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Mouse models of autoimmunity, such as (NZB × NZW)F1, MRL/MpJ-Faslpr (MRL-lpr) and BXSB mice, spontane-
ously develop systemic lupus erythematosus (SLE)-like syndromeswith heterogeneity and complexity that char-
acterize human SLE. Despite their inherent limitations, such models have highly contributed to our current
understanding of the pathogenesis of SLE as they provide powerful tools to approach the human disease at the
genetic, cellular, molecular and environmental levels. They also allow novel treatment strategies to be evaluated
in a complex integrated system, a favorable context knowing that very fewmurinemodels that adequatelymimic
human autoimmune diseases exist. As wemove forward with more efficient medications to treat lupus patients,
certain forms of the disease that requires to be better understood at themechanistic level emerge. This is the case
of neuropsychiatric (NP) events that affect 50–60% at SLE onset orwithin thefirst year after SLE diagnosis. Intense
research performed at deciphering NP features in lupus mouse models has been undertaken. It is central to de-
velop the first lead molecules aimed at specifically treating NPSLE. Here we discuss how mouse models, and
most particularly MRL-lpr female mice, can be used for studying the pathogenesis of NPSLE in an animal setting,
what are the NP symptoms that develop, and how they compare with human SLE, and, with a critical view, what
are the neurobehavioral tests that are pertinent for evaluating the degree of altered functions and the progresses
resulting from potentially active therapeutics.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Table 1
Neuropsychiatric syndromes associated with SLE1, as defined by ACR nomenclature [9].

Central nervous system

Diffuse neurological manifestations Focal neurological manifestations
Acute confusional state Aseptic meningitis
Psychosis Cerebrovascular disease
Depression Seizures
Mood disorders Movement disorder
Anxiety disorders Myelopathy
Cognitive dysfunction Demyelinating syndrome
Headache2
1. Introduction

Systemic lupus erythematosus (SLE) is a chronic multisystem re-
lapsing–remitting autoimmune disease, primarily affecting females
[1], which can be influenced by hormonal, genetic and environmental
factors [2–7]. Clinical studies have shown that neurologic and neuro-
psychiatric (NP) symptoms occur in up to 75% of patients, a condition
representing a particularly severe form of the disease known as NPSLE
[8]. Some of the most frequent NP symptoms, of unknown etiology,
are cognitive deficits (e.g. mood and anxiety disorders, memory impair-
ment) [9]. Diagnosis of NPSLE remains essentially clinically defined and
requires interpretation of complex criteria developed by the American
College of Rheumatology (ACR), as no single laboratory test or imaging
is sufficiently sensitive and specific to be diagnostic [10,11]. NPmanifes-
tations seem not to be correlated with lupus flares [12], further con-
founding diagnosis and emphasizing the necessity to rule out other
potential etiologies such as medication-induced (corticosteroid) psy-
chiatric symptoms, infections, or metabolic abnormalities [13,14] to
establish a possible diagnosis. While lupus patients with long duration
of disease hold concurrently several factors that may provoke NP man-
ifestations, affective, cognitive and mood disorders can be found in pa-
tients with newly diagnosed disease [15]. Disruption of blood brain
barrier (BBB), brain pathology, and the presence of auto-antibodies
(autoAbs) are central components of NPSLE.

The lack of insight onto pathogenicmechanisms has required thede-
velopment of animalmodels. In a special breed of lupus-pronemice, the
MRL/MPJ-Faslpr (thereafter named MRL-lpr) substrain, the onset of
systemic autoimmunity and inflammation is accompanied by various
deficits in brain function comparable to that observed in SLE patients,
providing a useful model to study NPSLE. Interestingly, NP manifesta-
tions can also appear early in thesemice and are primarily driven by au-
toimmune process [16]. This reviewwill focus on the validity of theMRL
model in relation with cognition, and a particular emphasis is given to
consideration of these mice as a model of choice to evaluate potential
neuroprotective drugs. As regards other spontaneous models of SLE,
the readerwill find specific information in comprehensive reviews pub-
lished elsewhere [17,18].
Peripheral nervous system

Cranial neuropathy
Autonomic neuropathy
Mononeuropathy single/multiplex)
Myasthenia gravis
Plexopathy
Polyneuropathy
Acute inflammatory demyelinating polyradiculoneuropathy (Guillain–Barré syndrome)

1 Abbreviations: ACR, American College of Rheumatology; SLE, systemic lupus
erythematosus.

2 Association with SLE is still the subject of intense debates [179–181].
2. NPSLE: CNS involvement in human SLE

The manifestations of NPSLE are variable and can cover the whole
spectrum of psychiatric dysfunction. Patients can experience diffuse,
or focal central nervous system (CNS) disorders, as well as peripheral
nervous system troubles (Table 1) [9,19–21]. These NP manifestations
are not all at the samedegree of severity, and are often difficult to distin-
guish from other conditions and etiologies.
As most NP events (50–60%) occur at SLE onset or within the first
year after disease diagnosis, the NPSLE phenotype may be a presenting
feature of lupus, constituting the initial patient presentation [10]. How-
ever, NPSLE phenotype may also occur outside the context of a SLE flare
[22]. When compiling published data, a great variability in reported
NPSLE prevalence is usually found (15–75%) [8,19,23,24]. This discrep-
ancy results from many factors such as study design (prospective/
retrospective), laboratory methodologies, lack of accepted consensus
for diagnosis, selection criteria of patients [e.g. ethnic, demographic,
clinical differences (disease duration and activity, duration of follow-
up)], rarity of some NP syndromes, or variability in the sensitivity of
diagnostic tests assessing behavioral dysfunction [23,25]. Concerning
morbidity and mortality, NPSLE is associated with increased global SLE
disease activity, poorer prognosis and earlier mortality [26–28]. Recent-
ly, a study conducted on a large cohort of carefully phenotyped NPSLE
investigated the causes of death and the characteristics associated
with mortality [29]. A 10-fold increase mortality rate was reported in
this group of patients, the most common causes of death being infec-
tions and NPSLE itself.

