
[
ϕ(X(t, x))e−K

∫ t
0 |X(s,x)|4

L4 ds
]

Next lemma is a slight generalization of Lemma 3.2 in [DaDe07].

Lemma 6. For any α ∈ [0, 1] and p > 1, if K is chosen large enough then for any ϕ
Borel and bounded we have

|DxStϕ(x)|α ≤ c ect(1 + t−
1+α
2 )(1 + |x|3L6) [E (ϕp(X(t, x))]1/p , (18)

where c depends on p, K, α.

Proof. It is clearly suficient to prove the result for p ≤ 2. We proceed as in [DaDe07]
and write

DxStϕ(x) · h = I1 + I2.

where

I1 =
1

t
E
(
e−K

∫ t
0 |X(s,x)|4

L4 dsϕ(X(t, x))

∫ t

0

(ηh(s, x), dW (s))

)
and

I2 = −4KE
(
e−K

∫ t
0 |X(s,x)|4

L4 dsϕ(X(t, x))

∫ t

0

(X3(s, x), ηh(s, x))ds

)
.

7



For I1 we have with 1
p

+ 1
q

= 1:

I1 ≤
1

t
[E (ϕp(X(t, x))]1/p

[
E
(
e−Kq

∫ t
0 |X(s,x)|4

L4 ds

∣∣∣∣∫ t

0

(ηh(s, x), dW (s)

∣∣∣∣q)]1/q
Using Itô’s formula for |z(t)|q = e−Kq

∫ t
0 |X(s,x)|4

L4 ds
∣∣∣∫ t0 (ηh(s, x), dW (s))

∣∣∣q, we get:

|z(t)|q = −4Kq

∫ t

0

|X(s, x)|4L4|z(s)|q ds

+q

∫ t

0

e−K
∫ s
0 |X(s,x)|4

L4 ds|z(s)|q−2z(s)(ηh(s, x), dW (s))

+
1

2
q(q − 1)

∫ t

0

e−2K
∫ t
0 |X(s,x)|4

L4 ds|z(s)|q−2|ηh(s, x)|2ds.

We deduce:

E

(
sup
r∈[0,t]

|z(r)|q
)
≤ qE

(
sup
r∈[0,t]

∣∣∣∣∫ r

0

e−K
∫ s
0 |X(s,x)|4

L4 ds|z(s)|q−2z(s)(ηh(s, x), dW (s))

∣∣∣∣
)

+
1

2
q(q − 1)E

(∫ t

0

e−2K
∫ t
0 |X(s,x)|4

L4 ds|z(s)|q−2|ηh(s, x)|2ds
)

= A1 + A2.

By a standard martingale inequality, (11) and Lemma 5, we have

A1 ≤ 3qE

(∣∣∣∣∫ t

0

e−2K
∫ s
0 |X(s,x)|4

L4 ds|z(s)|2(q−1)|ηh(s, x)|2ds
∣∣∣∣1/2
)

≤ 3qE

(
sup
r∈[0,t]

|z(r)|q−1
(∫ t

0

e−2K
∫ s
0 |X(s,x)|4

L4 ds|ηh(s, x)|2ds
)1/2

)

≤ 3qE

(
sup
r∈[0,t]

|z(r)|q−1
(∫ t

0

e−2K
∫ s
0 |X(s,x)|4

L4 ds |ηh(s, x)|2(1−α)−α |ηh(s, x)|2α1−α ds
)1/2

)

≤ 3qt
1−α
2 |h|−αE

(
sup
r∈[0,t]

|z(r)|q−1
)

≤ 3qt
1−α
2 |h|−α

[
E

(
sup
r∈[0,t]

|z(r)|q
)](q−1)/q

≤ 1

4
E

(
sup
r∈[0,t]

|z(r)|q
)

+ ct
q(1−α)

2 |h|q−α.
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Similarly:

A2 ≤
1

2
q(q − 1)E

(
sup
r∈[0,t]

|z(r)|q−2
∫ t

0

e−2K
∫ s
0 |X(s,x)|4

L4 ds|ηh(s, x)|2ds

)

