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FLUCTUATIONS AND TEMPERATURE EFFECTS IN BOSE-EINSTEIN

CONDENSATION ∗

Anne de Bouard1, Arnaud Debussche2, Reika Fukuizumi3 and Romain Poncet4

Abstract. The modeling of cold atoms systems has known an increasing interest in the theoretical
physics community, after the first experimental realizations of Bose Einstein condensates, some twenty
years ago. We here review some analytical and numerical results concerning the influence of fluctua-
tions, either arising from fluctuations of the confining parameters, or due to temperature effects, in the
models describing the dynamics of such condensates.

Résumé. Depuis les premières réalisations expérimentales de condensats de Bose-Einstein, il y a
maintenant plus de vingt ans, l’étude des sytèmes d’atomes froids a connu une forte croissance dans
la communauté des physiciens théoriciens. Nous décrivons ici certains résultats mathématiques et
numériques concernant la prise en compte de fluctuations, qui peuvent être dues aux paramètres du
laser utilisé pour le confinement des atomes, ou aux effets de la température lorsque celle-ci est proche
de la température critique de condensation, dans les modèles régissant la dynamique de ces condensats.

Introduction

The first experimental realisations of Bose-Einstein condensates of ultra cold gases in 1995 (see [3, 7, 10])
has been the starting point of experimental studies of those objects whose behaviour close to superfluidity was
predicted a long time ago. But it has also led to a large increase of the theoretical studies, as the comparisons
with the experiments were henceforth made feasible.

Mean field techniques have then shown their power in the sense that the Gross-Pitaevskii equation, which
is the mean field limit equation for the macroscopic wave function of the condensate, was proven to be able to
capture a large part of the physical phenomena for zero-temperature condensates in harmonic traps, especially
concerning the energy and density distributions (see [9]). The predictions are in particular in very good agree-
ment with the experiments. An important feature of the system is the role played by the two-body interactions.
Indeed, at temperature close to the absolute zero, due to its inhomogeneity, and despite the very dilute nature
of the gases, the atom-atom interactions, when taken into account in the model, can lead to density in the
center of the condensate much smaller than the density predicted for an ideal gas in the same trap (see [9]). A
consequence is that the nonlinearity in the Gross-Pitaevskii equation is essential and cannot be neglected.
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When the temperature of a gas is decreased below a critical temperature, the wavelength of the atomic
cloud becomes equal to the typical distance between the particles, wich leads to the necessity to take account
of quantum effects, so that the statistical nature of the particles becomes essential. In a Boson gas, at a
temperature close to the asbolute zero, the wave function of the system of N particles x1, . . . ,xN ∈ R3 may be
written with the use of a single wave functionψ :

ψ̃(x1, . . . ,xN ) = ΠN
j=1ψ(xj).

Denoting by V the external potential allowing to confine the system, and taking account of two-body interactions
through the symetric interaction potential U , the Hamiltonian of the system may be written as

Ĥ =

N∑
j=1

(
− ~2

2m
∆xj + V (xj)

)
+

∑
1≤j,k≤N

U(xj − xk).

This induces the following expression for the energy of the system, after rescaling the wave function ψ by a
factor 1√

N
and assuming N is large :

E(ψ) =

∫
R3

[
~2

2m
|∇ψ(t, x)|2 + V (x)|ψ(t, x)|2 +

1

2

(∫
R3

U(x′ − x)|ψ(t, x′)|2dx′
)
|ψ(t, x)|2

]
dx,

and the Schrödinger evolution

i~∂tψ(t, x) = ∇ψE(ψ)(t, x).

Now, when the distance between the particle is less than the de Broglie wavelength λT and for weak inter-
actions, the particles do not see the details of the interaction potential and this later may be replaced with the

effective potential Ueff(x) = 4π~2as
m δ0(x). Here as is the atomic diffusion length, a constant that may be positive

or negative. We then finally end up with the evolution equation

i~∂tψ = − ~
2m

∆ψ(t, x) + V (x)ψ(t, x) +
4π~2as
m

|ψ|2ψ(t, x),

usually called the Gross-Pitaevskii (GP) equation (see [4, 29]). One may also consult [28], for rigorous results
on this derivation.