More than 20 pathogenic brain-reactive autoAbs have been associated
to NPSLE [30]. AutoAbs and cytokines found in the serum and cerebrospi-
nal fluid (CSF) of patients have been proposed as important factors in the
etiology of CNS damage [31–36]. Furthermore, a disruption of the BBB's
integrity, allowing diffusion of proteins and small molecules such as
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immunoglobulins (Igs) and cytokines into the CSF, is now considered as
an important component in NPSLE development [37–39]. Increased CSF
levels of Igs, Abs and proinflammatory cytokines, aswell as elevated albu-
min concentration, are indicative of increased BBB's permeability [40–42],
and have additionally been associatedwithNPmanifestations [40,43–47].

Neuroimaging plays a substantial role in detecting neurological
abnormalities in SLE patients [48–54]. Magnetic resonance imaging
(MRI) is generally used butmay occasionally fail in NPSLE. As an illustra-
tion, more than 40% of NPSLE patients show normal MRI scans [14,55]
and even if brain imaging reveals abnormalities (e.g. cerebral atrophy,
subcortical white matter lesions, regional neurometabolic dysfunctions,
hypoperfusion), these findings are often nonspecific, some of them
being also observed in patients without NP manifestations and in the
general population after mid-adult life [55–58]. Brain atrophy, which
is however quite often reported [48] has been proposed to reflect
progressive neuronal injury and demyelination. Altogether, data report-
ed so far suggest the existence of strong links between neuronal cell
death, abnormal autoimmune functioning and NP manifestations [59].

Cognitive impairments and emotional disturbances are frequent in
NPSLE. However, whether such dysfunctions in memory and affects
are inherent to SLE or secondary (epiphenomena), resulting from infec-
tion, corticosteroid treatment, or hormonal/metabolic dysfunction, for
example, remains unclear.

Studying NPSLE in humans presents obvious inherent limitations.
Cause–effect relationships between immune factors and behavioral out-
comes cannot easily be characterized in such paradigm and diagnosis
is often made after SLE is in late stages of progression. An approach
allowing to characterize the early underlying mechanisms of NPSLE in
a quite systematic and more direct way includes investigation based
on murine models which, then, permits to study interactions between
autoimmune/inflammatory processes and cerebral functions, and to
better understand the cellular and genetic mechanisms of the disease
[17,60,61].

3. Murine models of SLE

3.1. Presentation

Several animal models present immune complex-mediated glomeru-
lonephritis associatedwith immunological abnormalities that are compa-
rable to those reported in human SLE. Three families of murine models
have been described, namely spontaneous, induced and genetically-
engineered knockout and transgenic models (Table 2). In this review,
we will focus our attention on one spontaneous model of lupus, the
MRL-lprmouse, in relation with cognitive dysfunction. Detailed informa-
tion dealingwith numerous othermousemodels can be found elsewhere
[17,18,62–66]. In the list of relevant murine strains, it is worth noting the
Table 2
Examples of some murine models of systemic lupus erythematosus.

Type of murine model Murine model Major autoimmune manifestations

Spontaneous MRL/MpJ-Faslpr (MRL-lpr) Glomerulonephritis; arthritis; vascu
myocardial infarcts; autoAbs (inclu

NZB; (NZBxNZW)F1 Glomerulonephritis; hemolytic ane
autoAbs

BXSB Glomerulonephritis; myocardial inf
Palmerston-North Glomerulonephritis; polyarteritis n
Motheaten Mild glomerulonephritis; pulmonar

autoAbs
Induced Pristane-induced Glomerulonephritis; autoAbs
Genetically engineered
• Knockout Apcs−/− Glomerulonephritis; anti-chromatin
• Transgenic Bcl-2 transgene Glomerulonephritis; lymphoid hyp

Abbreviations: Ab, antibody; Apcs, serum amyloid P component; Bcl-2, B-cell lymphoma 2 (B
immunoglobulin; lpr, lymphoproliferation gene; MRL, Murphy Roths Large; ND, not determine
toid factors.
development of amodel based on Abs cross-reactingwith native, double-
stranded (ds)DNA and N-methyl-D-aspartate (NMDA) glutamate recep-
tor that shows cognitive impairment and emotional disturbancesmediat-
ed by these autoAbs [67–70].

Generally, for modeling NP manifestations of lupus, spontaneous
models are liked best. Themost commonly studied spontaneousmodels
have beenmade available by selective inbreeding and include BXSB, the
F1 hybrid between New Zealand Black (NZB) and New Zealand White
(NZW) mice called (NZB/W)F1, and the Murphy Roths large (MRL)
strain. Over varying periods of time, all thesemice spontaneously exhib-
it clinical and serological features comparable to manifestations seen in
human SLE [61]. Themice not only share features such as hypergamma-
globulinemia, inflammatory lesions, B cell hyperactivity, autoAbs, circu-
lating immune complexes, and glomerulonephritis [71], but also
possess unique characteristics, such as monocytosis in BXSB mice,
hemolytic anemia in NZB mice, arthritis and expanded CD4−CD8−

double negative T cells and rheumatoid factors (RF) in MRL-lpr mice.
Differences in autoimmune disease manifestations are also noticed
among strains concerning sex, age of onset, symptoms' severity, and
rate of development.

