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Abstract 12 

Adaptation is mediated by phenotypic traits that are often near continuous, and undergo selective 13 

pressures that may change with the environment. The dynamics of allelic frequencies at underlying 14 

quantitative trait loci (QTL) depend on their own phenotypic effects, but also possibly on other 15 

polymorphic loci affecting the same trait, and on environmental change driving phenotypic selection. 16 

Most environments include a substantial component of random noise, characterized by both its 17 

magnitude and its temporal autocorrelation, which sets the timescale of environmental predictability. I 18 

investigate the dynamics of a mutation affecting a quantitative trait in an autocorrelated stochastic 19 

environment that causes random fluctuations of an optimum phenotype. The trait under selection may 20 

also exhibit background polygenic variance caused by many polymorphic loci of small effects 21 

elsewhere in the genome. In addition, the mutation at the QTL may affect phenotypic plasticity, the 22 

phenotypic response of given genotype to its environment of development or expression. Stochastic 23 

environmental fluctuations increases the variance of the evolutionary process, with consequences for 24 

the probability of a complete sweep at the QTL. Background polygenic variation critically alters this 25 

process, by setting an upper limit to stochastic variance of population genetics at the QTL. For a 26 

plasticity QTL, stochastic fluctuations also influences the expected selection coefficient, and alleles 27 

with the same expected trajectory can have very different stochastic variances. Finally, a mutation may 28 

be favored through its effect on plasticity despite causing a systematic mismatch with optimum, which 29 

is compensated by evolution of the mean background phenotype. 30 

 31 

Keywords: Fluctuating selection, stochastic environment, temporal autocorrelation, polygenic 32 

adaptation, phenotypic plasticity. 33 

  34 
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Introduction 35 

The advent of population genomics and next-generation sequencing has fostered the hope that the 36 

search for molecular signatures of adaptation would reach a new era, wherein the recent evolutionary 37 

history of a species would be inferred precisely and somewhat exhaustively, and fine details of the 38 

genetics of adaptation would be revealed (Stapley et al. 2010). Despite undisputable successes, the 39 

picture that has emerged in the last decade is more complex. First, the importance of polygenic 40 

variation in adaptation has been re-evaluated based on theoretical and empirical arguments (Chevin 41 

and Hospital 2008; Pavlidis et al. 2008; Pritchard et al. 2010; Rockman 2012; Jain and Stephan 2017; 42 

Stetter et al. 2018; Höllinger et al. 2019), and methods have been designed to detect subtle frequency 43 

changes at multiple loci that may jointly cause substantial phenotypic evolution (Turchin et al. 2012; 44 

Berg and Coop 2014; Stephan 2016; Wellenreuther and Hansson 2016; Racimo et al. 2018; Josephs et 45 

al. 2019). Consistent with (but not limited to) polygenic adaptation is the idea that mutations 46 

contributing to adaptive evolution do not necessarily start sweeping when they arise in the population, 47 

but may instead segregate for some time in the population and contribute to standing genetic variation, 48 

before they become selected as the environment changes (Barrett and Schluter 2008; Kopp and 49 

Hermisson 2009; Matuszewski et al. 2015; Jain and Stephan 2017). After the factors governing such 50 

“soft sweeps” and their influence on neutral polymorphism have been characterized (Hermisson and 51 

Pennings 2005; Przeworski et al. 2005), the debate has shifted to their putative prevalence in 52 

molecular data, and perhaps more importantly to their contribution to adaptive evolution (Jensen 2014; 53 

Garud et al. 2015; Hermisson and Pennings 2017).  54 

 Another line of complexity in the search for molecular footprints of adaptation comes from 55 

temporal variation in selection. The classical hitchhiking model (Maynard-Smith and Haigh 1974; 56 

Stephan et al. 1992) posits a constant selection coefficient without specifying its origin. Some models 57 

have gone a step further by explicitly including a phenotype under selection, and have shown that even 58 

in a constant environment, selection at a given locus may change over the course of a selective sweep, 59 

as the mean phenotype in the background evolves through the effects of other polymorphic loci, in a 60 

form of whole-genome epistasis mediated by the phenotype (Lande 1983; Chevin and Hospital 2008; 61 

