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Abstract
In the last years, a wide range of methods allowing to reconstruct past population size changes from genome-wide data have
been developed. At the same time, there has been an increasing recognition that population structure can generate genetic
data similar to those produced under models of population size change. Recently, Mazet et al. (Heredity 116:362–371, 2016)
showed that, for any model of population structure, it is always possible to find a panmictic model with a particular function
of population size changes, having exactly the same distribution of T2 (the coalescence time for a sample of size two) as that
of the structured model. They called this function IICR (Inverse Instantaneous Coalescence Rate) and showed that it does not
necessarily correspond to population size changes under non-panmictic models. Besides, most of the methods used to
analyse data under models of population structure tend to arbitrarily fix that structure and to minimise or neglect population
size changes. Here, we extend the seminal work of Herbots (PhD thesis, University of London, 1994) on the structured
coalescent and propose a new framework, the Non-Stationary Structured Coalescent (NSSC) that incorporates demographic
events (changes in gene flow and/or deme sizes) to models of nearly any complexity. We show how to compute the IICR
under a wide family of stationary and non-stationary models. As an example we address the question of human and
Neanderthal evolution and discuss how the NSSC framework allows to interpret genomic data under this new perspective.

Introduction

Reconstructing the demographic history of populations and
species remains one of the great challenges of population
genetics and statistical inference (Harpending and Rogers
2000; Beaumont et al. 2002; Goldstein and Chikhi 2002;
Hey and Machado 2003; Li and Durbin 2011; Liu and Fu
2015; Scerri et al. 2018). In the last decades significant
progress has been made in the development of likelihood
and likelihood-free methods, hence facilitating the estima-
tion of parameters of interest such as migration or admixture
rates, and the dates of putative bottlenecks, expansions or
splitting events (Beaumont 1999; Beaumont et al. 2002;
Marjoram et al. 2003; Hey and Nielsen 2004; Gutenkunst
et al. 2009; Li and Durbin 2011; Bunnefeld et al. 2015).

The rich body of methods and approaches that have been
developed during that period can be divided into methods
that ignore population structure and thus view the demo-
graphic history of species as a series of population size
changes (Beaumont 1999; Chevalet and Nikolic 2010; Li
and Durbin 2011; Liu and Fu 2015; Bunnefeld et al. 2015)

* Lounès Chikhi
lounes.chikhi@univ-tlse3.fr

1 Institut de Mathématiques de Toulouse, Université de Toulouse,
Institut National des Sciences Appliquées, 31077
Toulouse, France

2 Facultad de Matemática y Computación, Universidad de La
Habana, La Havana, Cuba

3 GenPhySE, Université de Toulouse, INRA, INPT, INP-ENVT,
Castanet Tolosan, France

4 Laboratoire Évolution & Diversité Biologique (EDB UMR 5174),
Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118
route de Narbonne, Bât. 4R1, 31062 Toulouse cedex 9, France

5 Instituto Gulbenkian de Ciência, Rua da Quinta Grande, No. 6, P-
2780-156 Oeiras, Portugal

Electronic supplementary material The online version of this article
(https://doi.org/10.1038/s41437-018-0148-0) contains supplementary
material, which is available to authorized users.

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41437-018-0148-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41437-018-0148-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41437-018-0148-0&domain=pdf
mailto:lounes.chikhi@univ-tlse3.fr
https://doi.org/10.1038/s41437-018-0148-0


and those that account for population structure (Nielsen and
Wakeley 2001; Chikhi et al. 2001; Hey and Nielsen 2004;
Gutenkunst et al. 2009; Gronau et al. 2011). In the first
family of models, the number of population size changes
can be fixed (Beaumont 1999) or it can be allowed to vary,
hence allowing for more complex trajectories with a step-
wise demographic history that can exhibit both expansions
and contractions (Li and Durbin 2011; Nikolic and Chevalet
2014; Liu and Fu 2015; Boitard et al. 2016). In the second,
the model of population structure is typically fixed a priori
and relatively simple, and its parameters estimated (Chikhi
et al. 2001; Hey and Nielsen 2004; Gutenkunst et al. 2009;
Gronau et al. 2011). Some recent methods allow for com-
plex multi-population split models with gene flow (Guten-
kunst et al. 2009) or with admixture events (Gronau et al.
2011). However, while the sizes of ancestral and derived
populations can be different in these methods, each one is
usually assumed constant and the model structure usually
remains fixed. If the evolutionary hypotheses made by the
underlying models are violated (for example, if the popu-
lations evolve under a different type of structure), the esti-
mated parameters may be difficult to interpret (Mazet et al.
2016; Chikhi et al. 2018).

There is thus no general inferential framework that
allows the joint estimation of population structure and
population size changes (Scerri et al. 2018). This is
understandable because it would probably be beyond the
current methods to estimate the parameters of such complex
models. Still, if we wish to understand the recent evolu-
tionary history of species, including that of humans, it may
be necessary to identify the models with or without popu-
lation structure that can (and those that cannot) explain
patterns of genomic diversity.

This is challenging because an increasing number of
studies have shown that population structure per se can
generate spurious signals of population size change in
genetic data. This suggests that the first group of methods
may generate misleading histories of population size change
(Wakeley 1999; Storz and Beaumont 2002; Chikhi et al.
2010; Heller et al. 2013; Mazet et al. 2016; Chikhi et al.
2018) that can explain the data as well or nearly as well as
more realistic models of population structure. Since many
species are de facto structured in space, a powerful
approach to improve the inferential process might be to
reduce the model and parameter space so as to focus on
models that can explain the data in their genomic com-
plexity. Models that cannot explain the data could then be
rejected (Chikhi et al. 2018) or improved.

In the present study, we introduce a mathematical and
conceptual framework based on the structured coalescent
(Herbots 1994). We illustrate how the IICR curves could in
principle be used to develop a powerful model choice and
exclusion strategy. In a few words, the IICR is a time-

dependent function that can be interpreted as an effective
size in a panmictic population. However, for structured
models this interpretation may be misleading. For instance,
there are various IICR curves for the same demographic
model that depend on the temporal and geographical sam-
pling scheme (Mazet et al. 2016; Chikhi et al. 2018). For
studies focusing on the impact of the sampling scheme on
demographic inference, see also Wakeley (1999); Städler
et al. (2009); Chikhi et al. (2010); Heller et al. (2013); Paz-
Vinas et al. (2013). IICR curves can thus be seen as sample-
dependent coalescent histories, which together may repre-
sent a unique signature for a complex model. The IICR is
related to the PSMC method of Li and Durbin (2011) in the
sense that the PSMC method, while generally interpreted in
terms of population size changes, actually infers the IICR
for a sample of size two (Mazet et al. 2016). The IICR
curves can thus be seen as summaries of genomic infor-
mation (Chikhi et al. 2018).

We extend previous work on the IICR by applying the
theory of Markov chains (see for example Norris (1998)) to
models of population structure of nearly any complexity
(i.e., including changes in gene flow and/or deme sizes).
The idea of tracing back the ancestry of a sample using a
continuous-time Markov chain has been discussed by a
previous work (Hobolth et al. 2011). In this case authors
computed the density of the coalescence times of two genes
under an isolation with migration model (IM) and suggested
that the coalescent under many structured models could be
studied using a finite-state homogeneous continuous time
Markov chain, in agreement with Herbots (1994). Here we
go further and show how the transition rate matrices asso-
ciated to a given structured model can be used to compute
the corresponding IICR curves with very high accuracy,
with a much lower computational time than the simulation-
based approach used in Chikhi et al. (2018). We apply this
new framework to the structured coalescent of Herbots
(1994) and extend it to non-stationary models (i.e., models
in which parameters defining structure can change through
time), hence introducing the Non-Stationary Structured
Coalescent (NSSC), and discuss the possibility to extend it
to less constrained genealogical models.