3.2. The MRL-lpr mouse model

TheMRL-lpr strain is oneof the best established spontaneousmodels
of SLE and the most extensively investigated in lupus-related NP stud-
ies. Thesemice develop an accelerated and aggressive lupus-like disease
characterized by immune-mediated damage to the kidney, skin, heart,
lungs, joints, and brain, and by the presence of circulating autoAbs
against dsDNA and Smith antigen, which are serological hallmarks of
SLE. It has been estimated from the breeding history of MRL mice that
its composite genome is derived 75.0% from LG/J, 12.6% AKR/J, 12.1%
C3H/HeDi and 0.3% C57BL/6J [72]. In the 12th generation of theMRL in-
breeding, a spontaneous autosomal recessive mutation divided the
stock (#00486) into two substrains, one with the so-called lympho-
proliferation gene (lpr) and the other without, leading to two groups
of mice, the MRL/MpJ-Faslpr (MRL-lpr; stock #00485) and the MRL/
MpJlpr/Fas (MRL+/+, stock #006825), with at least 89% (and more than
99.9% after several cycles of cross-intercross mating) of their genome
in common.

Both congenic strains are comparable for several aspects (e.g.
appearance, size, reproductive age) and develop autoimmunity ac-
companied by CNS involvement, although much slowly and later in
life for MRL+/+ mice, thus representing a natural and adequate control
[61]. Furthermore, MRL+/+ mice do not show evidence of CNS damage
under normal conditions, unlike MRL-lpr mice which, as it will be
discussed much further below, develop spontaneous BBB leakage.
The main factor accounting for the accelerated autoimmunity in the
NP manifestations

litis; skin lesions; alopecia;
ding RF)

Emotional and cognitive dysfunctions: anxiety,
depression, anhedonia, decreased locomotion,
impaired spatial learning

mia; pulmonary infiltrates, Impairment in learning and mood-related behaviors

arcts; monocytosis, autoAbs Impairment in spatial abilities in old males
odosa; autoAbs ND
y infiltrates; hair loss; ND

ND

Abs ND
erplasia; autoAbs; hyperIgG ND

cell promoter); Fas, apoptosis stimulating fragment; F1, hybrid of the 1st generation; Ig,
d; NP, neuropsychiatric; NZB, New Zealand Black; NZW, New ZealandWhite; RF, rheuma-
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MRL-lpr substrain is a defect in the Fas gene expression, produced as
related above by a spontaneousmutation of the single autosomal reces-
sive gene lpr located on chromosome 19. This mutation alters transcrip-
tion of the FAS receptor [73] and results in lymphadenopathy [74]. It
also interferes with normal FAS-induced apoptosis, contributing to
prolonged survival of activated lymphocytes and autoreactive T- and
B-cell clones, and finally, in high autoAb titers [75]. MRL-lprmice signif-
icantly differ from the other lupusmodels by thedevelopment in certain
mice colonies of a rheumatoid arthritis-like polyarthritis, with a high
incidence and titer of RF in their serum, andhigh levels of circulating im-
mune complexes and cryoglobulins. It is important to know that over
the past decade,MRL-lprmice displayed “accidental” lessening of symp-
toms of unexplained origin [76] and that theMRL-lpr original stockwas
re-established in 2008 (http://jaxmice.jax.org/strain/006825.html).
This event has been recounted in detail elsewhere [16,77].

MRL-lpr mice display an accelerated mortality rate, females dying
approximately at 17 weeks of age and males at 22 weeks. Similarly
to lupus patients, MRL-lpr mice spontaneously develop behavioral
dysfunction concerning emotional reactivity, motivated behavior, cog-
nition, as well as pathologic changes in the brain (i.e. degeneration of
central neurons) [62,78–87]. Experimental studies showed that behav-
ioral deficits parallel high levels of cytokines and autoAb, such as antinu-
clear Abs, anti-dsDNA, and RF, resulting in large amounts of immune
complexes [71]. This model, as we will see below, has now become
an indispensable tool in the attempt to elucidate the pathogenesis of
NPSLE [16], and helped in revealing autoimmunity-induced degenera-
tion, as well as the cytotoxic effects of IgG-rich CSF [79,88].

As in human SLEwhere depression and other kinds of NPmanifesta-
tions can appear early in the time course of the disease [15,89], authors
found that depressive-like behavior is exhibited byMRL-lprmice (stock
#006825) already at 8-weeks of age, at a timewhen there was no other
apparent organ involvement [90]. Thus, these mice demonstrate
increased immobility in the forced-swim test, which is usually accepted
as an indicator of depression in rodents if strength, motor coordination
and general locomotion are otherwise normal (mice's motor function
had been evaluated and revealed no impairment in the beam-walking
as well as in open field tests). Depressive symptoms significantly
correlated with titers of autoAbs against dsDNA, NMDA receptor and
cardiolipin. This observation indicates that lupus mice develop depres-
sion and CNS dysfunction early in the course of the disease, in the ab-
sence of substantial pathology of other organs. This observation also
confirms, in the MRL-lpr model, the robustness of emotional dysfunc-
tion by providing further evidence that such behavioral outcomes are
likely a primary manifestation of autoimmunity rather than arising
from nonspecific illness or peripheral organ pathology. Finally, MRL-
lpr mice also display anhedonia, another manifestation of murine
depressive-like behavior [91], which is is a lack of response to pleasure
or reward and is assessed experimentally in following the loss of the
typical preference to drink sweetenedfluids [92]. Anhedonia is classical-
ly considered as a hallmark diagnostic symptom of depression and, in
this report, it correlates significantly with a depression-like phenotype
in the forced-swim test.

