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Estimate for P t D for the stochastic Burgers equation

We consider the Burgers equation on H = L 2 (0, 1) perturbed by white noise and the corresponding transition semigroup P t . We prove a new formula for P t Dϕ (where ϕ : H → R is bounded and Borel) which depends on ϕ but not on its derivative. Then we deduce some consequences for the invariant measure ν of P t as its Fomin differentiability and an integration by parts formula which generalises the classical one for gaussian measures.

Introduction

We consider the following stochastic Burgers equation in the interval [0, 1] with Dirichlet boundary conditions,    dX(t, ξ) = (∂ 2 ξ X(t, ξ) + ∂ ξ (X 2 (t, ξ)))dt + dW (t, ξ), t > 0, ξ ∈ (0, 1), X(t, 0) = X(t, 1) = 0, t > 0, X(0, ξ) = x(ξ), ξ ∈ (0, 1).

(1)

The unknown X is a real valued process depending on ξ ∈ [0, 1] and t ≥ 0 and dW/dt is a space-time white noise on [0, 1] × [0, ∞). This equation has been studied by several authors (see [START_REF] Bertini | The stochastic Burgers equation[END_REF], [START_REF] Da Prato | Stochastic Burgers equation[END_REF], [START_REF] Da Prato | Gatarek Stochastic Burgers equation with correlated noise[END_REF], [START_REF] Gyongy | Existence and uniqueness results for semilinear stochastic partial differential equations in Hilbert space[END_REF]) and it is known that there exists a unique solution with paths in C([0, T ]; L p (0, 1)) if the initial data x ∈ L p (0, 1), p ≥ 2. In this article, we want to prove new properties on the transition semigroup associated to (1).

We rewrite (1) as an abstract differential equation in the Hilbert space H = L 2 (0, 1),

   dX = (AX + b(X))dt + dW t , X(0) = x.
(2)

As usual A = ∂ ξξ with Dirichlet boundary conditions, on the domain D(A) = H 2 (0, 1) ∩ H 1 0 (0, 1), b(x) = ∂ ξ (x 2 ). Here and below, for s ≥ 0, H s (0, 1) is the standard L 2 (0, 1) based Sobolev space. Also, W is a cylindrical Wiener process on H. We denote by X(t, x) the solution.

We denote by (P t ) t≥0 the transition semigroup associated to equation (2) on B b (H), the space of all real bounded and Borel functions on H endowed with the norm ϕ 0 = sup

x∈H |ϕ(x)|, ∀ ϕ ∈ B b (H).
We know that P t possesses a unique invariant measure ν so that P t is uniquely extendible to a strongly continuous semigroup of contractions on L 2 (H, ν) (still denoted by P t ) whose infinitesimal generator we shall denote by L . Let E A (H) be the linear span of real parts of all ϕ of the form ϕ h (x) := e i h,x , x ∈ D(A).

We have proved in [START_REF] Da Prato | m-dissipativity of Kolmogorov operators corresponding to Burgers equations with space-time white noise[END_REF] that E A (H) is a core for L and that

L ϕ = 1 2 Tr [QD 2 x ϕ] + Ax + b(x), D x ϕ , ∀ ϕ ∈ E A (H). (3) 
Here and below, D x denotes the differential with respect to x ∈ H. When ϕ is a real valued function, we often identify D x ϕ with its gradient. Similarly, D 2 x is the second differential and for a real valued function D 2

x ϕ can be identify with the Hessian. In this paper, we use a formula for P t D x ϕ which depends on ϕ but not on its derivative. To our knowledge, this formula is new.

For a finite dimensional stochastic equation a formula for P t D x can be obtained, under suitable assumptions, using the Malliavin calculus and it is the key tool for proving the existence of a density of the law of X(t, x) with respect to the Lebesgue measure, see [START_REF] Malliavin | Stochastic analysis[END_REF]. Concerning SPDEs, several results are available for densities of finite dimensional projections of the law of the solutions, see [START_REF] Solé | Malliavin Calculus with Applications to Stochastic Partial Differential Equations[END_REF] and the references therein. For these results, Malliavin calculus is used on a finite dimensional random variable. Malliavin calculus is difficult to generalize to a true infinite dimensional setting and it does not seem useful to give estimate on P t D x ϕ in terms of ϕ. The formula we use allows a completely different approach. It relates P t D x to D x P t . In the recent years several formulae for D x P t ϕ independent on D x ϕ have been proved thanks to suitable generalizations of the Bismut-Elworthy-Li formula (BEL). Thus, combining our formula to estimates obtained on D x P t implies useful information on P t D x . As we shall show, these can be used to extend to the measure ν a basic integration by parts identity well known for Gaussian measures.