To that aim, we first review and summarise the main
results and terminology required to link the Markov chain
described by the structured coalescent with the notion of
IICR. We acknowledge the seminal work of Herbots (1994)
who derived the transition rate matrix corresponding to the
structured coalescent. We apply this approach to compute
the IICR of several models of population structure, such as
the n-island model, and 1D and 2D stepping stone models,
under arbitrary sampling schemes. Using the semi-group
property we show how our results can be naturally extended
to models with an arbitrary number of changes in gene flow.
We then show how demes with different sizes (e.g.,
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continent-island models), or changes in the deme sizes can
be easily incorporated into this framework. In addition, we
show that transition rate matrices can be simplified using
symmetries for several models (n-island, continent-island)
reducing the computational costs by several orders of
magnitude. We finally apply these results to humans and
Neanderthals and identify models of population
structure that can explain human and Neanderthal genomic
diversity.

The structured coalescent and transition
rate matrices: towards the IICR

The distribution of coalescence times in models that account
for population structure (i.e., population subdivision) has
been the centre of interest of important and early theoretical
studies (Takahata 1988; Notohara 1990; Herbots 1994;
Barton and Wilson 1995; Wakeley 1999, 2001; Nordborg
2001; Charlesworth et al. 2003). In particular, Herbots
(1994) developed an elegant extension of the coalescent
(Kingman 1982) for structured populations under a number
of constraints regarding gene flow (see below). This
extension, named structured coalescent, is based on a
continuous-time Markov chain. It allows to compute
explicitly the moment-generating function of the coales-
cence times under a wide range of models considering
population structure (Herbots 1994; Wilkinson-Herbots
1998). In this section we review the terminology and the-
ory leading to the structured coalescent, introduce transition
rate matrices and show how they can be used to compute
the IICR of Mazet et al. (2016).

From the discrete-time model to the continuous-
time approximation

Following Herbots (1994), we consider a haploid popula-
tion divided into a finite number n of subpopulations or
demes which are panmictic and whose size, Ni for deme i, is
assumed to be large. Each deme is also assumed to behave
as a haploid Wright–Fisher model. These demes are con-
nected to each other by migration events. Every generation
a proportion qij of the haploid individuals from deme i
migrates to deme j (migrants are chosen without replace-
ment, independently and uniformly from deme i). We
assume that deme sizes and migration rates are constant in
time. In this model the number of haploid individuals in
deme i is Ni= 2ciN, where ci is a positive integer and N is
large. Also, the proportion qij is of the order of 1/N for every
(i, j). In the classical n-island model of Wright (1931), the ci
are all identical and set to one. If we set c :¼ Pn

i¼1 ci, we
can write the total haploid population size as NT= 2cN.
Note that in diploid applications, ciN is the number of

diploid individuals in deme i and thus the diploid popula-
tion size will be cN.

The structured coalescent of Herbots (1994) assumes that
the size of each subpopulation is maintained constant under
migration, which generates the following constraint at the
population level:

8i; j : ci
X
j≠i

qij ¼
X
j≠i

cjqji; ð1Þ

where qij is the probability that one individual migrates from
deme i to deme j. In other words, all outward migrants must
be replaced by inward migrants from the other islands.

This condition is required by Herbots (1994) to prove the
convergence to the structured coalescent when the popula-
tion size goes to infinity. However, it is not required in the
structured model of Notohara (1990) or when simulating
data under structured models using the ms software of
Hudson (2002). In a recent work Kozakai et al. (2016) gave
a rigorous proof that the convergence to the structured
coalescent holds even though condition (1) is violated. For
simplicity, we will consider condition (1) in the models
discussed below.

Looking now backward in time, Herbots (1994) defines
the backward migration parameter from deme i to deme j
(denoted mij) as:

mij ¼ Njqji
Ni

¼ cj
ci
qji:

The backward migration parameter mij represents the
proportion of individuals in deme i that were in deme j
just before the migration step. Also, mi ¼

P
i≠j mij repre-

sents the proportion of individuals inside deme i that were
in a different deme just before the migration step.

In this backward perspective, we suppose that we have a
sample of k haploid genomes at a time which we arbitrarily
call time zero. We then trace back the ancestral history of
the k lineages until their MRCA (Most Recent Common
Ancestor). We are interested in the statistical properties of
the gene trees of this sample of k lineages at different loci in
the genome. Following Herbots (1994), we define αN :=
{αN(r);r= 0, 1, 2, …}, where αN(r) is a vector whose ith

component denotes the number of distinct lineages in sub-
population i, r generations ago.

Herbots (1994) proved that, measuring time in units of
2N generations, αN converges to a continuous-time Markov
chain called the structured coalescent, as N tends to infinity
and as all mij (i ≠ j) tend to zero, in such a way that Mij/2 :=
2Nmij and Mi ¼

P
j≠i Mij are constant, finite and non-zero.

In the rest of the manuscript we drop the N index in αN, but
we wish to stress that αN(r) represents the configuration of
the remaining ancestral lineages at generation r backwards
in the discrete-time model and α(t) represents the ancestral
configuration t time units ago, in the continuous-time
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model. When r= 0 or t= 0, it is simply the initial sample
configuration. The structured coalescent is thus the
continuous-time Markov chain whose states are all the
possible configurations for the ancestral lineages at different
times in the past. It is thus characterised by the transition
probabilities between configurations. A key element
describing this Markovian process is its transition rate
matrix denoted Q hereafter.

The transition rate matrix of a continuous-time
Markov chain

Transition rate matrices and the semigroup property are
briefly introduced in this section. For a full background, see
for instance Norris (1998). These notions are crucial
because the semigroup property will be used to construct
complex models, based on several consecutive simple ones,
each represented by a different transition matrix. The
semigroup property is related to the memoryless property of
the exponential distribution. The semigroup property is
concerned with Markov processes. It allows to start a new
Markov process using the state reached from a previous
Markov process. This section, while technical, explains how
we will be able to change parameters of the structured
models of interest in a very flexible manner. See below.

A transition rate matrix on the finite set I is a square
matrix Q=Q(i, j), with i, j∈ I satisfying the two following
conditions:

● ∀i ≠ j, Q(i, j) ≥ 0,
● ∀i, Qði; iÞ ¼ �P

j≠i Qði; jÞ.
If we now define, for all t ≥ 0, the exponential matrix Pt=
etQ which has the same size as Q, Pt then satisfies the
following properties, for all s, t:

● Pt+s= PtPs (semigroup property),
● P′

t ¼ d
dt Pt ¼ QPt ¼ PtQ,

● Pt is a stochastic matrix (each coefficient is non-negative
and the sum over each row is one). Also each coefficient
of the matrix Pt, for all t≥0, is a transition probability:

Ptði; jÞ ¼ PðXt ¼ jjX0 ¼ iÞ;
where (Xt)t≥0 is a continuous-time Markov chain on the
finite set I. In other words, Xt is a jump process, whose
behaviour is the following:
● if at a given time s ≥ 0 we have Xs= i, then it jumps

away from state i after an exponential time of parameter
−Q(i, i), which does not depend on s,

● at each jump from state i, the rate at which state j is
reached is Qði;jÞP

j≠i
Qði;jÞ=−Q(i, j)/Q(i, i).