An interestingfinding inMRL-lprmice concerns the sex bias of the dis-
ease. In human SLE, a strong gender preference (about a 9:1 female to
male ratio) is generally found [93]. Recently, authors evaluated MRL-lpr
mice, by directly comparing males and females (stock #00485) [94],
and found that MRL-lpr females from this stock exhibited depression as
early as 5 weeks as compared to MRL-lpr males where depression was
noted only at 18 weeks. Depression scores significantly correlated with
autoAbs against nuclear antigens, NMDA receptor, and ribosomal P pro-
teins. These results are consistent with the notion of a primary role of
autoAbs in the pathogenesis of early NP deficits in this lupus model,
which translate into gender-based differences in clinical phenotype. In
human SLE and murine MRL-lprmodel, a different hormonal component
can influence the disease progression between both sexes. Additionally,
higher levels of IgG can be found in CSF of female MRL-lpr mice [95].
Subtle differences in the susceptibility of the male and female MRL-lpr
brains to injury by pathogenic Absmay then lead to amore severe neuro-
behavioral phenotype in female lupus mice.

4. Neurobehavioral testing in MRL-lpr mice

As many patients with SLE, evidence suggests that MRL-lpr mice
show changes in emotional function and cognition [82,96] in parallel
with, but sometimes also before, abnormalities in the immune system.
Mainly, anxiety and depressive-like behaviors have been observed
[97]. This finding has raised the possibility that the characterization of
behavioral modifications in autoimmune mice may help clarifying the
link between autoimmunity and cognition. To examine the time course
of behavioral outcomes of lupus (i.e. anxiety, feelings of helplessness or
despair, anhedonia commonly described byNPSLE patients), the perfor-
mances ofmice, including anxiety-like behavior, depression or sickness-
like behavior, cognition, as well as locomotor activity can be evaluated
in a battery of tests, which are detailed below.

4.1. Anxiety tests

4.1.1. Elevated-plus maze
This maze is routinely used in pharmacology due to its sensitivity

to anxiolytics. It consists of four arms, two enclosed and two open (i.e.
without walls), and creates an approach-avoidance conflict between
the natural tendency of rodents to explore and their aversion for open
spaces (which helps preventing detection from predators). In such
test, anxiety-like behavior is typically defined as the decreased explora-
tion of open arms; themore anxious the animal is, the less it will explore
them [98]. Concerning the MRL-lpr model, some authors reported
increased anxiety levels [82] while others failed to find such effects
[90,94,99].

4.1.2. Open field
This test assesses exploratory behavior in a novel, enclosed environ-

ment, which can also reflect anxiety-like behavior, as measured by the
amount of time the animal avoids the central area of the arena and re-
mains in close proximity to the walls (thigmotaxis) [100]. The degree
of stress can be experimentally manipulated (i.e. by increasing
enclosure's size, changing its color–white is more stressful than black–
varying the intensity of the overhead lights). In this experimental situa-
tion, MRL-lpr mice display anxiety-like behavior as evidenced by in-
creased thigmotaxis and impaired exploration of space [82].

4.2. Depressive, sickness-like behavior tests

4.2.1. Sucrose preference test
Reduced preference for palatable drinking solutions was first noted

in one of the pioneering studies on behavior of MRL-lpr mice [101].
This observation was further explored using the sucrose preference
paradigm summarized above. In the MRL model, this paradigm reveals
impairments in motivated and goal-directed behavior, and no changes
in peripheral sensory input [102]. It is noted as early as 5–6 weeks of
age in female mice [103] and continues during the active disease
phase (4–5 months) [104–106].

4.2.2. Forced-swim test
This test evaluates behavioral despair as the proportion of immobil-

ity when rodent is placed into a small container of room-temperature
water from which escape is impossible. After a period of struggling
and swimming, the animal becomes immobile, moving its limbs only
when it needs to stay afloat or to rebalance itself. This immobility has
been interpreted to reflect a state of “behavioral despair” or helpless-
ness, which occurs when the animal learns that escape is impossible
[107,108]. Within this interpretation, immobility is thought to reflect a
depressive-like behavior and is illustrated as the percentage of time

http://jaxmice.jax.org/strain/006825.html
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spent immobile [109]. Increased floating is one of the most profound
performance deficits observed in MRL-lpr mice, appearing as early as
5 weeks of age and persisting throughout the course of the disease
[82,83,90,94]. However, it is equally possible that immobility is an adap-
tive response that allows the animal to keep its energy. Thus, it remains
debatable whether the forced-swim test can be considered as a test of
depression.

4.2.3. Open field locomotor activity
Further symptoms of depressive-like behavior include fatigue and

apathy which can be assessed as both decreased voluntary activity
and exploration in a novel environment, such as an open field. Generally,
MRL-lprmice are spontaneously less active [80,82,94,110].

4.3. Cognition: learning and memory tests

Parallels exist between forms of memory assessed in rodents and
those evaluated in humans, all being related to hippocampal processes.