Let us explain the main ideas. Let u(t, x) = P t ϕ(x), under suitable conditions, it is a solution of the Kolmogorov equation

     D t u(t, x) = 1 2 Tr [QD 2 x u(t, x)] + Ax + b(x), D x u(t, x) , u(0, x) = ϕ(x). (4) 
Set v h (t, x) = D x u(t, x) • h, the differential of u with respect to x in the direction h.

Then formally v h is a solution to the equation

   D t v h (t, x) = L v h (t, x) + Ah + b (x)h, D x u(t, x) , v h (0, x) = D x ϕ(x) • h. (5) 
We notice that formal computations may be made rigorous by approximating ϕ with elements from E A (H). By (5) and variation of constants, it follows that

v h (t, x) = P t (D x ϕ(x) • h) + t 0 P t-s ( Ah + b (x)h, D x u(s, x) )ds, (6) 
which implies

P t (D x ϕ(x) • h) = D x P t ϕ(x) • h - t 0 P t-s ( Ah + b (x)h, D x u(s, x) )ds. ( 7 
)
This formula allows to obtain the following estimate: For all ϕ ∈ B b (H), δ > 0 and all h ∈ H 1+δ (0, 1), we have

|P t (Dϕ • h)(x)| ≤ ce ct (1 + t -1/2 )(1 + |x| L 4 ) 8 ϕ 0 |h| 1+δ , (8) 
where | • | 1+δ is the norm in H 1+δ (0, 1). We will not prove this formula here, it could be proved by similar arguments as in section 3.

Integrating with respect to ν over H and taking into account the invariance of ν, yields

H (D x ϕ(x) • h)dν = H (D x P t ϕ(x) • h) dν - t 0 H ( Ah + b (x)h, D x P s ϕ(x) )dν ds. (9) 
Using identity (9) we arrive at the main result of the paper, proved in Section 2.

Theorem 1. For any p > 1, δ > 0, there exists C > 0 such that for all ϕ ∈ B b (H) and all h ∈ H 1+δ (0, 1), we have

H D x ϕ(x) • h ν(dx) ≤ C ϕ L p (H,ν) |h| 1+δ , ( 10 
)
for t > 0, where | • | 1+δ is the norm in H 1+δ (0, 1).
For a gaussian measure, it is easy to obtain such estimate. In fact, if µ is the invariant measure of the stochastic heat equation on (0, 1), i.e. equation (2) without the nonlinear term, then the same formula holds with δ = 0. Thus our result is not totally optimal and we except that it can be extended to δ = 0. Also, identity ( 9) is general and we believe that it can be used in many other situations. For instance, we will investigate the generalization of our results to other SPDEs such as reaction-diffusion and 2D-Navier-Stokes equations. This will be the object of a future work.

In section 2, we show that Theorem 1 can be used to derive an integration by part formula for the measure ν. Theorem 1 is proved in section 3.

We end this section with some notations. We shall denote by (e k ) an orthonormal basis in H and by (α k ) a sequence of positive numbers such that

Ae k = -α k e k , k ∈ N.
For any k ∈ N, D k will represent the directional derivative in the direction of e k .