Many effects may be added in the system, which can still be handled by the above mean field procedure. The
effects of rotation of the condensate – which, above a certain critical speed leads the nucleation of vortices, a
signature of the superfluid beviour – leasds to the addition of a first order term in the (GP) equation (see [4]).
Dipolar interations may also be taken into account, for the modeling of condensates of atoms with strong
magnetic moments, like e.g. 52Cr, and leads to additional nonlocal terms in (GP). Multicomponents BEC are
also widely studied nowadays in the mean field approximation.

Our interest here lies in the case where additional fluctuations are taken into account and modeled thanks
to the addition of stochastic terms. This is the case e.g. when fluctuations of the parameters of the laser used
for the confinement are taken into account. It leads to a (GP) equation in which the confining potential is
perturbed by a random stationary process, that can be approximated with white noise (see [1,2,24,26,32]). We
will review in Section 1 the mathematical and numerical results on the corresponding (GP) equation).

Another situation in which stochastic effects are included in the model is the case where the temperature
is close to the critical temperature of condensation. In this partially condensed situation, interactions of the
condensate with the “thermal cloud” formed by non-condensed atoms need to be taken into account. Based on
the remark that a consistent description of those interactions should preserve the principles of the fluctuation-
dissipation theorem, thus leading (formally) to the relaxation of the system to the expected physical equilibrium,
both dissipation and stochastic fluctuations are included in the (GP) equation (see [6, 20, 23]). A review of
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some mathematical and numerical results on the corresponding model – so called stochastic (projected) Gross-
Pitaevskii equation – is presented in Section 2. Note that the model has proved to be particularly efficient
in reproducing the experimentally observed formation of defects in the condensation process, consisting in
decreasing the gas temperature from T above the critical temperature Tc to T < Tc, while in the same time
increasing the chemical potential µ (see [33], and Section 2).

1. Random variations of the confining potential

In the mean field theory of BEC based on the Gross-Pitaevskii (GP) equation, fluctuations of the laser field
intensity can be regarded as modulations of the harmonic trap potential. Such a model has been considered
e.g. in [1] where moments methods were used to discuss possible collapse of the (attractive) condensate, in
space dimension 2, for a radially symmetric condensate. Fluctuations were then modeled by a delta correlated
Gaussian process, that is a white noise in time. The same model, but with a more general time-dependent
stationary process was also considered in the three-dimensional case in [24], and considerations about the noise
power spectrum may be found in [32].

In a far-off resonance trap created by red detuned lasers, one may write the effective trapping potential
in the form V (t, x) = − 1

4α|E(t, x)|2, where sα is the atomic polarizability and E(t, x) is the field amplitude
(see [24,32]). Then, if the dynamics of the trapped atoms is described by the hamiltonian

H =
p2

2m
+

1

2
mω2

tr(1 + ε(t))x2,

where ωtr = k0
m is the mean-square trap oscillation frequency (which is proportional to the time-averaged laser

intensity I0) and ε(t) represents the fluctuations in the spring constant k, with ε(t) = I(t)−I0
I0

, one end up with
the Gross-Pitaevskii equation with stochastic potential

i~∂tψ = − ~2

2m
∆ψ + V (t, x)ψ + g|ψ|2ψ. (1)

Here, the nonlinear coefficient is g = 4π~2as
m , and in the harmonic situation described above, V has the expression

V (t, x) =
mω2

tr

2
x2(1 + ε(t)).

In general, the fluctuation process ε(t) is taken stationary, zero mean, and with sufficiently decaying correlation
function c(t− s) = E(ε(t)ε(s)).

Introducing the variables t′ = ωtrt, x
′ = x

r0
with r0 =

√
~

mωtr
and ψ′ =

√
4π|as|r2

0ψ, ε′(t′) = ε(t′/ωtr) and

dropping the primes, allows to write (1) in dimensionless form

i∂tψ = −1

2
∆ψ +

1

2
x2(1 + ε(t))ψ + λ|ψ|2ψ, (2)

where λ = sign(as) = ±1. A variational approach was used in [24], assuming a Gaussian profile for the wave
function of the condensate of the form

ψ(t, x) = A(t) exp

(
− |x|

2

2a(t)
+
i

2
b(t)|x|2 + iθ(t)

)
;

moreover, a diffusion-approximation theorem was used on the system rewritten in terms of action-angle variables,
showing that the dynamics of the action variable is well approximated by a Markov diffusion process, with a
generator depending on some integral in time of the correlation function c. This allowed the authors to predict
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the collapse time (in the attractive cas λ = −1) and compare it with numerical simulations. Such considerations
on the collapse had also previously been considered in the two-dimensional case in [1].