4.3.1. Novel object recognition (visual memory)
This test is based on the robust tendency of rodents to preferentially

explore novel objects. It is efficient to assess non-spatial working
memory, but it also reflects explorative and emotional responses in an
approach-avoidance situation, where MRL-lprmice usually display def-
icits [82,111]. The mouse is first placed into an arena containing two
identical, novel objects. After a predetermined period of exploration,
the animal is removed, and a delay is imposed. Following the delay,
the mouse is placed back into the arena, where one of the objects is re-
placed by a novel object. Rodents typically explore novel objects and
avoid familiar objects, so the amount of time investigating the novel ob-
ject is taken as the measure of working memory. Generally, MRL-lpr
mice are not impaired in this cognitive component of the task [90,94].

4.3.2. Morris water maze
This test assesses spatial learning and memory formation. Animals

are placed into a pool of water in which a platform is hidden beneath
the surface. The animalmust learn to use spatial cues located in the test-
ing room to navigate to the platform. Longer latencies indicate poorer
performance. MRL-lpr mice present significant deficits in this test;
they are dramatically impaired in their ability to learn the spatial rela-
tionships required to guide them to the hidden platform [80,81,86,112].

4.3.3. Fear-conditioning paradigm
The fear conditioning test assesses the ability of an animal to associ-

ate a conditioned stimulus (CS, neutral) with delivery of an uncondi-
tioned stimulus (aversive), usually foot-shock. Several dependent
measures can be employed, although the most simple is to assess the
degree of freezing that the CS elicits. The CS can be either contextual
(the arena in which shock is administered), or it can be discrete
(a light or tone cue that precedes the shock). Variations in the type of
CS recruit neuroanatomically distinct systems; the hippocampus has
been found to be crucial to supporting cued fear conditioningwith a dis-
crete CS, whereas the amygdala is essential to the acquisition and ex-
pression of contextual fear conditioning. This experimental paradigm
has been used by Diamond and her group in another murine lupus
model based on Abs cross-reacting with dsDNA and NMDA receptors.
These authors reported disruption of emotional behavior as a conse-
quence of a neuronal loss in the lateral amygdala [68].

4.4. Motor function tests

4.4.1. Beam-walking test
Walking on a narrow beam (diameter of 1.5 cm) is often used to test

psychomotor coordination [113] and is sensitive to motor cortex dam-
age. Motor coordination is assessed as the latency to cross the beam
(100 cm-long) and the number of slips (i.e. when one of the paws is
passing below the midline of the beam). Generally, there is no obvious
deficit, MRL-lpr mice displaying normal motor coordination [90,94].
4.4.2. Climbing test
The test consists of placingmice in awire-mesh rectangular box over

10 min; duration and frequency of climbs, rears and grooming episodes
are scored. Spontaneous climbing is a behavioral pattern proposed to be
controlled by the dopamine system [114]. There is evidence suggesting
aberrant dopaminergic neurotransmission in MRL-lpr mice [83,104,
105].
5. Why are MRL-lpr mice a good model for NPSLE?

5.1. Disruption of the BBB

The BBB, composed of a network of endothelial cells, pericytes and
astrocytes, is a crucial anatomic location in the brain. It functions to
limit the entry of solublemolecules and cells into the brain parenchyma,
and to maintain a regulated micro-environment for reliable neuronal
signaling in the CNS [115]. As mentioned above, evidence for BBB
breakage or leakage in human SLE-related neuropathology is now accu-
mulating [37–39,41]. Similarly to NPSLE patients, MRL-lpr mice show
increased albumin concentration and IgG index, which, interestingly,
are concomitant with neurodegeneration in periventricular areas [95].
Recently, experimental findings (i.e. IgG infiltration into brain paren-
chyma) even account for a definite loss of BBB integrity in this lupus-
prone model [116]. Finally, using immunohistochemical markers and
flow cytometry to assess distribution and prevalence of various cell
subtypes, including plasma cells, which infiltrate the brain of MRL-lpr
mice, other authors observed a massive penetration of CD3+ T cells
into the choroid plexus and brain parenchyma, as well as the presence
of CD19+ cells and CD19+IgM+ B cells, which increased in the brain.
Severemononuclear cell infiltrationwas accompanied by splenomegaly
and retarded brain growth [117]. These data support the hypothesis of
progressive neurodegeneration as a consequence of leukocyte infiltra-
tion and intrathecal autoAb synthesis. However, challenging questions
remain as to determine when and how a loss of the BBB integrity can
occur.
5.2. Evidence of pathogenic Abs

The hypothesis of a pathogenic role of certain brain-reactive Abs in
mental disorders [31,118] is strengthened in MRL-lprmice where anal-
ysis of serum repeatedly showed increased levels of autoAbs, noticeable
earlier in females and paralleling the onset of depressive-like behavior
[90,94].

After a disruption of BBB, autoreactive Abs can penetrate into the
brain where they may cause neuronal death [69] and eventually psy-
chosis and/or seizures in lupus patients [119]. In addition to be detected
in the CSF following BBBbreak, autoreactive Absmight also be produced
intrathecally [40,120,121]. Experimental studies support this last hy-
pothesis in MRL-lpr model [79]. Intrathecally-generated Abs are of the
IgG isotype [95] and their levels correlate with increased immobility
in the forced-swim test [122]. These authors proposed that intrathecal
brain-reactive Abs predict depressive-like response while anxiety-like
behavior and “anhedonic” response are rather associated with circulat-
ing Abs [111].