Matuszewski et al. 2015). In addition, selection is likely to vary in time because of a changing 62 

environment. Most environments exhibit substantial fluctuations over time, beyond any trend or large 63 

shifts (Stocker et al. 2013). These fluctuations are likely to affect natural selection, which emerges 64 

from an interaction of the phenotype of an organism with its environment. Interestingly, one of the 65 

first attempts to measure selection through time in the wild revealed substantial fluctuations in strength 66 

and magnitude (Fisher and Ford 1947), spurring a heated debate about the relative importance of drift 67 

versus selection in evolution, and setting the stage for the neutralist-selectionist debate (Wright 1948; 68 

Kimura 1968; Yamazaki and Maruyama 1972; Gillespie 1977). Other iconic examples of adaptive 69 

evolution also show clear evidence for fluctuating selection (Lynch 1987; Grant and Grant 2002; Bell 70 
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2010; Bergland et al. 2014; Nosil et al. 2018), suggesting that selection in natura is rarely purely 71 

directional, but instead often includes some component of temporal fluctuations. Part of these 72 

fluctuations involve deterministic, periodic cycles, such as seasonal genomic changes in fruit flies 73 

(Bergland et al. 2014), but random environmental variation also certainly plays a substantial role. In 74 

fact, virtually all natural environments exhibit some stochastic noise, characterized not only by its 75 

magnitude but also by its temporal autocorrelation, which determines the average speed of fluctuations 76 

and the time scale of environmental predictability (Halley 1996; Vasseur and Yodzis 2004). The 77 

influence of such environmental noise on natural populations is attested notably by stochasticity in 78 

population dynamics (Lande et al. 2003; Ovaskainen and Meerson 2010), and natural selection at the 79 

phenotypic level has also been estimated as a stochastic process in a few case studies (Engen et al. 80 

2012; Chevin et al. 2015; Gamelon et al. 2018).    81 

Population genetics theory has a long history of investigating randomly fluctuating selection. In 82 

particular, Wright (1948) used diffusion theory to derive the stationary distribution of allelic 83 

frequencies in a stochastic environment, which was later extended to find the probability of quasi-84 

fixation in an infinite population (Kimura 1954), and of fixation in a finite population (Ohta 1972). 85 

This topic gained prominence during the neutralist-selection debate, where the relative influences of 86 

genetic drift vs a fluctuating environment as alternative sources of stochasticity in population genetics 87 

was strongly debated with respect to the maintenance of polymorphism and molecular heterozygosity 88 

(Nei 1971; Gillespie 1973, 1977, 1979, 1991; Nei and Yokoyama 1976; Takahata and Kimura 1979), a 89 

question that remains disputed in the genomics era (Mustonen and Lassig 2007, 2010; Miura et al. 90 

2013). Another line of research has asked what is the expected relative fitness of a 91 

genotype/phenotype in a fluctuating environment, and whether Wright’s (1937) adaptive landscape 92 

could be extended to this context (Lande 2007; Lande et al. 2009).  93 

However, this literature is mostly disconnected from the literature on adaptation of quantitative 94 

traits to a randomly changing environment (Bull 1987; Lande and Shannon 1996; Chevin 2013; Tufto 95 

2015). Even in work that investigates fluctuating selection both at a single locus and on a quantitative 96 

trait (e.g. Lande 2007), the selection coefficient at the single locus is often postulated ad hoc, rather 97 

than stemming from its effect on a trait under selection. Connallon and Clark (2015) recently 98 

investigated the influence of a randomly fluctuating optimum phenotype on the distribution of fitness 99 

effects of mutations affecting a trait, but they assumed non-autocorrelated fluctuations, and did not 100 

derive the stochastic variance of the population genetic process, which is important driver of 101 

probabilities of (quasi-)fixation (Kimura 1954; Ohta 1972). They also did not consider fitness epistasis 102 

caused by evolution of the mean background phenotype. Lastly, this work has largely ignored possible 103 

mutation effects on phenotypic plasticity, the phenotypic response of a given genotype to its 104 

environment of development or expression (Schlichting and Pigliucci 1998; West-Eberhard 2003), 105 

which is expected to evolve in environments that fluctuate with some predictability (Gavrilets and 106 