From a mathematical point of view, considering a delta-correlated fluctuation process ε (see also Theorem
2 below), it is convenient to write the equation as a Stratonovich stochastic partial differential equation, with
the help of a real valued Brownian motion W on a probability space (Ω,F ,P) endowed with a filtration (Ft)t≥0

associated with W and writing formally ε(t) = σ0
dW
dt . We then find

idψ = −1

2
(∆ψ − V (x)ψ)dt+ λ|ψ|2ψdt+

σ0

2
V (x)ψ ◦ dW, (3)

where V (x) = |x|2, σ0 ∈ R, λ = ±1 and ◦ stands for a Stratonovich product in the right hand side of (3).
Note that the choice of a Stratonovich product is natural at least for two reasons : first, as explained above,
this delta-correlated situation is the limiting case (for vanishing correlation length) of a more general situation
where the fluctuations are modeled with a stationary process; secondly, such a noise allows the preservation of
the total number of atoms, N = |ψ|2L2 , almost surely (see below) which is also a natural assumption.

As is classical, we may rewrite equation (3) as a Itô equation :

idψ = −1

2
(∆ψ − V (x)ψ)dt+ λ|ψ|2ψdt+

σ0

2
V (x)ψdW − iσ

2
0

4
V 2(x)ψdt. (4)

This equation has been studied in the series of papers [14–17] and [30]. The question of interest were in
particular the local and global existence of solutions (and the possible collapse, in the attractive cas λ = −1,
which was previously discussed in the physics papers), the dynamics of the solutions close to a multiple vortex,
numerical simulations and the numerical analysis of the Crank-Nicolson scheme. We describe in more details
the corresponding results in the following subsections.

1.1. Existence results and diffusion-approximation

Note that in equation (3), the noise term σ0

2 V (x)ψ ◦ dW , although linear in ψ, occurs at the highest order of
the operator −∆ + V (x) of the linear evolution (this was also the case for the (NLS) equation with white noise
dispersion considered e.g. in [12,18]). A consequence is that the noise term cannot be treated as a perturbation
of the deterministic equation.The strategy in [16] is rather to use the Gauge transform

ψ(t, x) = e−iG(t,x)u(t, x), (5)

with G(t, x) = 1
2V (x)(t + W (t)). The new wave function u then satisfies the following Schrödinger equation

with a random magnetic field:

i∂tu = −1

2

(
∇− iA(t, x)

)2

u+ λ|u|2σu. (6)

with A = ∇G(t, x) = 1
2∇V (x)(t+W (t)).

In order to obtain local existence results for equation (6), we need dispersive estimates on the linear evolution,
deduced from “good” properties of the integral kernel of the linear evolution propagator (with λ = 0), which
can be expressed in terms of classical orbits, as is often used in semiclassical analysis. Using these classical
paths, we can write the propagator as an oscillatory integral operator associated to the action integral. Such
oscillatory integral operators have been studied by many authors in the context of deterministic Schrödinger
equations (see e.g. [21,27,34]). The theory of [34] does not apply directly to equation (6), since it requires that
the time derivative of the vector potential A(t, x) is uniformly bounded, while this time derivative only exist as

a distribution in our case, since Ẇ (t) is a white noise. We were however able to prove, making use of the almost
sure Cα regularity of the Brownian motion, with 0 < α < 1/2, that the estimates in [34] can be generalized to
our case. Actually, in our study, W (t) could be replaced by any real valued Cα function of the time variable,
with α > 0. The analysis was generalized in [19] to the case of more general Hamiltonian, allowing to consider
the situation where rotation of the condensate is taken into account.
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Using those dispersive estimates, we obtained in [16] the following proposition concerning the local solutions
of equation (6). Here Σ denotes the energy space

Σ =
{
v ∈ L2(Rd), |∇v|2L2 + |xv|2L2 = |v|2Σ < +∞

}
.

Proposition 1. Assume d = 1, 2 or 3, λ = ±1 and r = 8/d.

(i) Let d = 1 and u0 ∈ L2(R). Then there exists a unique global solution u of (6), adapted to (Ft)t≥0,
almost surely in C([0, T0];L2(R))∩Lr(0, T0;L4(R)) for any T0 > 0. Moreover, the L2 norm is conserved:

|u(t)|L2 = |u(0)|L2 , a.s. in ω, for all t ≥ 0,

and u depends continuously on the initial data u0 in the following sense: if u0,n → u0 in L2(R), and if
un denotes the solution of (6) with u0 replaced by u0,n, then un → u in L∞(0, T0;L2).