The general observation that behavioral abnormalities appear before
major increase of serum Abs titers or detectable BBB disruption indicates
that serum Abs are not the unique pathogenic factor on NPSLE, at least
early in the disease. The link between serum and CSF autoAbs to the dis-
ease process is complex and evidences suggest that CSF Abs are more
pathogenic than serum Abs [43,79,123,124].
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5.3. Cytokines

The neuromodulator role of cytokines is highly relevant in diseases
characterized by inflammation, such as lupus, in which proinflammato-
ry cytokines are involved in the pathogenesis of tissue injury and in the
production of pathogenic autoAbs [125]. Cytokines play a central role in
cognitive function, as well as in learning and memory in the hippocam-
pus [126]. They have been linked to depression in humans [127] and a
dysregulation of certain proinflammatory cytokines is thought to be
involved in the CNS manifestations of SLE [128–130].

Cytokines affecting the brain may originate either peripherally or
centrally [131]. Resident CNS cells, neurons, astrocytes, and microglia
cells constitutively produce and express receptors for most of the cyto-
kines produced in the periphery. On the other hand, cytokines are
produced within the CNS by neurons and microglia, the surveillance
cells of the CNS (for a review, see [132]), and take part in the regulation
of neurogenesis, cell survival, proliferation and differentiation of new
neurons that is crucial for hippocampal functions such as learning and
memory [133,134].

In MRL-lpr mice, increased serum levels of proinflammatory cyto-
kines, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β
and IL-6, parallel the progress of lupus-like disease [135–137]. As well,
they are known to alter emotional reactivity and motivated behavior,
to provoke sickness behavior clinically and induce impairments in spa-
tial learning experimentally [103,138–142]. To explore the relationships
between cytokines and CNS disease in lupus, the expression of several
proinflammatory cytokine genes in the hippocampus of autoimmune
MRL-lpr mice was compared [143,144]. The results indicate that the
proinflammatory cytokine genes for interferon (IFN)-γ, IL-1, IL-6 and
IL-10, which have been shown to induce cognitive and emotional im-
pairments, are selectively up-regulated in the hippocampi of MRL-lpr
mice. Thus, proinflammatory cytokines may play a role in the cognitive
aberrations observed in MRL-lprmice and, by extension, in lupus [145].
Finally, increased expression of TNF and of its receptor TNFR1,which are
moreover implicated in induction of inflammation and degeneration/
apoptosis in the CNS, had been reported in the brain of MRL-lpr mice
[146].

5.4. Neuroinflammation–neurodegeneration

Neuroinflammation and neurodegeneration represent important
components of NPSLE. InMRL-lprmice, the brainmetabolism is dramat-
ically altered [147], and the early onset of inflammation and autoimmu-
nity includes pathologic events such as infiltration of mononuclear cells
into the choroid plexus and parenchyma [87,112,148], increase of adhe-
sion molecules [149], as well as deposition of complement proteins.

In MRL-lprmice, the possibility of congenital brain structural defect
potentially confounding disease-induced neurodegeneration is mini-
mized as these mice do not show such inherited cerebral abnormalities,
in contrast to BXSB and (NZBxNZW)F1 [150,151]. Then, the MRL model
allows the study of interrelationships between systemic autoimmunity,
brain changes, and behavior outcomes in a quite controlledway. From a
developmental point of view, brain growth appears retarded [152] and
ventricles increase in size along an early and accelerated development
or autoimmunemanifestations [153,154]. Furthermore, and particularly
in the hippocampus (i.e. cerebral subregion crucially involved in
cognitive processing), increased neurodegeneration, reduced dendritic
complexity and progressive atrophy of pyramidal neurons have been
commonly observed [88,155], accompany deficits in spatial learning
memory [96,152], and are also consistent with the notion of an
anxious/depressive-like behavioral profile [82,106,156]. Interestingly,
hippocampal abnormalities also exist in human lupus [157–159]. More-
over, reports concerning reduced brain weight [84,152], and neurotox-
icity of CSF [79] reinforce the notion of neuronal damage in theMRL-lpr
substrain. Finally, inMRL-lprmice, lesions of the nucleus accumbens ac-
company impaired motivated behavior (sucrose preference test) [104],
and degeneration in the substantia nigra is reported with decreased lo-
comotor activity [105]. Taken together, these data support the notion
that systemic inflammation and autoimmunity induce structural dam-
age and degeneration of central neurons (e.g. hippocampal), thus likely
forming the basis of behavioral deficits in MRL-lpr substrain.

Progenitor cells may also degenerate in the brain of MRL-lpr mice.
Thus, cerebral regions (e.g. subventricular zone, subgranular zone of
the hippocampus) containing such progenitor cells [160] show signs
of neurodegeneration [95,96,155,161]. Concerning neuronal progenitor
cells, authors report that CSF from MRL-lpr mice, as from a deceased
NPSLE patient with a history of psychosis, memory impairment, and
seizures, are toxic and reduce the viability of brain cells, which prolifer-
ate in vitro (C17.2 neural stem cell line) [123]. This harmful effect was
accompanied by periventricular neurodegeneration in thebrain of auto-
immune mice and in vivo neurotoxicity when their CSF was adminis-
tered to the CNS of a rat. Proposed mechanisms of cytotoxicity involve
binding of intrathecally synthesized IgG autoAbs to target(s) common
to differentmammalian species and neuronal populations. These results
indicate also that the viability of proliferative neural cells can be
compromised in systemic autoimmune diseases. Then, Ab-mediated
damage of germinal layers may weaken the regenerative capacity of
the brain in NPSLE, as well as in cerebral development and function in
other CNS diseases in which autoimmunity has been documented
[162]. Interestingly, impaired hippocampal neurogenesis could account
for some of the cognitive deficits observed in MRL-lprmice, as the hip-
pocampus is well implicated in learning and memory processes [163].
Finally, hippocampal neurogenesis could also be inhibited by stress hor-
mones, which are chronically increased in MRL-lpr mice [164].