The transition rate matrix Q then contains all the
information on the behaviour of (Xt)t≥0, given the initial
condition X0. We can see that, for all i∈ I, the parameter Q

(i, j) is the rate of going from i to j, as soon as j ≠ i, and the
parameter −Q(i, i) is the rate of leaving i.

In the case of the structured coalescent the jump process
of interest is the ancestral lineage process. The set I is the
set of possible configurations α= (α1, …, αn), where αi is
the number of lineages present in the ith deme, and n the
number of demes. A ‘jump’ between two configurations
occurs when a lineage migrates from one deme to another
(say, from deme i to deme j), or when a coalescence takes
place within a deme in which there are at least two lineages.
We thus have now all the elements necessary to compute
the IICR for stationary models under the structured
coalescent.

Transition rate matrices allow us to compute
the IICR for a wide family of structured
models

Mazet et al. (2016) introduced and defined the IICR. They
derived it analytically for the n-island model and for k= 2
lineages for the only two distinguishable sampling schemes
(the two lineages in the same deme, respectively in different
demes) available for that model (initial configurations or
states of the Markov chain). In this section we show how
transition rate matrices can be used to analyse a wide family
of models of population structure. We take the case of k= 2
and step by step explain how the transition rate matrix can
be constructed. We then describe the general algorithm used
to construct the IICR for all the models analysed here for k
= 2. We finally apply this method to the n-island model and
show that we can re-derive the results obtained by Mazet
et al. (2015) and Herbots (1994).

General case

As noted above, Herbots’ discrete-time process converges
to a continuous-time Markov process (called structured
coalescent). Here we describe in more details how to con-
struct the associated transition rate matrix. Let us assume
that we have numbered the demes of the model from 1 to n
where n is the total number of demes. Then the vector (c1,
c2,…, cn) indicates the size of each deme. We take a sample
of k genes (k ≥ 2) from the population at the present (t= 0)
and we trace the ancestral lineages back to the MRCA. The
vector α= (αi)1≤i≤n, where αi is the number of ancestral
lineages in deme i, represents a possible ancestral config-
uration for the lineages when going backwards in time. For
example, for n= 3 demes and k= 2 samples, the vector α
= (1, 1, 0) is an element of N3 and indicates that there is one
ancestral lineage in deme 1, one ancestral lineage in deme 2
and no ancestral lineage in deme 3. Note that
k ¼ αj j ¼ Pn

i¼1 αi. We call Ek,n the set of all possible states
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of a structured model with n demes and a sample of size k.
We have:

Ek;n ¼ α; α 2 Nn; 1< αj j � kf g∪ fcg
where c represents the state when the MRCA of the sample
is reached (|α|= 1).

The Markov chain can change from one state α∈ Ek,n to
another state β∈ Ek,n either by a migration event (which
implies that |β|= |α|) or by a coalescence event inside a
deme (which implies that |β|= |α|− 1). Before constructing
the associated transition rate matrix we need to define an
order on Ek,n. We choose the inverse lexicographical order.
For example for n= 3 and k= 2 it would be:

ð2; 0; 0Þ � ð1; 1; 0Þ � ð1; 0; 1Þ � ð0; 2; 0Þ � ð0; 1; 1Þ � ð0; 0; 2Þ � c:

Note that the state c (when the MRCA of the sample is
reached) is placed in the last position. We denote ϕ the
function that associates an element of Ek,n with the
corresponding index in the inverse lexicographical order.
For example, taking the previous example, for α= (2, 0, 0)
it will be ϕ(α)= 1 and ϕ(c)= 7. Throughout the next
sections we will assume that there is an order on the set Ek,n

given by the function ϕ. We define nα := ϕ(α) so that Pt(nα,
1) refers to the first element of the row nα in the matrix Pt.

The corresponding transition rate matrix can be con-
structed as:

Q nα; nβ
� � ¼

αi
Mij

2 if β ¼ α� ϵi þ ϵj ði≠jÞ
1
ci
αiðαi�1Þ

2 if β ¼ α� ϵi

�P
i

αi
Mi
2 þ 1

ci
αiðαi�1Þ

2

� �
if β ¼ α

0 otherwise;

8>>>>>><
>>>>>>:

ð2Þ

where ϵi is the vector whose components are 1 on the ith

position and 0 elsewhere.
The matrix Q describes two types of possible events for

each configuration α:

● β ¼ α� ϵi þ ϵj when one lineage migrates (backward in
time) from island i to island j. The rate of this migration
is Mij/2 (migration rate to deme j for each lineage in
deme i) times αi, the number of lineages present in deme
i.

● β ¼ α� ϵi denotes a coalescence event between two
lineages in deme i, which reduces the number of
lineages by one in this deme. This occurs only if αi ≥ 2.
If this is not the case we can see that αi(αi− 1)= 0. The
term αi(αi− 1)/2 is the number of possible pairs among
the αi lineages. This term is multiplied by 1/ci since the

ith island has a population size equal to 2ciN, and 1/ci is
the coalescence rate for each pair of lineages in this
island since time is scaled by 2N.

Since no other kind of event can occur than a migration or a
coalescence, and multiple coalescences or migrations are
negligible, the other rates are null. Note that the opposite of
the diagonal coefficient −Q(nα, nα) is the total jump rate
from configuration α.

The transition rate matrix can be very large depending on
the model of population structure assumed and on the
sample size. For k ≤ n the number of states is on the order of
nk, and the matrix will have on the order of n2k terms.

Case of a sample of two lineages (k = 2)

We now consider the case where we take a sample of two
lineages (i.e., k= 2 corresponding to two haploid genomes
or one diploid genome) in an arbitrary model of population
structure with n demes of size 2ciN, for large N. We can
reduce all possible configurations to only two types of
configurations, excluding the configuration where the two
lineages have coalesced:

● both lineages are in the same deme i: α ¼ 2ϵi,
● the two lineages are in different demes, say, demes i and

j with i ≠ j: α ¼ ϵi þ ϵj.

When the two lineages are in the same deme (first case),
there are two possible events that can change the config-
uration: a coalescence with rate 1/ci, or a (backward)
migration from i to j ≠ i for each lineage, with rate αiMij/2
for both lineages, hence a total rate of αiMij. When a coa-
lescence happens, the number of lineages decreases by one.
When a migration from deme i to deme j happens, the new
configuration is one in which the lineages are now in dif-
ferent demes, which is a second-type configuration.

When the two lineages are in different demes, no coa-
lescence can occur and the two lineages may either stay in
the same deme or migrate to another deme, from i to ‘

(which can be equal to j) for the first lineage, with rate
αiMi‘=2, or from j to ‘ (which can be equal to i) for the
second lineage, with rate αjMj‘=2. If the lineages end up in
the same deme we are back to a configuration of the first
type, otherwise, we end up in a second-type configuration.