(ii) Let d = 1 and u0 ∈ Σ. Then there exists a unique global adapted solution u of (6) almost surely in
C(R+; Σ).

(iii) Let u0 ∈ Σ, and d = 2 or 3. Then there exists a maximal time T ∗ = T ∗u0,ω > 0 such that there exists a
unique adapted solution u(t) of (6) almost surely in C([0, T ∗); Σ), and the following alternative holds:
T ∗ = +∞ or T ∗ < +∞ and limt↑T∗ |u(t)|Σ = +∞.

We actually considered in [16] more general power nonlinearities, and the relation between the power |u|2σu
and the space dimension d for local existence in L2(Rd) is the usual condition σ < 2/d. An application of
the inverse of the Gauge transform given by (5) immediately leads to the corresponding local existence and
uniqueness result for equation (3) (or equivalently (4)), and the preservation of the L2-norm of ψ, almost surely.
Global results are deduced from the evolution of the Hamiltonian

H(ψ) =
1

4
|∇ψ|2L2 +

1

4

∫
Rd
V (x)|ψ(x)|2 dx+

λ

4
|ψ|4L4 . (7)

Indeed, an application of the Itô formula to equation (4) allows to show that for any stopping time τ ≤ T ∗∧T :

H(ψ(τ)) = H(ψ0) +
σ2

0

16

∫ τ

0

∫
Rd
|∇V (x)|2|ψ(x)|2dxdt− σ0

4
Im

∫ τ

0

∫
Rd
∇V (x) · ∇ψ(x)ψ̄(x) dx dW, a.s (8)

and ∫
Rd
V (x)|ψ(τ, x)|2 dx =

∫
Rd
V (x)|ψ0|2 dx+ Im

∫
Rd
xψ̄ · ∇ψdx, for any τ ≤ T ∗ ∧ T, a.s. (9)

The attractive case λ = −1 was already proved to possibly lead to collapse of the wave function ψ in [14]
and we end up with the following existence and uniqueness results for equation (3).

Theorem 1. Assume d = 1, 2 or 3, λ = ±1 and r = 8/d.

(i) Let d = 1 and ψ0 ∈ L2(R). Then there exists a unique global solution ψ(t) of (3), adapted to (Ft)t≥0

with ψ(0) = ψ0, which is almost surely in C(R+;L2(R)) ∩ Lrloc(R+;L4). Moreover, the L2-norm is
conserved by the time evolution, that is,

|ψ0|L2 = |ψ(t)|L2 , a.s., for all t ≥ 0.

If moreover ψ0 ∈ Σ, then ψ is almost surely in C(R+; Σ).
(ii) Let d = 2 or 3, and ψ0 ∈ Σ. Then there exist a stopping time τ∗ = τ∗ψ0,ω

> 0 and a unique solution

ψ(t) of (3), adapted to (Ft)t≥0 with ψ(0) = ψ0, almost surely in C([0, τ∗); Σ). In fact, τ∗ = T ∗, defined
in Proposition 1 (iii). If λ = 1, then T ∗ = +∞. If λ = −1 and there exists a deterministic time t̄ > 0
such that ∫

Rd
V (x)|ψ0(x)|2 dx+ 4t̄ Im

∫
Rd
ψ̄0(x)x.∇ψ0(x) dx+ 8H(ψ0)t̄2 < 0,
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then P(T ∗ψ0
≤ t̄) > 0, i.e. collapse occurs with a positive probabilty.

As a byproduct of the representation formula, and in particular of the continuous dependence of the solution
u given by Proposition 1 with respect to the trajectories of the Brownian motion, that can be proved thanks to
this representation formula in the L2-subcritical case (which implies d = 1), a diffusion-approximation result was
obtained in [16], which justifies in particular the choice of time white noise in some scaling. Indeed, consider a
process m(t) which is either a stationary ergodic process satisfying some mixing conditions, or a Markov process
with a unique ergodic invariant measure, so that by the Donsker functional central limit theorem, the process

t 7→ ε
σ0

∫ t/ε2
0

m(s)ds converges in distribution in C([0, T ]) to a standard real valued Brownian motion. Then
the following holds.