The norm of L 2 (0, 1) is denoted by | • |. For p ≥ 1, | • | L p is the norm of L p (0, 1). The operator A is self-adjoint negative. For any α ∈ R, (-A) α denotes the α power of the operator -A and | • | α is the norm of D((-A) α/2 ) which is equivalent to the norm of the Sobolev space H α (0, 1). We have

| • | 0 = | • | = | • | L 2 . We shall use the interpolatory estimate |x| β ≤ |x| γ-β γ-α α |x| β-α γ-α γ , α < β < γ, (11) 
and the Agmon's inequality

|x| L ∞ ≤ |x| 1 2 |x| 1 2 1 . ( 12 
)
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Integration by part formula for ν

This section is devoted to some consequences of Theorem 1. Here we take p = 2 for simplicity. In this case (10) can be rewritten as

H ((-A) -α D x ϕ(x) • h) ν(dx) ≤ C ϕ L 2 (H,ν) |h|, ∀ h ∈ H, (13) 
where α = 1+δ 2 . Proposition 2. Let α > 1 2 , then for any h ∈ H the linear operator

ϕ ∈ C 1 b (H) → ((-A) -α D x ϕ(x) • h) ∈ C b (H) is closable in L 2 (H, ν). Proof. Let (ϕ n ) ⊂ C 1 b (H) and f ∈ L 2 (H, ν) such that ϕ n → 0 in L 2 (H, ν), ((-A) -α D x ϕ n (x) • h) → f in L 2 (H, ν). Let ψ ∈ C 1 b (H), then by (13) it follows that H [ψ(x)((-A) -α D x ϕ n (x) • h) + ϕ n (x)((-A) -α D x ψ(x) • h)] ν(dx) ≤ ϕ n ψ L 2 (H,ν) |h| H ≤ ψ 0 ϕ n L 2 (H,ν) |h| H .
Letting n → ∞, yields

H ψ(x)f (x) ν(dx) = 0,
which yields f = 0 by the arbitrariness of ψ.

We can now define the Sobolev space W 1,2 α (H, ν). First we improve Proposition 2.

Corollary 3. Let α > 1 2 , then the linear operator

ϕ ∈ C 1 b (H) → (-A) -α D x ϕ ∈ C b (H; H) is closable in L 2 (H, ν).
Proof. By Proposition 2 taking h = e k we see that D k is a closed operator on L 2 (H, ν)

for any k ∈ N. Set (-A) -α D x ϕ(x) = ∞ k=1 α -α k D k ϕ(x) e k , ∀ h ∈ H, the series being convergent in L 2 (H, ν). Then |(-A) -α D x ϕ(x)| 2 = ∞ k=1 α -2α k |D k ϕ(x)| 2 Let (ϕ n ) ⊂ C 1 b (H) and F ∈ L 2 (H, ν; H) such that ϕ n → 0 in L 2 (H, ν), (-A) -α D x ϕ → F in L 2 (H, ν; H).
We have to show that F = 0. Now for any k ∈ N we have

D k ϕ n (x) → α α k F (x), e k in L 2 (H, ν)
. So, F, e k = 0 and the conclusion follows.

Let us denote by W 1,2 α (H, ν) the domain of the closure of (-A) -α D x . Then if M * denotes the adjoint of (-A) -α D x we have

H ((-A) -α D x ϕ(x) • F (x)) ν(dx) = H ϕ(x) M * (F )(x) ν(dx). (14) 
Set now F h (x) = h where h ∈ H. By Theorem 1 F h belongs to the domain of M * . Setting M * (F h ) = v h we obtain the following integration by part formula.

Proposition 4. Let α > 1 2 , then for any h ∈ H there exists a function

v h ∈ L 2 (H, ν) such that H ((-A) -α D x ϕ(x) • h) ν(dx) = H ϕ(x) v h (x) ν(dx), (15) 
for any ϕ ∈ W 1,2 α (H, ν).

By (15) it follows that the measure ν possesses the Fomin derivative in all directions (-A) -α h for h ∈ H, see e.g. [START_REF] Pugachev | Surface measures in infinite-dimensional spaces[END_REF].

If, in (2), b = 0 then the gaussian measure µ = N Q , where

Q = -1 2 A -1 , is the invariant measure and v h (x) = √ 2 Q -1/2
x, h . Then (15) reduces to the usual integration by parts formula for the Gaussian measure µ. Note that it follows that, as already mentionned, Theorem 1 is true with δ = 0 in this case.