By definition, the number of rows and columns of the
full transition rate matrix (that we will call nc) is the number
of different configurations for the ancestral lineages. In the
case of a model with n demes and a sample of size k= 2, we
have that nc= n2+ 1. We will assume that the “last con-
figuration” is the one in which the two lineages have coa-
lesced, and thus ignore where the coalescence took place.
Also note that the rate of a coalescence event in deme i
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(which is equal to 1/ci) depends on the size of deme i. In the
transition rate matrices that we will use here the coalescence
configuration corresponds to the last row and column. In the
Supplementary Materials we give a general algorithm that
can be used to construct the transition rate matrix.

Using the transition rate matrix to derive the
distribution of coalescence times and evaluate the
IICR for samples of size two

We now focus on the coalescence time between two
lineages and see that we can derive the IICR in terms of
transition rate matrices. The theory of Markov chains
(Norris 1998) gives the tools allowing to compute the
probability distribution of T2 based on the matrix expo-
nential of the transition rate matrix for the model of interest

Pt ¼ etQ;

where Pt is the transition semigroup of the corresponding
Markov process, i.e., Pt nα; nβ

� �
= PðαðtÞ ¼ βj αð0Þ ¼ αÞ,

where α(t) denotes the ancestral lineages configuration at
time t in the past and α(0) represents the initial sample
configuration.

As noted in Section ‘The transition rate matrix of a
continuous-time Markov chain’, the terms of Pt represent
the transitions probabilities of interest. For instance, the
term in row nα and column nβ of Pt represents the prob-
ability that the process is in the configuration β at time t
given that it was in the configuration α at time zero. Thus,
the probability that two lineages in the configuration α at t
= 0 have reached their most recent common ancestor at
time t can be found as Pt(nα, nc), where nc is the last column
since nc= ϕ(c) is the column number of the coalescence
state.

Consequently, if we denote by Tα
2 the coalescence time

of two lineages sampled in the configuration α, the cumu-
lative distribution function (cdf) of this random variable can
be computed from the transition semigroup:

FTα
2
ðtÞ ¼ P Tα

2 � t
� � ¼ Pt nα; ncð Þ:

The probability density function (pdf) of Tα
2 , fTα

2
ðtÞ, is by

definition the derivative of FTα
2
ðtÞ. It can thus be computed

from the matrix Pt, by using the property

P′
t ¼ PtQ ¼ QPt;

where P′
t is the matrix whose cells contain the derivative of

the corresponding cells of Pt. We can thus write

fTα
2
ðtÞ ¼ d

dt
P Tα

2 � t
� � ¼ P′

t nα; ncð Þ ¼ PtQð Þ nα; ncð Þ:

For any time t ≥ 0, the instantaneous coalescence rate is
(Mazet et al. 2016) the ratio

fTα
2
ðtÞ

1� P Tα
2 � t

� � :

The Inverse Instantaneous Coalescence Rate (IICR) of
Mazet et al. (2016), is simply the inverse of this ratio, in
which all the terms can be written as a function of Pt and the
transition rate matrix, namely:

IICRðtÞ ¼ 1� Pt nα; ncð Þ
PtQð Þ nα; ncð Þ :

In the next section, we show how transition rate matrices
can be used to re-derive the analytical results of Mazet et al.
(2016) on the IICR of the n-island model.

The IICR of the n-island model for k = 2 using the
simplified transition rate matrices

In the symmetric island model of Wright (1931) the n
demes (n ≥ 2) are equal-sized islands with the same migra-
tion rate between any two islands (Fig. 1). With the nota-
tions above, we have ∀i= 1, …, n, ci= 1, Mi=M and Mij

=M/(n− 1) for j ≠ i. Taking into account the fact that the
model is fully symmetrical, we only need to consider two
configurations for a sample of two lineages: they are either
in the same deme (denoted s) or in different demes (denoted
d). There is a third state that corresponds to the coalescence
event which takes place at rate 1. We thus obtain the sim-
plified transition rate matrix

Q ¼
�1�M M 1

M
n�1 � M

n�1 0

0 0 0

0
B@

1
CA;

Fig. 1 Diagrams for commonly
used structured models. From
left to right: n-island, torus 2D
stepping stone, 2D stepping
stone and continent-island
model
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where the first configuration is s, the second is d, and the
third one corresponds to a coalescence event, which can
only occur when both lineages are in the same island.

This matrix is simple and small enough to allow the
derivation of explicit formula for its exponential Pt= etQ

and hence for the corresponding IICR functions under the
two possible starting configurations (IICRs or IICRd for
samples taken in the same or different demes, respectively):

IICRsðtÞ ¼ 1� Ptð1; 3Þ
ðPtQÞð1; 3Þ ¼ ð1� βÞe�αt þ ðα� 1Þe�βt

ðα� γÞe�αt þ ðγ � βÞe�βt

and

IICRdðtÞ ¼ 1� Ptð2; 3Þ
ðPtQÞð2; 3Þ ¼ βe�αt � αe�βt

γe�αt � γe�βt
;

with

α ¼ 1
2 1þ nγ þ ffiffiffiffi

Δ
p� �

;

β ¼ 1
2 1þ nγ � ffiffiffiffi

Δ
p� �

;

Δ ¼ ð1þ nγÞ2 � 4γ;

γ ¼ M
n�1 ¼ αβ:

These formulae are identical to those of Mazet et al.
(2015), who obtained them using a different approach. We
can see the plots of the IICRs and IICRd for the n-island
model in Fig. 2.

As discussed in Mazet et al. (2016), the IICR curves
observed in Fig. 2, may lead to the misleading interpretation
that there was a recent decrease in population size when the
two haploid genomes are sampled in the same deme of a
structured population. This is because when we sample
genes in the same deme, the coalescence rate in the recent
past is mainly driven by the size of the local deme. How-
ever, as time increases backward a migration event may
occur, which then will significantly change the rate at which

coalescence events take place. Indeed, a coalescent event is
only possible when the two lineages are in the same deme
(which is only possible after at least one more migration
event). This change in coalescent rates that significantly
decrease as times goes backward, explains why a bottleneck
signal is observed. When genes are sampled in different
demes the opposite effect is observed. Since they cannot
coalesce until they are present in the same deme, the
instantaneous coalescence rate is zero at the time of sam-
pling (t= 0) and close to zero for small t values, which
corresponds to a population of infinite or very large size.
This explains why the IICR curves suggest a recent popu-
lation increase, with time going forward. These results have
been derived analytically by Mazet et al. (2016) for the n-
island model, and confirmed by simulation for several
models of structured populations by Chikhi et al. (2018).
While these bottleneck and expansion signals are particu-
larly important when the migration rate is low, the above
reasoning is also valid for high values of migration rate
(high M). It is also important to stress that the analytical
results of Mazet et al. (2016) hold for any value of M.
However, when M increases the effect of population
structure decreases as expected. For instance, under a sta-
tionary model, and for the IICRs the apparent decrease in
population size becomes increasingly closer to the recent
past (Mazet et al. 2016), and may thus be less and less
detectable with genetic data. In other words, when M
increases the n-island model looks increasingly like a pan-
mictic population, whether the two haploid genomes are
sampled in the same or in different demes.

Constructing the IICR for two stationary
models, the 2D stepping stone and
continent-island models

We now apply the framework and algorithm described
above to two stationary models. To our knowledge, there is
no analytical expression for the distribution of the coales-
cence time T2 under these two models. The transition rate
matrices and IICR results for several other stationary
models are shown in the Supplementary Materials.