Theorem 2. Let d = 1, λ = ±1 and (m(t))t≥0 as above. Then, for any ε > 0 and ψ0 ∈ L2(Rd) there exists a
unique solution ϕε, with continuous paths on R+ with values in L2(Rd), of the following equation:{

i∂tϕ =
1

2
(−∆ + V (x))ϕ+ λ|ϕ|2ϕ+

1

2ε
m
( t
ε2

)
V (x)ϕ,

ϕ(0) = ψ0.
(10)

Moreover the process ϕε converges in distribution in C([0, T ];L2(Rd)) as ε tends to zero, to the solution ψ of
(3), for any positive T .

1.2. Dynamics of solutions close to a multiple vortex

In dimension two, some specific solutions of the deterministic equation (that is when σ0 = 0), and for repulsive
condensates, are given by vortices, which are solutions of the form

u(t, r, θ) = e−iµteimθψµ,m(r), (11)

where r, θ are polar coordinates, m is the vortex degree, µ is the chemical potential and ψµ,m(r) is the radial
positive vortex profile. We show in figures 1 and 2 some profiles ψµ,m, for different values of m and µ.

Figure 1. Amplitudes of vortices
|ψµ,m| for µ close to λm, for different
values of m

Figure 2. Amplitudes of vortices
|ψµ,m| for m = 1 for different values of µ

The influence of white noise perturbations of the confining potential on the dynamics of those solutions has
been studied in [17] (and in [15] in the case m = 0), in the small noise asymptotics. More precisely, consider
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the following stochastic Gross-Pitaevskii equation

idu+ (∆u− |x|2u− |u|2σu)dt = ε|x|2u ◦ dW, (12)

where ◦ stands for a Stratonovich product in the right hand side of (12), σ > 0, ε > 0. Here, as before, W (t)
is a standard real valued Brownian motion on R+. We recall that Σ is the energy space consisting of square
integrable functions f such that ∇f ∈ L2(R2) and xf ∈ L2(R2). Let then Xm be the closed subspace of Σ that
has the same symmetry, i.e., m-equivariant symmetry as the vortex solutions φµ,m(x) = eimθψµ,m(r):

Xm := {v ∈ Σ, e−imθv(x) does not depend on θ}.

One may check (see [17] for details) that the noise in the right hand side of (12) preserves the equivariance
structure, or in other terms that the solution u(t) of (12) belongs to Xm if the initial data u(0) = u0 belongs to
Xm. Defining then the action functional Sµ as

Sµ(u) =
1

2
|∇u|2L2 +

1

2
|xu|2L2 +

1

2σ + 2
|u|2σ+2

L2σ+2 −
µ

2
|u|2L2 , (13)

which is a conserved quantity of the deterministic equation, the profile φµ,m = eimθψ(r) of the vortex solution
(11) may be characterized as the unique global minimizer of Sµ on Xm, as soon as µ > λm = 2m + 1. A
straighforward consequence of this is the stability of the vortex solution (11) for the deterministic equation (12)
with ε = 0.

Using this stability property, the following result was proved in [17] concerning the solution uε(t, x) of equation
(12) with initial data uε(0, x) = φµ0,m(x) : it says that we can decompose uε in Xm as the sum of a modulated
vortex solution and a remainder with small Σ norm, for t less than some stopping time τε, and that this τε

goes to infinity in probability as ε goes to zero. This decomposition is in the form

uε(t, x) = e−iξ
ε(t)(φµ0,m(x) + εηε(t, x)) (14)

for a semi-martingale process ξε(t) with values in R, and ηε with value in Xm. Here, we use the following
orthogonality condition

Re(ηε, iφµ0,m)L2(R2) = 0, a.s., t ≤ τε, (15)

for a suitable stopping time τε, which corresponds to the exit time of εηε from a small neighborhood of 0 in Σ.
More precisely, we have the following result.