≤ 1

2
q(q − 1)E

(
sup
r∈[0,t]

|z(r)|q−2
∫ t

0

e−2K
∫ t
0 |X(s,x)|4

L4 ds |ηh(s, x)|2(1−α)−α |ηh(s, x)|2α1−α ds

)

≤ 1

2
q(q − 1)t1−α |h|2−αE

(
sup
r∈[0,t]

|z(r)|q−2
)

≤ 1

2
q(q − 1)t1−α |h|2−α

[
E

(
sup
r∈[0,t]

|z(r)|q
)](q−2)/q

≤ 1

4
E

(
sup
r∈[0,t]

|z(r)|q
)

+ ct
q(1−α)

2 |h|q−α.

We deduce:
I1 ≤ ct−

1+α
2 |h|−α [E (ϕp(X(t, x))]1/p

For I2 we write

I2 = 4KE
(
e−K

∫ t
0 |X(s,x)|4

L4 dsϕ(X(t, x))
∫ t
0
(X3(s, x), ηh(s, x))ds

)
≤ 4K [E (ϕp(X(t, x))]1/p

[
E
(
e−Kq

∫ t
0 |X(s,x)|4

L4 ds

(∫ t

0

|X(s, x)|3L6 |ηh(s, x)| ds
)q)]1/q

.

By Lemma 5 and Proposition 2.2 in [DaDe07]

I2 ≤ cq(1 + |x|3L6) [E (ϕp(X(t, x))]1/p |h|−1.

Gathering the estimates on I1 and I2 gives the result.

Lemma 7. For any α ∈ [0, 1), p > 1, q > 1 satisfying 1
p

+ 1
q
< 1, if K is chosen

large enough there exists a constants c depending on α, p, q such that for any ϕ Borel
bounded and h : H → D((−A)−α/2) Borel such that

∫
H
|h(x)|q−αν(dx) <∞ we have∣∣∣∣∫

H

DxPtϕ(x) · h(x)ν(dx)

∣∣∣∣ ≤ cect(1+t−
1+α
2 )‖ϕ‖Lp(H,ν)

(∫
H

|h(x)|q−αν(dx)

)1/q

. (19)

Proof. We first prove a similar estimate for St. Using Lemma 6 we have by Hölder

9



inequality ∣∣∣∣∫
H

DxStϕ(x) · h(x) ν(dx)

∣∣∣∣
≤ c ect(1 + t−

1+α
2 )

∫
H

(1 + |x|3L6) [E (ϕp(X(t, x))]1/p |h(x)|−αν(dx)

≤ c ect(1 + t−
1+α
2 )

[∫
H

(1 + |x|3L6)rν(dx)

]1/r

×
[∫

H

E (ϕp(X(t, x)) ν(dx)

]1/p [∫
H

|h(x)|q−αν(dx)

]1/q
.

with 1
p

+ 1
q

+ 1
r

= 1. Thus by Proposition 2.3 in [DaDe07] and the invariance of ν:∣∣∣∣∫
H

DxStϕ(x) · h(x) ν(dx)

∣∣∣∣ ≤ cect(1 + t−
1+α
2 )‖ϕ‖Lp(H,ν)

(∫
H

|h(x)|q−αν(dx)

)1/q

.

We then proceed as in [DaDe07] to get a similar estimate on Pt. We write

Ptϕ(x) = Stϕ(x) +K

∫ t

0

St−s(|x|4L4Psϕ)ds.

It follows that, using the estimate above with p > p̃ > 1 such that 1
p̃

+ 1
q
< 1:∣∣∣∣∫

H

DxPtϕ(x) · h(x)ν(dx)

∣∣∣∣ ≤ cect(1 + t−
1+α
2 )‖ϕ‖Lp(H,ν)

(∫
H

|h(x)|q−αν(dx)

)1/q

+K

∫ t

0

cec(t−s)(1 + (t− s)−
1+α
2 )

(∫
H

|x|4L4|Psϕ(x)|p̃dν(dx)

)1/p̃

×
(∫

H

|h(x)|q−αν(dx)

)1/q

ds.

The result follows by Hölder inequality and the invariance of ν.

Theorem 1 follows directly from the following result thanks to the invariance of ν
and taking for instance t = 1.