We recall the importance of formula (15) for different topics as Malliavin calculus [START_REF] Malliavin | Stochastic analysis[END_REF], definition of integral on infinite dimensional surfaces of H [AiMa88], [START_REF] Feyel | La Pradelle: Hausdorff measures on the Wiener space[END_REF], [START_REF]Bogachev Gaussian Measures[END_REF], definition of BV functions in abstract Wiener spaces [START_REF] Ambrosio | BV functions in abstract Wiener spaces[END_REF], infinite dimensional generalization of DiPerna-Lions theory [AmFi09], [START_REF] Da Prato | Uniqueness for continuity equations in Hilbert spaces with weakly differentiable drift[END_REF] and so on.

We think that Theorem 1 open the possibility to study these topics in the more general situations of non Gaussian measures.

Proof of Theorem 1

For h ∈ H, η h (t, x) is the differential of X(t, x) in the direction h and (η h (t, x)) ≥0 satisfies the equation

     dη h (t, x) dt = Aη h (t, x) + b (X(t, x))η h (t, x), η h (0, x) = h. ( 16 
)
Note that this equation as well as the computations below are done at a formal level. They could easily be justified rigorously by an approximation argument, such as Galerkin approximation for instance. The following result is proved in [START_REF] Da Prato | m-dissipativity of Kolmogorov operators corresponding to Burgers equations with space-time white noise[END_REF], see Proposition 2.2.

Lemma 5. For any α ∈ [-1, 0] there exists c = c(α) > 0 such that

e -c t 0 |X(s,x)| 8 3 L 4 ds |η h (s, x)| 2 α + t 0 e -c t s |X(τ,x)| 8 3 L 4 dτ |η h (s, x)| 2 1+α ds ≤ |h| 2 α . (17) 
We introduce the following Feynman-Kac semigroup

S t ϕ(x) = E ϕ(X(t, x))e -K t 0 |X(s,x)| 4 L 4 ds
Next lemma is a slight generalization of Lemma 3.2 in [START_REF] Da Prato | m-dissipativity of Kolmogorov operators corresponding to Burgers equations with space-time white noise[END_REF].

Lemma 6. For any α ∈ [0, 1] and p > 1, if K is chosen large enough then for any ϕ Borel and bounded we have

|D x S t ϕ(x)| α ≤ c e ct (1 + t -1+α 2 )(1 + |x| 3 L 6 ) [E (ϕ p (X(t, x))] 1/p , (18) 
where c depends on p, K, α.

Proof. It is clearly suficient to prove the result for p ≤ 2. We proceed as in [START_REF] Da Prato | m-dissipativity of Kolmogorov operators corresponding to Burgers equations with space-time white noise[END_REF] and write

D x S t ϕ(x) • h = I 1 + I 2 .
where

I 1 = 1 t E e -K t 0 |X(s,x)| 4 L 4 ds ϕ(X(t, x)) t 0 (η h (s, x), dW (s))
and

I 2 = -4KE e -K t 0 |X(s,x)| 4 L 4 ds ϕ(X(t, x)) t 0 (X 3 (s, x), η h (s, x))ds .
For I 1 we have with 1 p + 1 q = 1:

I 1 ≤ 1 t [E (ϕ p (X(t, x))] 1/p E e -Kq t 0 |X(s,x)| 4 L 4 ds t 0 (η h (s, x), dW (s) q 1/q Using Itô's formula for |z(t)| q = e -Kq t 0 |X(s,x)| 4 L 4 ds t 0 (η h (s, x), dW (s)) q 
, we get:

|z(t)| q = -4Kq t 0 |X(s, x)| 4 L 4 |z(s)| q ds +q t 0 e -K s 0 |X(s,x)| 4 L 4 ds |z(s)| q-2 z(s)(η h (s, x), dW (s)) + 1 2 q(q -1) t 0 e -2K t 0 |X(s,x)| 4 L 4 ds |z(s)| q-2 |η h (s, x)| 2 ds.
We deduce:

E sup r∈[0,t] |z(r)| q ≤ qE sup r∈[0,t] r 0 e -K s 0 |X(s,x)| 4 L 4 ds |z(s)| q-2 z(s)(η h (s, x), dW (s)) + 1 2 q(q -1)E t 0 e -2K t 0 |X(s,x)| 4 L 4 ds |z(s)| q-2 |η h (s, x)| 2 ds = A 1 + A 2 .
By a standard martingale inequality, (11) and Lemma 5, we have