Theorem 3. Let 1/2 ≤ σ < ∞ and µ0 > λm be fixed. For ε > 0, let uε(t, x) be the solution of (12) with
u(0, x) = φµ0,m(x). Then there exists α0 > 0 such that, for each α, 0 < α ≤ α0, there is a stopping time
τεα ∈ (0,∞) a.s., and there is a semi-martingale process ξε(t), defined a.s. for t ≤ τεα, with values in R, so that
if we set εηε(t, x) = eiξ

ε(t)uε(t, x)− φµ0,m(x), then (15) holds. Moreover, a.s. for t ≤ τεα,

|εηε(t)|Σ ≤ α. (16)

In addition, there is a constant C = Cα,µ0
> 0, such that for any T > 0 and any α ≤ α0, there is an ε0 > 0,

such that for each ε < ε0,

P(τεα ≤ T ) ≤ exp
(
− C

ε2T

)
. (17)

The modulation parameter ξε may be written, for t ≤ τεα, as

dξε = µ0dt+ εyεdt+ εzεdW,

for some adapted processes yε, zε with values in R satisfying: as ε goes to zero, yε, zε converge respectively to
some real valued processes y, z in probability in C([0, T ]).
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Numerical simulations were also performed in [17], which showed numerical evidences of the optimality of
the estimate (17), in terms of rates in time and ε. Taking into account the m-equivariant symmetry, Equation
(12) is only solved in the radial component and reduces to a one dimensional equation. Numerical simulations
were performed with a numerical scheme based on a Crank-Nicolson discretization in time, which is natural to
consistently approximate the Stratonovich integral (see also section 1.3 below). The nonlinearity is not computed
by a fixed point method, but by a relaxation method which amounts to compute an explicit extrapolation of the
nonlinearity. The space approximation is based on finite differences. The radial profile of the vortex solutions
(which are used as Cauchy condition) were computed by a shooting method. Figure 3 and 4 display respectively

Figure 3. A trajectory of |uε(r, t)|
for m = 1 and σ = 1

Figure 4. A trajectory of |uε(r, t)|
for m = 2 and σ = 1

the time evolution of the radial profile of a solution with a vortex solution as initial Cauchy condition with
vortex degree m = 1 and m = 2. We can observe that the wave function keeps the same structure over time
and that it oscillates with an almost periodic rhythm.

The computation of the processes ξε(t) and ηε(t, x) are straightforward using the orthogonality condition 15
and are given almost surely for t ≤ τε by,

ξε(t) = −arg〈uε(t), φµ0,m〉L2(R2), and εηε(t, x) = uε(t, x)eiξ
ε(t) − φµ0,m(x).

An approximation of the law of the stopping time τεα with ε = 9 · 10−3 was computed using a classical Monte-
Carlo method, and is given in Figure 5 and 6. We can observe that the slopes therein (for ε small enough) are
in good agreement with estimate 17.

1.3. Numerical analysis of the Crank-Nicolson scheme

The use of a Crank-Nicolson scheme to discretize equation (3) is natural since mid-point discretization is
consistent with the Stratonovich product. It also preserves the conservation of L2 norm. Such a discretization
has been used in [5, 11, 25] for other types of stochastic nonlinear Schrödinger equations. Even if, in terms of
computational costs, it is often convenient to consider its linearly implicit derivative given by the relaxation
scheme (see the above simulations), the numerical analysis of this later scheme is closely related to the numerical
analysis of the Crank-Nicolson scheme, which is in some sense a prerequisite. This numerical analysis has been
carried out in [30], where the convergence at order one of the time-semi-discrete scheme was proved.
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Figure 5. Estimation of P(τεα ≤ t)
by a Monte-Carlo method, with re-
spect to ε

Figure 6. Estimation of P(τεα ≤ t)
by a Monte-Carlo method, with re-
spect to t

The naive Crank-Nicolson discretization of (3) is given by

i
ψn+1 − ψn

δt
=

1

2

(
A+

χn+1√
δt
|x|2
)(

ψn + ψn+1

2

)
+ λg(ψn, ψn+1), (18)

where A = −∆ + |x|2, ψn is an approximation of ψ(nδt), (χn)n≥0 is a sequence of independent normal random
variables and g is the approximation of the nonlinearity given by

g(ψn, ψn+1) =
1

2
(|ψn|2 + |ψn+1|2)

(
ψn + ψn+1

2

)
.

There are several difficulties in this analysis. The first one is the non Lipschitz behavior of the nonlinearity,
which is in particular an obstacle to the global existence and uniqueness of a solution ψn of (18), and requires
the use of a cut-off for the nonlinear term. Secondly, although the above scheme allows the conservation of
the L2 norm, giving immediately the L2-stability, it does not allow to get stable estimates on higher order
derivatives, which are needed to study the order of convergence of the scheme. The argument is again to use
a cut-off in the highest modes of the operator A = −∆ + |x|2 which would correspond to the use of a spectral
space discretization.