Proposition 8. For all p > 1, δ > 0, there exists a constant such that for ϕ Borel
bounded, and all h ∈ H1+δ(0, 1), we have∣∣∣∣∫

H

Pt(Dxϕ · h)(x) ν(dx)

∣∣∣∣ ≤ cect(1 + t−1/2)‖ϕ‖Lp(H,ν)|h|1+δ (20)
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Proof. By Poincaré inequality, it is no loss of generality to assume δ < min{2(1 −
1
p
), 1

2
}.

We start by integrating (7) on H:∫
H

Pt(Dxϕ · h)(x)ν(dx) =

∫
H

(DxPtϕ(x) · h) ν(dx)

−
∫ t

0

∫
H

Pt−s[(〈Ah+ b′(x)h,DxPsϕ(x)〉)]ds ν(dx).

(21)

Then by Lemma 7 we deduce∣∣∣∣∫
H

Pt(Dxϕ · h)(x) ν(dx)

∣∣∣∣ ≤ cect(1 + t−
1
2 )‖ϕ‖Lp(H,ν)|h|

+

∣∣∣∣∫
H

∫ t

0

Pt−s[(Ah+ b′(·) · h,DxPsϕ)]ds ν(dx)

∣∣∣∣ .
By the invariance of ν:∫
H

∫ t

0

Pt−s[(Ah+ b′(·) · h,DxPsϕ)]ds ν(dx) =

∫
H

∫ t

0

(Ah+ b′(·) · h,DxPsϕ)ds ν(dx).

Therefore, by Lemma 7 with α = 1− δ and q = 2
δ
:∣∣∣∣∫

H

∫ t

0

Pt−s[(Ah+ b′(·) · h,DxPsϕ)]ds ν(dx)

∣∣∣∣
≤
∫ t

0

cec(t−s)(1 + s−1+
δ
2 )‖ϕ‖Lp(H,ν)

(∫
H

|Ah+ b′(·) · h|δ/2−1+δν(dx)

)δ/2
.

Note that
|b′(x) · h|−1+δ = |∂ξ (xh)|−1+δ ≤ c |xh|δ

Then, we have:
|xh| ≤ c|x| |h|1

by the embedding H1 ⊂ L∞ and

|xh|1 ≤ c|x|1 |h|1,

since H1 is an algebra. We deduce by interpolation

|xh|δ ≤ c|x|δ|h|1.
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It follows ∣∣∣∣∫
H

∫ t

0

Pt−s[(Ah+ b′(·) · h,DxPsϕ)]ds ν(dx)

∣∣∣∣
≤ cδe

ct‖ϕ‖Lp(H,ν)
(

1 +

∫
H

|x|δ/2δ ν(dx)

)2/δ

|h|1+δ.

We need to estimate
∫
H
|x|δ/2δ ν(dx). We use the notation of [DaDe07, Proposition

2.2]
|X(s, x)|δ ≤ |Y (s, x)|δ + |zα(s)|δ

≤ |Y (s, x)|1−δ |Y (s, x)|δ1 + |zα(s)|δ.
Using computation in [DaDe07, Proposition 2.2], we obtain

sup
t∈[0,1]

|Y (t, x)|2 +

∫ 1

0

|Y (s, x)|21ds ≤ c(|x|2 + κ)

where κ is a random variable with all moments finite. It follows by (11):

E
(∫ 1

0

|Y (s, x)|2/δδ ds

)
≤ E

(∫ 1

0

|Y (s, x)|2(1−δ)/δ|Y (s, x)|21 ds
)
≤ c(|x|2 + 1)1/δ

Genelarizing slightly Proposition 2.1 in [DaDe07], we have:

E (|zα(t)|pδ) ≤ cδ,p

for t ∈ [0, 1], δ < 1/2, α ≥ 1, p ≥ 1. We deduce:

E
(∫ 1

0

|X(s, x)|2/δδ ds

)
≤ c(|x|2 + 1)1/δ.

Integrating with respect to ν and using Proposition 2.3 in [DaDe07] we deduce:∫
H

|x|δ/2δ ν(dx) ≤ cδ

Then (20) follows.
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