Impaired neurotransmitters (i.e. dopamine, serotonin, norepineph-
rine, glutamate) catabolism could also be involved in the pathogenesis
of CNS damage in lupus. This hypothesis was studied in MRL-lpr strain
by evaluating the neurotransmitter/metabolite levels in several brain
regions [104,105,165]. MRL-lpr brains showed increased dopamine
levels in the paraventricular nucleus (PVN) and the median eminence,
decreased serotonin concentrations in the PVN and enhanced levels in
the hippocampus, and decreased norepinephrine levels in the prefron-
tal cortex [83]. Behavioral deficits correlated with the changes in PVN
and median eminence. Concerning serotonin, data are in line with
modified serotonin levels in SLE patients comparable to what occurs
in depressed patients, including those in which depression has been in-
duced by cytokine therapy [166]. Taken together, and more generally,
these results are consistent with the notion that imbalanced neuro-
transmitter regulation of the hypothalamus–pituitary–adrenal (HPA)
axis may play a significant role in the etiology of behavioral dysfunction
induced by systemic autoimmune disease [83], and may induce neuro-
toxicity, at least for dopamine [167]. A deficit in this neurotransmitter
release, moreover, may underlie impaired responsiveness to palatable
stimulation during the progress of systemic autoimmune disease
[104]. As such, a neurotransmitter-specific regional brain damage may
account for depressive behaviors in NPSLE.

5.5. Neuroendocrine-immune interaction

The interaction between the nervous, endocrine and immune sys-
tems remains poorly understood. The HPA axis is the chief component
of the stress system. The stress-induced increase serum concentration
of glucocorticoids is essential for the prevention of autoreactive or
uncontrolled amplification of the immune response, which results in
autoimmunity and self-injury. A defective HPA axis may then confer
susceptibility to autoimmune disorders, and it seems that such a defi-
ciency is present in both murine and human lupus [110,164,168].
Nowadays, studies on the function of the HPA axis are rather limited
in patients with SLE and often confounded by the effect of concomitant
glucocorticoid treatment. Nevertheless, it is well documented that
proinflammatory cytokines modulate the stress hormone system and
alter behavior [169–171]. Such cytokines activate the HPA axis via
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corticotrophin-releasing hormone, stimulating the synthesis of
glucocorticoids and other neuropeptides [172,173]. In MRL-lpr mice,
increased levels of proinflammatory cytokines, mimicking actions of
glucocorticoids on the HPA axis, accompany the spontaneous onset of
SLE and are associated with deficits in learning and memory function,
resulting from hippocampal atrophy. Elevated cortisol levels could
also cause excitatory amino acid injury to neurons via a direct decrease
in synaptic reuptake of glutamate. The notion of glutamate toxicity is
supported by the evidence of anti-NMDA receptor Abs resulting in neu-
ronal apoptosis in the mouse brain [67], and a similar IgG-mediated
mechanism induced by CSF from MRL-lpr mice [123].

Concerning the time course and the nature of CNS involvement, a re-
port focusing on theneuroendocrine-immune characteristics ofMRL-lpr
mice recently showed that behavioral deficits are under the control of
autoimmune, genetic, and endocrine factors, which interchangeably af-
fect brain function and morphology at different phases of ontogeny
[174]. Thereby, behavioral performances during the prodromal phase
of NPSLE-like disease are associated with autoAbs in CSF and asymmet-
ric activation of the HPA axis. Subsequent deterioration in behavior
evolves alongside systemic autoimmunity and inflammation. Although
a leaky blood-CSF barrier is a possible explanation, the authors hypoth-
esized that, similar to neonatal lupus, maternal Abs to brain antigens
might cross blood–placental barrier during embryogenesis and induce
early endocrine and behavioral deficits in offspring.

The different interactions, which seem to exist in MRL-lpr mice
between genetic, nervous, endocrine, and immune systems, and may
induce abnormalities in cognitive behavior, are depicted in Fig. 1.

5.6. The MRL-lpr mouse model to evaluate potential neuroprotective drugs

Werecently showed that inMRL-lprmice, the cGMP-phosphodiesterase
(PDE) activities are significantly increased in the kidney, spleen and
liver. PDE1 activity levels were raised in their kidneys (associated
with nephromegaly) and liver, and PDE2 activity was specially
increased in their spleen [175]. Nearly all the PDE families are
expressed in the CNS [176]. In our hands, the basal expression levels
of PDE1, 2 and 5 measured in the brain of 15 week-old MRL-lpr mice
were not significantly changed (not published). Regarding the brain
cAMP-PDE activity, however, while the basal activity also appeared
unchanged, that of PDE3 was found to be significantly raised (62.5
to 165.7 pmol/min/mg; p = 0.0017, Student's test; results obtained
in three female mice of 15 weeks of age; Lugnier and Keravis, personal
communication; Fig. 2). It is worth mentioning that a single intravenous
administration to MRL-lpr mice of nimodipine (PDE1 inhibitor) but not
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Fig. 1. Potential factors influencing cognitive behavior and abnormalities inMRL-lprmice. The in
development of autoimmune disease. Abbreviations: Abs, antibodies; BBB, blood-brain barrier
of EHNA (PDE2 inhibitor) was able to significantly lower peripheral
hypercellularity [175], which is a typical feature of this strain of lupus
mice (see above). It remains to be explored if drugs known to inhibit
cAMP-PDE3 activity are able to display such an effect and possibly reverse
some neurological signs observed in this mouse model.