The result may be stated as follows. Denote, for k ∈ N,

Σk = {v ∈ L2(Rd),
∑

|α|+|β|≤k

|xβ∂αv|2L2 := |v|2Σk < +∞}.

We consider, for a fixed time step δt a solution (ψnK,L,δt)nδt≤T of (18) where A is replaced by Ak = PKA,
PK being the projection on the K first eigenmodes of A, and g is replaced by a Lipschitz approximation with
Lipschitz constant L (see [30] for details). Then the following convergence result holds.

Theorem 4. For all T > 0, k ∈ N, ψ0 ∈ Σk+12(Rd), C > 0 and α < 1, there is a choice of the cut-off constants
K(δt), L(δt) such that

lim
δt→0

sup
nδt≤T

P
[
|ψnK(δt),L(δt),δt − ψ(tn)|Σk ≥ C(δt)α

]
= 0.
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2. A model with positive temperature : the projected stochastic
Gross-Pitaevskii equation

When temperature is close to the critical temperature of condensation, one has to take into account the
non-condensate particle contributions, which are negligible for temperature close to the absolute zero. Even
though a unified approach does not seem to be yet available in this situation, the use of a “truncated Wigner
theory” (see [6, 22, 23]), leads to a model for the wave function which, in a simplified form taking account only
of the growth terms, may be written as

dψ = Pc
[
− i

~
LGPψdt+

γ

kBT
(µ− LGP )ψdt+ dWγ(t, x)

]
(19)

where

LGP = − ~2

2m
∆ + V (x) + g|ψ(t, x)|2,

m is the atomic mass, g = 4π~2a
m with a the (positive) s-wave scattering length, V (x) = m

2 ω
2x2, µ is the chemical

potential, and Pc is a projection operator on the lowest energy modes (the non-condensate band). Moreover,
the noise term dW corresponds here to a space-time white noise, that is a Gaussian field which is δ-correlated
both in space and time :

E
(
dW ∗γ(t, x)dWγ(t′, x′)

)
= 2γδ(t− t′)δ(x− x′)dt.

The methodology in [23] consisted in first considering that the modes with wavenumbers k larger than ∆, where
2π/∆ is the order of magnitude of the range of the interatomic potential have no occupation and can be elimi-
nated. Next, the remaining components of the wave function can be divided into a low momentum component
(the condensate band) which is treated fully quantum-mechanically, and a high momentum component (the
non-condensate band) which is considered to be a bath of thermalized atoms.

The same model was obtained previously in [20] with different methods, in particular a functional integral
formulation of the Keldysh method, in which the elimination of the highest energy modes is achieved in the
action functional. Moreover, the model is in very good qualitative agreement with the experiments aiming to
simulate the dynamics of the condensation process (see [33], and the simulations below).

At zero temperature, one recovers the standard (GP) equation for the projected wave function ψc on the
lowest energy modes, for which the hamiltonian

H(ψc) =
~2

2m
|∇ψc|2L2 + |V (x)ψc|2L2 − µ|ψc|2L2 +

g

4
|ψc|4L4

is conserved. Note that a symmetry breaking occurs for the ground state of H at µ = ~ω, since for small values
of µ the minimum of H is equal to zero. At positive temperature, it may easily be formally shown that the
Gibbs measure given by

πT (dψc) = αc exp
(
− H(ψc)

kBT

)
dψc,

for some normalizing constant αc, is invariant under the transition semi-group associated with (19), and the
convergence to equilibrium of ψc with a geometric rate may be proved (see [31]).

This model has been used to observe the spontaneous nucleation of vortices during the condensation process
(see [33]). Indeed, the appearance of topological defects during a phase transition is predicted by the Kibble-
Zurek mechanism, and can be modeled by Equation (19) in the case of Bose-Einstein condensation. In this model,
the phase transition is initiated by a positive value of the chemical potential µ. Thus, starting from a thermalized
state with low chemical potential and high temperature, a sudden quench to a higher chemical potential and
a lower temperature will lead to the formation of vortices during the growth process of the condensate. This
dynamics is shown in Figure 2 We can observe a fast appearance of vortices after the instantaneous quench,
followed by a slow decay of the vortices.
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Figure 7. Time evolution of a BEC submitted to an instantaneous quench from µ = 1 to
µ = 25 at t = 0.

The numerical scheme used to solve equation (19) is an implicit/explicit scheme for the time discretization,
and a Hermite spectral discretization in space, which is natural to take precisely into account the cut-off operator
Pc.