A 1 ≤ 3qE t 0 e -2K s 0 |X(s,x)| 4 L 4 ds |z(s)| 2(q-1) |η h (s, x)| 2 ds 1/2 ≤ 3qE sup r∈[0,t] |z(r)| q-1 t 0 e -2K s 0 |X(s,x)| 4 L 4 ds |η h (s, x)| 2 ds 1/2 ≤ 3qE sup r∈[0,t] |z(r)| q-1 t 0 e -2K s 0 |X(s,x)| 4 L 4 ds |η h (s, x)| 2(1-α) -α |η h (s, x)| 2α 1-α ds 1/2 ≤ 3qt 1-α 2 |h| -α E sup r∈[0,t] |z(r)| q-1 ≤ 3qt 1-α 2 |h| -α E sup r∈[0,t] |z(r)| q (q-1)/q ≤ 1 4 E sup r∈[0,t] |z(r)| q + ct q(1-α) 2 |h| q -α .
Similarly:

A 2 ≤ 1 2 q(q -1)E sup r∈[0,t] |z(r)| q-2 t 0 e -2K s 0 |X(s,x)| 4 L 4 ds |η h (s, x)| 2 ds ≤ 1 2 q(q -1)E sup r∈[0,t] |z(r)| q-2 t 0 e -2K t 0 |X(s,x)| 4 L 4 ds |η h (s, x)| 2(1-α) -α |η h (s, x)| 2α 1-α ds ≤ 1 2 q(q -1)t 1-α |h| 2 -α E sup r∈[0,t] |z(r)| q-2 ≤ 1 2 q(q -1)t 1-α |h| 2 -α E sup r∈[0,t] |z(r)| q (q-2)/q ≤ 1 4 E sup r∈[0,t] |z(r)| q + ct q(1-α) 2 |h| q -α .
We deduce:

I 1 ≤ ct -1+α 2 |h| -α [E (ϕ p (X(t, x))] 1/p
For I 2 we write 

I 2 = 4KE e -K t 0 |X(s,x)| 4 L 4 ds ϕ(X(t, x)) t 0 (X 3 (s, x), η h (s, x))ds ≤ 4K [E (ϕ p (X(t, x))]
I 2 ≤ c q (1 + |x| 3 L 6 ) [E (ϕ p (X(t, x))] 1/p |h| -1 .
Gathering the estimates on I 1 and I 2 gives the result.

Lemma 7. For any α ∈ [0, 1), p > 1, q > 1 satisfying 1 p + 1 q < 1, if K is chosen large enough there exists a constants c depending on α, p, q such that for any ϕ Borel bounded and h :

H → D((-A) -α/2 ) Borel such that H |h(x)| q -α ν(dx) < ∞ we have H D x P t ϕ(x) • h(x)ν(dx) ≤ ce ct (1+t -1+α 2 ) ϕ L p (H,ν) H |h(x)| q -α ν(dx) 1/q . ( 19 
)
Proof. We first prove a similar estimate for S t . Using Lemma 6 we have by Hölder inequality

H D x S t ϕ(x) • h(x) ν(dx) ≤ c e ct (1 + t -1+α 2 ) H (1 + |x| 3 L 6 ) [E (ϕ p (X(t, x))] 1/p |h(x)| -α ν(dx) ≤ c e ct (1 + t -1+α 2 ) H (1 + |x| 3 L 6 ) r ν(dx) 1/r × H E (ϕ p (X(t, x)) ν(dx) 1/p H |h(x)| q -α ν(dx) 1/q
. with 1 p + 1 q + 1 r = 1. Thus by Proposition 2.3 in [START_REF] Da Prato | m-dissipativity of Kolmogorov operators corresponding to Burgers equations with space-time white noise[END_REF] and the invariance of ν:

H D x S t ϕ(x) • h(x) ν(dx) ≤ ce ct (1 + t -1+α 2 ) ϕ L p (H,ν) H |h(x)| q -α ν(dx) 1/q .
We then proceed as in [START_REF] Da Prato | m-dissipativity of Kolmogorov operators corresponding to Burgers equations with space-time white noise[END_REF] to get a similar estimate on P t . We write

P t ϕ(x) = S t ϕ(x) + K t 0 S t-s (|x| 4 L 4 P s ϕ)ds.
It follows that, using the estimate above with p > p > 1 such that 1 p + 1 q < 1:

H D x P t ϕ(x) • h(x)ν(dx) ≤ ce ct (1 + t -1+α 2 ) ϕ L p (H,ν) H |h(x)| q -α ν(dx) 1/q +K t 0 ce c(t-s) (1 + (t -s) -1+α 2 ) H |x| 4 L 4 |P s ϕ(x)| pdν(dx) 1/p × H |h(x)| q -α ν(dx) 1/q ds.
The result follows by Hölder inequality and the invariance of ν.