6. Limitations

Although the MRL-lpr strain displays many features reminding
human NPSLE, there are some limitations which must be taken into ac-
count when studying NP features in this murine model.

First, several differences exist between human and rodent
immune systems. Since autoimmune dysfunctions are at the root
of autoimmune diseases, such particularities may limit extrapola-
tions from animal models to autoimmune patients and precautions
have to be taken for interpretations and conclusions of what it has
been observed experimentally.

Thus, in contrast to the oscillating course of flares and remissions
commonly reported in SLE patients, MRL-lpr mice show a constant dis-
ease progression [18,60], which likely reflects the fact that these mice
are genetically-altered for some genes, such as fas, on a predisposing
MRL background. We must remind here that if FAS mutations result in
a familial autoimmune lymphoproliferative syndrome, defects in FasL
have scarcely been found in lupus patients. FAS and FASL are not consid-
ered contributory genes in human SLE.

Furthermore, while affective and cognitive states of NPSLE patients
can be measured by quite sophisticated tests, performances of MRL-lpr
mice can only be evaluated using a battery of behavioral tests. Care is
then required when transferring information observed in MRL-lpr
mice to human SLE patients.

Finally, as in any reductionist approach, this murine model provides
presumably a partial view only of the complex mechanisms occurring
in human disease. Nonetheless, animal models are at the core of
autoimmune research andnumerous published studies reflect the prog-
ress brought by these animal models in terms of depicting disease
mechanisms.

7. Conclusions

Clinically, NP involvement in several diseases is closely associated
with, and is thought to be a consequence of, inflammation in the
brain. Several studies report specific autoimmune responses to self-
antigens in psychosis, affective dysregulation, and other behavioral ab-
normalities. Nowadays however, despite these data, no autoAbs have
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Fig. 2. Levels of basal cAMP-PDE activities in the brain of normal and lupus mice. Basal cAMP-PDE specific activities in total homogenate (A) and contribution of PDE3 (B) and PDE4
(C) were assessed on 15 week-old CBA/J and MRL-lpr mice as described by Yougaré and collaborators [175]. Data are expressed as pmol/min/mg of protein and are the mean ± s.e.m.
of the data obtained from three individualmice. **, p b 0.01 (Student's test) (Lugnier andKeravis, personal communication). All experimental protocolswere carried outwith the approval
of the local Institutional Animal Care and Use Committee (CREMEAS). Abbreviations: cAMP, cyclic adenosine monophosphate; CBA/J, C.C.x Bagg, strain A/Jackson; MRL, Murphy Roths
Large; PDE, phosphodiesterase.
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remained sufficiently reproducible or ubiquitous as to become a robust
biomarker for disease. Experimentally, there is considerable evidence to
indicate that chronic inflammation may lead to neurodegenerative dis-
orders [177].

The MRL-lpr model presents several advantages as compared to
other models of systemic autoimmune disease that render it an indis-
pensable tool in studies of autoimmunity-brain interactions. Spontane-
ously, these mice present cerebral neuroanatomic and neurobehavioral
changes similar to what is observed in human lupus, thereby indicating
the validity of their use to investigate the mechanisms underlying neu-
robehavioral dysfunction in human SLE. An age-dependent decline in
brain mass and hippocampal size are consistent with a cascade of path-
ogenic events, including CSF-mediated cytotoxicity, neurodegeneration
and impaired neurogenesis in the limbic system, which accounts for
early changes in emotional reactivity and cognitive dysfunction. More-
over, the MRL-lpr model is heavily relied upon because of its wide
spread availability (it is commercially available), ease of use, and has
disease occurring in a compressed time.

Research is still at the beginning concerning knowledge of how fre-
quently Abs cause brain damage,which are theirmechanisms of gaining
access to the brain, how they potentially affect cerebral functions, and/
or if other effector molecules can also display deleterious effects [178].
These questions are central in our quest to generate adapted therapeu-
tics capable of specifically hampering the binding of brain-reactive Abs
or active molecules to their targets. In this setting, availability of perti-
nent animal models mimicking NPSLE is crucial to elucidate precise dis-
ease factors and molecular events occurring during neuronal cell death
and then to evaluate such therapeutic tools designed on the basis of ac-
quired information.
Take-home messages

• NP symptoms of SLE (NPSLE) are dramatic complications of the
disease and contribute to significant morbidity and mortality.

• Animalmodels are useful tools in defining the pathogenesis of human
disease.

• The MRL-lpr strain is a murine model of lupus, which spontaneously
develops specific serological (e.g., autoAbs, proinflammatory cyto-
kines) and behavioral features (e.g. cognitive, emotional dysfunction)
of human SLE.

• There is a link between autoimmune/inflammatory disease, neurode-
generation and behavioral dysfunction in MRL-lprmice.

• The MRL-lpr substrain may constitute an excellent model to evaluate
neuroprotective therapeutics.
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