From a mathematical point of view, the role of the cut-off operator Pc is also crucial as equation (19) is not
expected to possess solutions if Pc is equal to the identity operator, in space dimension three. However, the
equation has been studied in space dimension one, without the cut-off operator, in [13] and the existence of a
global solution of the equation, for a.s. all initial data with respect to the invariant measure of the standard
(GP) equation was proved. This later invariant measure was indeed studied in [8] and its support was shown
to contain Lp(R) for any p larger than 2. The convergence to equilibrium was also obtained in [13], thanks to
a Poincaré inequality.

More precisely, consider the equation in dimensionless form

dψ = (i+ γ)
[
∆ψ − x2ψ + µψ − |ψ|2ψ

]
dt+

√
γdW (20)

where ψ(t, x) is the wave function, x ∈ R, γ > 0, µ ≥ 0, and W is a cylindrical Wiener process on L2(R) that
may be modeled as follows : let (hn)n∈N be a real valued complete orthonormal system in L2(R) such that
(−∆ + x2)hn = λ2hn, with λ2

n = 2n + 1, so that (hn)n is a sequence of Hermite functions; let (βn)n∈N be a
sequence of independent normalized complex-valued Brownian motions, and write W (t, x) =

∑
k∈N βk(t)hk(x).

Then denoting

S(ψ) =
1

2

∫
R

(
|∇ψ|2 + |xψ|2

)
dx− µ

2

∫
R
|ψ|2dx+

1

4

∫
R
|ψ|4dx,

the Gibbs measure may now be formally defined by ρ(dψ) = e−S(ψ)dψ. It may actually be rigorously defined
– at least for µ = 0 – as an absolutely continuous measure with respect to the Gaussian measure on Lp(R) for
p > 2, defined as the law of the random function series

ϕ(ω, x) =

∞∑
n=0

√
2

λn
gn(ω)hn(x),
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where (gn)n is a sequence of independent complex valued NC(0, 1). Indeed, the series converges in Lp(R) for
any p > 2 (see [8]). Let ν(dψ) denote the Gaussian measure defined by the law of ϕ in Lp(R), p > 2 (which is
also the invariant measure of the flow corresponding to the linear evolution in (20) for µ = 0). We may then
define the Gibbs measure ρ as

ρ(dψ) = Γ−1e−
1
4 |ψ|

4
L4 ν(dψ),

for some normalizing constant Γ. For µ > 0, the rigorous definition of the measure ρ requires a more subtle
decomposition (see [13]).

We can then solve equation (20) locally in time in Lp(R), and use the invariance of ρ for the evolution to
prove the following theorem.

Theorem 5. Let γ > 0, µ ≥ 0, λ = 1 and p ≥ 3. There exists a ρ-measurable set O ⊂ Lp(R) such that
ρ(O) = 1, and such that for ψ0 ∈ O there exists a unique solution of (20), ψ(·) ∈ C([0,∞), Lp(R)) a.s.

Let (Pt)t≥0 be the transition semi-group associated with Equation (20) and defined by PtΦ(ψ0) = E(Φ(ψ(t, ψ0))),
where ψ(·, ψ0) is the solution of (20) with ψ(0) = ψ0, so that Pt is well defined in L2(Lp, dρ), for any p ≥ 3,
and any t > 0. The following convergence result holds.

Theorem 6. Let γ > 0, µ ≥ 0, λ = 1 and p ≥ 3. Let Φ ∈ L2((Lp, dρ);R), and Φ̄ =
∫
Lp

Φ(y)ρ(dy). Then

u(t, ·) := PtΦ(·) converges exponentially to Φ̄ in L2((Lp, dρ),R), as t→∞; more precisely,∫
Lp
|u(t, y)− Φ̄|2ρ(dy) ≤ e−γt

∫
Lp
|Φ(y)− Φ̄|2ρ(dy).

Note that the results of Theorem 5 and Theorem 6 are still true for more general power nonlinearities |ψ|2σψ
if p ≥ 2σ + 1 and p > 2. Those results represent a first step in the understanding of Equation (20). The main
difference with the more classical Ginzburg-Landau equation (without the confining potential, possibly posed
on a bounded domain D) is the growth of the eigenvalues λn which makes the problem critical, even though the
space dimension is only one. The study of larger dimensions, as well as the qualitative study of the dynamics,
will require a more refined analysis.
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