Theorem 1 follows directly from the following result thanks to the invariance of ν and taking for instance t = 1. Proposition 8. For all p > 1, δ > 0, there exists a constant such that for ϕ Borel bounded, and all h ∈ H 1+δ (0, 1), we have

H P t (D x ϕ • h)(x) ν(dx) ≤ ce ct (1 + t -1/2 ) ϕ L p (H,ν) |h| 1+δ (20) 
Proof. By Poincaré inequality, it is no loss of generality to assume δ < min{2(1 -

1 p ), 1 2 }.
We start by integrating (7) on H:

H P t (D x ϕ • h)(x)ν(dx) = H (D x P t ϕ(x) • h) ν(dx) - t 0 H P t-s [( Ah + b (x)h, D x P s ϕ(x) )]ds ν(dx). (21) 
Then by Lemma 7 we deduce

H P t (D x ϕ • h)(x) ν(dx) ≤ ce ct (1 + t -1 2 ) ϕ L p (H,ν) |h| + H t 0 P t-s [(Ah + b (•) • h, D x P s ϕ)]ds ν(dx) .
By the invariance of ν:

H t 0 P t-s [(Ah + b (•) • h, D x P s ϕ)]ds ν(dx) = H t 0 (Ah + b (•) • h, D x P s ϕ)ds ν(dx).
Therefore, by Lemma 7 with α = 1 -δ and q = 2 δ : Integrating with respect to ν and using Proposition 2.3 in [START_REF] Da Prato | m-dissipativity of Kolmogorov operators corresponding to Burgers equations with space-time white noise[END_REF] we deduce:

H |x| δ/2 δ ν(dx) ≤ c δ
Then (20) follows.

H t 0 PP|Yδ

 0 t-s [(Ah + b (•) • h, D x P s ϕ)]ds ν(dx)≤ t 0 ce c(t-s) (1 + s -1+ δ 2 ) ϕ L p (H,ν) H |Ah + b (•) • h| δ/2 -1+δ ν(dx) δ/2 . Note that |b (x) • h| -1+δ = |∂ ξ (xh)| -1+δ ≤ c |xh| δThen, we have:|xh| ≤ c|x| |h| 1 by the embedding H 1 ⊂ L ∞ and |xh| 1 ≤ c|x| 1 |h| 1 ,since H 1 is an algebra. We deduce by interpolation|xh| δ ≤ c|x| δ |h| 1 . t-s [(Ah + b (•) • h, D x P s ϕ)]ds ν(dx) ≤ c δ e ct ϕ L p (H,ν)We need to estimateH |x| δ/2 δ ν(dx). We use the notation of [DaDe07, Proposition 2.2] |X(s, x)| δ ≤ |Y (s, x)| δ + |z α (s)| δ ≤ |Y (s, x)| 1-δ |Y (s, x)| δ 1 + |z α (s)| δ . Using computation in [DaDe07, Proposition 2.2], we obtain sup t∈[0,1] |Y (t, x)| 2 + 0 |Y (s, x)| 2 1 ds ≤ c(|x| 2 + κ)where κ is a random variable with all moments finite. It follows by (11): (s, x)| 2(1-δ)/δ |Y (s, x)| 2 1 ds ≤ c(|x| 2 + 1) 1/δGenelarizing slightly Proposition 2.1 in[START_REF] Da Prato | m-dissipativity of Kolmogorov operators corresponding to Burgers equations with space-time white noise[END_REF], we have:E (|z α (t)| p δ ) ≤ c δ,pfor t ∈ [0, 1], δ < 1/2, α ≥ 1, p ≥ 1. We deduce: ds ≤ c(|x| 2 + 1) 1/δ .