2D stepping stone models with and without edges

Stepping stone models (Kimura 1953; Malécot and Blar-
inghem 1948) assume that the demes are located at the
nodes of a regular lattice in one or two dimensions (here-
after 1D and 2D stepping stone models). Each deme can
have up to four neighbours and migration events are only
possible between neighbouring demes. These models
incorporate space, and are thus thought to be more realistic
than the n-island model described above, which implicitly

Fig. 2 IICR for the n-island model. We plotted the IICR for a model
with n= 9 islands and assuming two values for the migration rate, M
= 1 and M= 10. For each model we started with the two configura-
tions in which the genes are either sampled in the same (IICRs) or in
different (IICRd) islands
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assumes that migration is as likely between neighbouring
than between distant islands. The border demes can either
be connected with each other, hence forming a torus, or can
behave as bouncing borders (Fig. 1). In some models the
bouncing borders migrants are assumed to stay in their
deme, whereas in other models they are distributed among
the demes to which their deme is connected.

For the 2D stepping stone model, we set, ∀i, j= 1, …, n,
ci= 1 and Mij=M/4 if islands i and j are neighbours, and
Mij= 0 otherwise. The difference between the models with
and without edges used here is thus in the way neighbours
are defined. In the model with borders the four corner
islands have only two neighbours, the islands on the borders
of the lattice have three, and the others have four neighbours
(see Fig. 1).

Figure 3 shows the IICRs (two haploid genomes sampled
in the same deme, or one diploid genome), for a 3 ×
3 stepping stone model with and without borders (Fig. 1). In
the latter case (no borders), all demes are statistically
identical, and there can thus be only one IICRs plot. In the
model with borders, there are three possible ways to sample
a diploid individual, and three IICRs are plotted. This figure
confirms the results of Chikhi et al. (2018) by showing that
the IICRs plots for a stepping stone are also S-shaped. They
all start in the recent past at a value equal to the deme size
and converge in the ancient past towards the same plateau.
However, it is remarkable that they differ in the trajectory
from the present to the plateau value, depending on the
location of the deme (corner, border or centre). These
results thus confirm that in a stepping stone model, two
diploid individuals sampled in different demes (i.e., geo-
graphical regions) will both exhibit signals of population
decrease that will be different even though the population
size was constant and they both belonged to the same
structured model (Chikhi et al. 2018). Note that, as for the
n-island model, the IICR exhibits a signal of spurious

population increase when the two genes are sampled in
different demes (IICRd, see Supplementary Materials).

Continent-island model

General case

Here we assume a model where the population is divided
into n demes (one big deme called continent and n− 1
equally sized demes, smaller than the continent, called
islands). The continent is connected with the remaining n−
1 islands, but the islands are not connected between each
other (Fig. 1). Therefore, migration can only occur between
the continent and the islands, but not between different
islands. Note that the continent-island model described here
differs from the standard definition which assumes that the
backward migration from the islands to the continent is
zero, or negligible. This would break constraint 1 but the
process would still converge to the structured coalescent
(Kozakai et al. 2016). To analyse our model we order the n
demes in such a way that the continent is deme number 1,
whose (scaled) size is c1. We denote c2 the size of the other
islands, and M1/2 the (scaled) migration rate from the
continent to each island, and M2/2 the migration rate from
each island to the continent. Condition (1) implies that we
have the following constraint:

c1 ðn� 1ÞM1

2

� �
¼ ðn� 1Þc2ð ÞM2

2
, c1

c2
¼ M2

M1
: ð3Þ

For the case n ≥ 3, the symmetry of the model allows us
to consider, for a sample of two lineages, only five possible
different configurations:

1. Both lineages are in the continent. A coalescence can
occur with rate 1/c1, leading to configuration 5, or any
of the two lineages may migrate to one of the n− 1
islands, each with rate M1/2, leading to the second
configuration.

2. One lineage is in the continent and the other in an
island. There can be no coalescence event, but three
different migration events can occur: if the lineage in
the island migrates, which arrives at rate M2/2, this
leads to the first configuration. The lineage in the
continent can migrate at rate M1/2, and it can either
reach the island where the other lineage is (leading to
configuration 4 below) or migrate to a different island
(leading to configuration 3 below).

3. The two lineages are in different islands. No
coalescence can occur and any of the two lineages
can migrate to the continent, each with rate M2/2,
leading to configuration 2.

4. The two lineages are in the same island. Either a
coalescence occurs with rate 1/c2, leading to

Fig. 3 IICR plots for the 2D stepping stone model. Here we assumed a
model with 3 × 3= 9 islands and M= 1, with and without edge effect.
In the model with edge effect, we plot the three ways to sample two
lineages in the same island: in island 1, 3, 7 or 9 (corner), in island 2,
4, 6 or 8 (middle of the edge), and in island 5 (center of the lattice)
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configuration 5, or a migration event of one of the two
lineages to the continent, each with rate M2/2, leading
to configuration 2.

5. The two lineages have coalesced. This is an absorbing
state.

If we replace M2 by M and M1 by c2M/c1 in Eq. (3) and
normalise population sizes by fixing c1= 1, then denoting
c2/c1= c2= c we obtain the following transition rate matrix
(see Supplementary Materials for details):

Q ¼

�1� cMðn� 1Þ cMðn� 1Þ 0 0 1

M=2 �Mðcn� cþ 1Þ=2 ðn� 2ÞcM=2 cM=2 0

0 M �M 0 0

0 M 0 �M � 1=c 1=c

0 0 0 0 0

0
BBBBBB@

1
CCCCCCA
:

Note that c is the ratio between the sizes of the islands and
the continent, and that the diagonal entries are obtained by
the constraint that the sum over each row is zero.

Figure 4 shows the IICRs and IICRd plots for the dif-
ferent sample configurations for a pair of genomes in a
continent-island model with n= 4 (one continent and three
islands). As expected from previous work on the IICR
(Mazet et al. 2016; Chikhi et al. 2018), first generation
hybrid individuals, whose genome is sampled in different
demes, exhibit IICR plots which would be interpreted as
expansions from an ancient stationary population, even
though the total population size is constant. One of the most
striking result is that a diploid individual sampled in one of
the islands exhibits an IICR that suggests (forward in time)
an ancient stationary population which first expanded

before being subjected to a significant population decrease.
Thus, different individuals will exhibit very different his-
tory, not because their populations were subjected to dif-
ferent demographic histories, but because the IICR does not
represent the history of a population. It represents the coa-
lescent history of a particular sample in a particular model.

The non-stationary structured coalescent
(NSSC): constructing the IICR for models
with changes in population structure

In this section we extend our work to non-stationary
structured (NSS) models under the coalescent and show
how the semigroup property can be used to characterise a
large family of complex NSS models. The semigroup
property allows to compute the probability that a Markov
jump process is in a given state at time t+Δt by taking into
account all its possible states at time t. Applied to the
structured coalescent, this makes it possible to trace
ancestral lineages backward to the MRCA in models where
some parameters (n, ci, Mij) may change at some time point
in the past. In particular, this gives a way to compute (at
least numerically) the distribution of coalescence times for a
wide family of non-stationary structured models, hence
allowing us to introduce and study the NSSC.

Applying the semigroup property to the structured
coalescent

Previous sections showed that to any given stationary
structured population model corresponds a transition rate
matrix, Q that can be constructed and used to predict the
IICR for a given sample configuration. Assuming that we
sample k genes in configuration α, we call Tα

k the time to the
first coalescence event among these k lineages. We also
described how the theory of Markov chains allows to
compute the probability distribution of Tα

k from Q using the
formula:

P Tα
k � t

� � ¼ Pt nα; ncð Þ ¼ etQ nα; ncð Þ;
where nα denotes the index of the configuration α and nc is
the number of possible configurations and corresponds to
the index of the coalescence configuration.

The matrix Pt (which is the transition semigroup) has
size nc × nc and is obtained by computing the exponential of
the matrix tQ. The elements of this nc × nc matrix are
functions of the parameters of the model (n, ci, Mij), which
are assumed to be constant under the structured coalescent
(stationary model). Now, the semigroup property states that
for any positive values t and u we have:

Ptþu ¼ eðtþuÞQ ¼ etQeuQ ¼ PtPu: ð4Þ

Fig. 4 IICR for a continent-island model. We constructed the transition
rate matrix for a model with n= 4, namely one continent and three
same-sized islands. The sizes of the continent and of the islands were
set to c1= 1 and c2= 0.05, respectively. In other words, the continent
was 20 times larger than the islands. We set the migration rates to M1/
2= 0.05, M2/2= 1 (note that once M1 is set, M2 is constrained to keep
inward and outward migrant gene numbers equal, as required by Eq.
(1)). In this model there are only four types of IICR curves, two IICRs

and two IICRd. The first two correspond to the cases where we sample
the two lineages either in the continent or in one of the islands. The
IICRd curves correspond to cases where one gene comes from the
continent and the other from an island or when the two genes come
from two different islands
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By using the semigroup property, the structured coalescent
can be extended to non-stationary models (e.g., models with
changes in the size of one or more demes or in the values of
gene flow at some point in the past).

For simplicity, we assume here that the number of demes
n is fixed for a given species. The reason for doing this is
that, once we fix the number of genes sampled at the present
(k) and the number of demes (n), the number of possible
states or configurations of the Markov process ( Ek;n

		 		) is
also fixed and so is the size of the corresponding transition
rate matrix. It will be thus straightforward to compute
products of matrices, using Eq. (4). Keeping n constant
guarantees that other parameter changes (i.e., ci, Mij) will
not modify the state space of the Markov jump process,
even if the transition probabilities between these states will
change. So, the size of the matrix Pt will always be the
same.

Assume that at time t= T in the past, some of the
parameters Mij or ci change. This change has no influence
on Ek,n and does not affect the evolution of the process
between t= 0 and t= T. Denote by Q0 the transition rate
matrix of the Markov chain for 0 ≤ t ≤ T and Q1 the corre-
sponding transition rate matrix for t > T. If we call ~Pt the
transition semigroup of the Markov chain that models this
structured scenario with a demographic change event at
time T, we can compute ~Pt by using the semigroup property
as follows:

~Pt ¼
etQ0 ; if t � T

eTQ0eðt�TÞQ1 ; otherwise:




In particular, the distribution of Tα
k , the first coalescence

time of k genes sampled in configuration α under this
structured model with a past demographic change event, can
be computed by:

P Tα
k � t

� � ¼ ~Pt nα; ncð Þ

The pdf of Tα
k can then be computed by fTα

k
ðtÞ ¼ ~P′

t nα; ncð Þ;
where

~P′
t ¼

etQ0Q0; if t<T

eTQ0eðt�TÞQ1Q1; otherwise:




This procedure can be extended to any number of para-
meter changes, by defining the respective transition rate
matrices for each of the time intervals between successive
changes in the parameters of the structured model. Thus, the
distribution of coalescence times (and the IICR) for struc-
tured models in which migration rates and demes sizes can
arbitrarily change, can be obtained from the computation of
matrix exponentials and matrix products.

Moreover, the NSSC framework allows to compute the
IICR for models considering a population split. For exam-
ple, a model considering one ancestral population that
separated into two subpopulation at time T can be easily
approximated under the NSSC framework. To do this, just
set a value of gene flow from the present to time T. Then set
a gene flow equal to infinity (in practice we use a gene flow
high enough so that the two populations behave as a pan-
mictic one) from time T to the past. The following section
considers a more general model of population split that
gives a new perspective to the history of evolution of
humans and Neanderthals.

Application: humans and Neanderthals IICR

In this section we show how the NSSC can be used to
identify a single model (Fig. 5) incorporating both humans
and Neanderthals as structured species derived from an
unknown ancestral Homo species that was itself structured.
This is possible because of the properties of the IICR in
structured model as described and discussed in Mazet et al.
(2016) and Chikhi et al. (2018). For instance, these authors
have shown that the IICR (and thus the PSMC plots) are
constrained by a set of simple rules which we used to
construct PSMC plots identical to those inferred from
human and Neanderthal genomes (see details below). For
instance, the previous IICR studies have shown that
increasing (resp. decreasing) the migration rate M will move
the IICR downward (resp. upward). Changing the timing of
several of such changes will create humps that will shift in
time. Also, the recent level of the IICR will be influenced by
the sampling scheme and the local deme size. Finally, low
and high M values will impact the speed at which the IICR

Fig. 5 Hypothetical scenario presenting humans and Neanderthals as
structured species derived from an unknown Homo species that was
itself structured. The times at which gene flow (M) changed are
indicated by horizontal lines
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moves upward as time goes backward. Based on these and
other results obtained by Chikhi et al. (2018), and on the
model proposed by Mazet et al. (2016) we were able to
rapidly construct a model that predicted the IICR for
humans and Neanderthals in a single model using the NSSC
framework. This model assumed that one diploid was
sampled in a human deme and another in a Neanderthal
deme. We then used several validation steps. Following the
approach used by Chikhi et al. (2018) we also computed the
IICR using T2 values simulated with Hudson’s ms software
for the same demographic scenario. The PSMC curves
inferred from real data were then plotted for comparison
(Fig. 6). As an additional validation step we also plotted
(Fig. 6 right panel) the PSMC inferred from genomic data
simulated with ms (i.e., DNA sequences rather the T2
values) for the same scenario together with the PSMC from
the real sequences. The proposed scenario was constructed
to explain the PSMC plots observed in humans and Nean-
derthals, and not to explain other statistics computed from
genomic data. For instance, we used n-island models which
are symmetrical models. This means that our model cannot
separate one geographical region from another. It is
important because several statistics have been computed
that indicate some asymmetry between geographical
regions. Our model cannot and does not aim to explain such
statistics. To do that, and as already stressed by Mazet et al.
(2016) and Chikhi et al. (2018), spatial structure will be
necessary, as well as some form of asymmetry. This is not
the aim of this simple example. The Neanderthal case would
require a proper and full independent study with a model
that would explain all statistics. We also stress that current
structured models cannot explain the PSMC plots.

In the proposed and “manually inferred” scenario (see
Fig. 5), humans and Neanderthals descend from a Homo
species that was structured in ten interconnected demes, as
in Mazet et al. (2016), and whose connectivity changed
around 3 million years ago (MYA) when the migration rate
M= 4 Nm decreased from 0.85 to 0.55. Then, around 1.1
MYA, M increased significantly from 0.55 to 4. The

following period of reasonably high connectivity (M= 4
corresponds to an Fst of 0.11 across the whole species) was
maintained in the lineage that led to humans until 0.287
MYA whereas a significant change occurred when Nean-
derthals split from that common lineage, some time about
0.51 MYA. Our model suggests that to fit the estimated
Neanderthal PSMC results the original Neanderthals are the
result of a “sub-sampling” or split from human demes (n=
7 demes in our model). These new Neanderthal demes were
around 16% of the size of human demes. At the same time
(0.51 MYA) M decreased from 4 to 0.5 in the Neanderthal
lineage whereas, as noted above, it remained constant in
humans. In the case of Neanderthals, the reduction is sur-
prisingly close to the level of connectivity of the ancestral
species (between 3 and 1.1 MYA). It is as if archaic
Neanderthals were a group of small demes that derived from
human demes and that had gone back to an ancestral low
connectivity state. Neanderthals stayed in that low con-
nectivity state until 287 KYA. One striking result is that a
simultaneous change is observed at that time in humans and
Neanderthals, and that it is now in the opposite direction.
Whereas gene flow started to decrease in humans, from M
= 4 to M= 1, it doubles in Neanderthals from M= 0.5 to
M= 1. Then, around 192 KYA, gene flow increases toM=
5 in Neanderthals and decreases to M= 0.55 in humans. It
is as if in a period of 100 KY Neanderthals’ gene flow had
increased 10-fold, perhaps as a consequence of a geographic
contraction. Humans on the other hand appear to have
maintained a low connectivity until the Neolithic as dis-
cussed in Mazet et al. (2016). Assuming a mutation rate per
generation equal to 1.25 × 10−8, the proposed scenario is
consistent with a deme size of 1276 for humans and a deme
size of 200 for Neanderthals. Note that under this scenario,
deme sizes remain constant and the PSMC patterns can be
explained only by changes in connectivity. Note also that in
this figure, we did not simulate the Neolithic expansion,
which is why the human IICR and PSMC plots continue to
decrease to the local deme size in the recent past, as
explained in Mazet et al. (2016) and Chikhi et al. (2018).

Fig. 6 IICR and PSMC plots for
humans and Neanderthals. The
PSMC plots obtained from real
human and Neanderthal
sequences are similar to the
theoretical IICR (left panel)
corresponding to the proposed
scenario. Also, they are similar
to the PSMC plots obtained
from sequence data simulated
under the proposed scenario
(right panel)
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If we trace the theoretical IICR corresponding to the
scenario described above, we can see that it is similar to the
PSMC plots obtained from real human and Neanderthal
data (Fig. 6, left panel). Moreover, we simulated 40 full
genome length (i.e., 3 GB) sequences with ms under the
proposed scenario. The first 20 corresponded to a genome
sampled in a human deme and the last 20 corresponded to a
genome sampled in a Neanderthal deme. We then applied
the PSMC to each of these simulated sequences and com-
pared the results with the PSMC plots obtained from real
data (Fig. 6, right panel).

The absolute dates presented here should be taken with a
grain of salt since they depend on various parameters which
we took from previous studies. In Mazet et al. (2016) and
Chikhi et al. (2018) we used the mutation rates of Li and
Durbin (2011) but here we used the values of Prufer et al.
(2014) to be able to compare our IICR results to the PSMC
results obtained by the latter study.

Altogether, these results show that the scenario proposed
explains the skyline plots obtained by PSMC from real data.
It is thus possible to construct a scenario in which humans
and Neanderthals are structured and descend from a com-
mon ancestral species that was also structured. PSMC plots
are usually interpreted in terms of population size change.
However, this scenario explains PSMC plots without any
change in population size in humans, and with a split,
disconnection and deme size reduction in Neanderthals. The
scenario, however, requires neither gene flow nor admixture
between humans and Neanderthals. The simple fact of
sampling diploids in different demes (humans or Nean-
derthals) generates the very different PSMC plots inferred
for humans and Neanderthals.

Discussion and perspectives

The NSSC as an extension of the structured
coalescent

The theoretical framework presented in this study is closely
related to Herbots’ works (Herbots 1994; Wilkinson-Herbots
1998), who introduced the use of transition rate matrices for
studying structured models and computed the coefficients of
the transition rate matrix for many stationary models. Here we
extended the existing theory to non-stationary structured
models (see also Hobolth et al. (2011)). This can impact
future population genetic studies in several important ways.
The NSSC framework gives a theoretical way for computing
the cdf and the pdf of T2 under a wide family of models of
structured population. It also includes a natural way of
incorporating past demographic events (i.e., changes in deme
sizes and/or in gene flow) into models of population struc-
tured. Currently, most of the population genetic studies either

assume panmixia and try to infer past changes in population
size or consider structure but then often assume a rather
constrained tree structure in which each branch is assumed to
be panmictic even if it may correspond to a species or a
continental population. The parameters inferred under such
models may be very relevant if the model is robust or mis-
leading if it is not. At this stage it is unclear how models used
to study human evolution may actually be as robust as they
are assumed to be. The NSSC framework developed here is
original because it allows to combine changes in population
structure and size into the same model. Allowing to incor-
porate past demographic events into a model considering
population structure is a step forward that may help to dis-
entangle the confounding effects of structure on methods used
to reconstruct demographic history that has been pointed by
previous studies (Wakeley 1999; Storz and Beaumont 2002;
Städler et al. 2009; Chikhi et al. 2010; Heller et al. 2013).

The NSSC allows us to compute IICR curves with
much lower computational cost than the simulation based
approach used in Chikhi et al. (2018). This gives the
possibility to test alternative scenarios and also lays the
theoretical bases to implement an inferential framework
using the IICR computed from genomic data by methods
like the PSMC (Li and Durbin 2011) or MSMC (Schiffels
and Durbin 2013). However, whereas inference can be
done by hand as explained above, the development of an
automated inferential process as well as the correspond-
ing validations for simple and complex models would
need a full and independent study. It would be
necessary to define a distance measure between the
simulated IICR and observed PSMC plots, and find effi-
cient algorithms to explore the parameter space of
structured models. This is an ambitious goal that the
NSSC should help reach.

We would also like to stress that the hypothesis given in
(1) was originally given by Herbots (1994) as necessary for
convergence and was followed throughout the manuscript for
consistency. However, it may not be as crucial as it originally
seemed. It appears that it can be removed without affecting
the convergence to the continuous-time Markov process
(Kozakai et al. 2016). This makes it possible to apply the
Markovian approach used here to more general models than
the ones discussed in this work. We also note that several
studies based on models ignoring condition (1) have already
been published (Notohara 1990; Costa and Wilkinson-
Herbots 2017). This also includes our own work where we
used ms simulations (Hudson 2002) because this software
does not require this assumption to work (Chikhi et al. 2018).

Humans, Neanderthals, and genomic story-telling

Story-telling seems to be pervasive in human evolutionary
biology, probably because of the limited amount of
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available data and the difficulty to separate alternative
models. While genetic data should provide a relatively
objective source of information (since we know how
genetic data are transmitted across generations) the models
used by geneticists to fit parameters can profoundly change
our understanding of our past. Since it is not always clear
how a structured model should objectively be chosen while
being also computationally tractable, this model choice step
leaves some space for story-telling, which we could not
avoid either. While the scenario proposed here (in Fig. 5)
should not be taken at face value, it is important to see that
it profoundly differs in its conclusions from current models,
including structured models. One major difference is that
the timings of events in a panmictic or structured model can
be quite disconnected at the level of the IICR. The reason
for this is that the IICR has its own dynamics even under
stationarity. This produces apparent increases or decreases
in population size which have no actual associated demo-
graphic event (Mazet et al. 2016; Chikhi et al. 2018). Under
a panmictic model any change in the IICR must be due to
some causal event that makes the IICR go up or down.

In our scenario we found that one major event dated
around 300 KYA induced a change in connectivity that was
simultaneous in humans and Neanderthals. If our model
captures something meaningful, this would suggest a
striking consistency across the two species. One inter-
pretation could be that the two Homo species responded to
the some environmental change, around 300 KYA. This
could be tested. Our model differs also from current models
by the fact that it explains the decrease in the Neanderthal
PSMC plots, not as a decrease in population size but rather
as a result of two different forces. One is a decreased iso-
lation of Neanderthal populations, and the second a con-
sequence of the properties of the IICR in structured models.
Indeed, the “humps and bumps” of IICR plots (Chikhi et al.
2018) can be caused by changes in connectivity or by a
constitutive property of the IICR (Mazet et al. 2016; Chikhi
et al. 2018). It would be important to determine if there are
data suggesting a reduction and increased connectivity of
Neanderthals. Finally, in our model, when Neanderthals
split from the common ancestral species, they have much
smaller demes than humans and these demes are less con-
nected. It is interesting to note that a recent genomic study
by Rogers et al. (2017) suggested that Neanderthals were
probably distributed in small and isolated demes. Our
results are thus consistent with that idea.

In a recent study Kuhlwilm et al. (2016) used a complex
model with splitting populations to represent the evolution
of humans, Neanderthals and Denisovans. Their model was
not inferred from the data but rather chosen a priori and
probably on the basis of beliefs (or knowledge) that the
authors had gathered. While they did carry out several
validation steps, the model was not inferred from the data.

Based on our understanding of the IICR in structured
models (Mazet et al. 2016; Chikhi et al. 2018), it seems very
unlikely that their model could explain the PSMC curves of
humans and Neanderthals. For instance their model assumes
constant population sizes for long periods and ignores gene
flow. In order to produce the humps observed in humans
and the decrease of Neanderthals PSMC plots, one at least
of the two is typically necessary (Mazet et al. 2016; Chikhi
et al. 2018). The admixture events that are incorporated in
that model will likely produce a large hump, but it is unclear
why it would not be visible in Neanderthals then, if there
was indeed gene flow towards them as has been claimed. It
would thus be important to see how adding gene flow in
their model would change admixture estimation while
producing the right PSMC plot shapes. It is very possible
that admixture would still be necessary to explain some
patterns of genomic diversity observed in humans.

Our model has also many limitations. For instance, it
ignores spatial structure even though we have noted in a
previous study (Chikhi et al. 2018) that to understand
human evolution, spatial models such as stepping stone
models will be necessary to explain the variability observed
in human PSMC plots. For Neanderthals similar claims
cannot be made yet since only one Neanderthal PSMC plot
has been published to date. Another issue with our model is
that by using n-island models within each species, we
implicitly assume that all human populations are statisti-
cally exchangeable. Such a model cannot thus explain
various statistics that have been found to vary between
human populations, including the D statistic used to argue
for Neanderthal admixture. We should also note that our
model assumes that population size changes are negligible.
This does not mean that we believe that there were no size
changes in the history of humans or Neanderthals. Allowing
for deme size changes is easy under the NSSC framework,
but it would likely make the inferential process much more
complex.

At this stage, one should be very careful regarding the
interpretation of Neanderthal and human genomic data.
Story-telling is easy and we need a well-defined statistical
framework to better explore the extremely large parameter
space of structured models. While the presented scenario
does not aim to explain all the complexity of human and
Neanderthal evolution it explains genomic patterns (PSMC
plots) that are currently not explained by existing admixture
models. We thus conclude with Chikhi et al. (2018) and
Eriksson and Manica (2012) that claims of admixture may
be weaker than usually believed, even if we must also
conclude that admixture cannot be excluded today.

Beyond humans and Neanderthals, the NSSC frame-
work presented here should now be developed as a full
automated inferential tool to identify quickly and effi-
ciently models that can, and models that cannot, explain
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known genomic features. Changes in connectivity in a
complex splitting model produce complex genomic pat-
terns that cannot be easily interpreted. By using the IICR
and the NSSC we were able to re-interpret human and
Neanderthal evolution, while stressing that it is only one
of probably many possible interpretations. We mainly
used models without changes in population size but we
do not believe that there were no such changes in the
history of most species. It however means that such
changes are not always necessary to explain the data and
that changes in connectivity should be better integrated in
our understanding of the recent evolution of species
(Chikhi et al. 2010; Mazet et al. 2016; Chikhi et al. 2018).
Mazet et al. (2016) and Chikhi et al. (2018) showed how
different individuals from the same species can exhibit
very different “demographic histories” simply because
they or their genes were sampled in different locations of
a structured population. The transition rate matrices
approach can make the computation of the IICR extre-
mely efficient. This suggests that the IICR can be com-
puted for various models and compared to observed
PSMC plots. It can thus be used as a summary of genomic
data and estimated with the PSMC and MSMC methods,
as suggested by Chikhi et al. (2018) to exclude models or
identify the best models.

Increasing the sample size to more than two
sequences

The Markov process approach used in sections ‘The struc-
tured coalescent and transition rate matrices: towards the
IICR’ and ‘The non-stationary structured coalescent
(NSSC): constructing the IICR for models with changes in
population’ allows to trace back ancestral lineages coming
from a sample of arbitrary size. This means that we can
compute the distribution of the first coalescence event in a
sample of k genes (denoted Tk) for k ≥ 2. Thus, it is theo-
retically possible under the NSSC framework to obtain
statistical properties of the underlying genealogical tree for
samples of size k. However, in this study we mainly focused
on the IICR as defined by Mazet et al. (2016) for T2. The
reason for this is that when k ≥ 3 the number of states to
consider in the Markov process becomes very large and so
does the corresponding transition rate matrix. It becomes
messy to enumerate all the states and to construct the cor-
responding transition rate matrix. Moreover, the computa-
tion of the matrix exponential becomes intractable under the
classic numerical methods (Moler and Loan 2003). Some
optimisations need to be done taking advantage of the
particular structure of the matrices associated to the NSSC
framework. Also there is a need for a clear algorithm enu-
merating all the possible states when tracing back more than

two ancestral lineages to the MRCA. It may also be possible
to construct a ‘reduced’ transition rate matrix instead of the
full one if there are ‘symmetries’ in the model. For instance,
the n-island model is highly symmetrical (all islands have
the same size and migration rates are identical between all
islands). The advantage of using symmetries is that it sig-
nificantly reduces the size of the transition rate matrix and
computation time but this idea will not be viable for all
structured models.

In conclusion, one of the great challenges of population
genetics inference is to identify the structured models that
could explain existing genomic data. Until now the choices
of structured models has been to a large extent arbitrary.
The NSSC modelling framework proposed here may be a
powerful and promising way to overcome that challenge,
and perhaps reduce arbitrariness and some level of story-
telling that has often plagued human evolution discourse.
All scripts used to carry out the simulations and analyses for
this work are available at: https://github.com/willyrv/nssc-
tools.
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