Scheiner 1993a; Lande 2009; Tufto 2015). Instead, Connallon and Clark (2015) included a form of 107 
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environmental noise in phenotypic expression that is similar to bet hedging (Svardal et al. 2011; Tufto 108 

2015). 109 

I here extend a model that combines population and quantitative genetics (Lande 1983; Chevin and 110 

Hospital 2008) to the context of an autocorrelated random environment causing movements of an 111 

optimum phenotype, to ask: What is the distribution of allelic frequencies at a QTL in a stochastic 112 

environment? How does it depend on whether a mutation is segregating alone, or instead affects a 113 

quantitative trait with polygenic background variation? How does environmental stochasticity affect 114 

the probability of a complete sweep at the QTL, and the resulting genetic architecture of the trait? And 115 

how are these effects altered when the mutation affects phenotypic plasticity?  116 

Model 117 

Fluctuating selection 118 

The core assumption of the model is that adaptation is mediated by a continuous, quantitative trait 119 

undergoing stabilizing selection towards an optimum phenotype that moves in response to the 120 

environment, as typical in models of adaptation to a changing environment  (reviewed by Kopp and 121 

Matuszewski 2014). More precisely, the expected number of offspring in the next generation 122 

(assuming discrete non-overlapping generations) of individuals with phenotype   is 123 

 
               

      
 

     
(1) 

where    is the optimum phenotype at generation  , and   is the width of the fitness peak, which 124 

determines the strength of stabilizing selection. The height of the fitness peak      may affect 125 

demography but not evolution, as it is independent of the phenotype. 126 

In line with other models of adaptation to changing environments (Kopp and Matuszewski 2014), I 127 

assume that the environment causes movement of the optimum phenotype, but does not affect the 128 

width of the fitness function. The environment undergoes stationary random fluctuations, which may 129 

be combined initially to a major, deterministic environmental shift of the mean environment. The 130 

stochastic component of variation in the optimum is assumed to be autocorrelated, in the form of a 131 

first-order autoregressive process (AR1) with stationary variance   
  and autocorrelation   over unit 132 

time step (one generation). This is one of the simplest forms of autocorrelated continuous process: it is 133 

Markovian (memory over one time step only), leading to an exponentially decaying autocorrelation 134 

function with half-time                       generations. 135 

Genetics  136 

For simplicity, I base the argument on a haploid model, but much of the findings extend to diploids, 137 

with a few additional complications such as over-dominance caused by selection towards an optimum 138 

(Barton 2001; Sellis et al. 2011). I focus on a mutation at a locus affecting the quantitative trait – i.e., a 139 
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quantitative trait locus, or QTL -, with additive haploid effect   on the trait. More precisely, I consider 140 

a bi-allelic QTL, with mean phenotype m for the wild-type (ancestral) allele, in frequency      , 141 

and m +   for the mutant (derived) allele, in frequency p.  We are not interested here in the origin and 142 

initial spread of the mutation from initially very low, drift-dominated frequencies. Investigating this 143 

would require extending theory of fixation probabilities in changing environments (Uecker and 144 

Hermisson 2011) to include environmental stochasticity, which is beyond the scope of this work. 145 

Instead, the focus is here on adaptation from standing genetic variation, and the aim will be to track 146 

the evolutionary trajectory of a focal mutation at a bi-allelic locus, starting from a low initial frequency 147 

   where most of frequency change can be attributed to selection. We will briefly address the 148 

influence of drift at the end of the analysis. 149 

Two types of genetic scenarios will be contrasted. In the “monomorphic background” scenario, no 150 

other polymorphic locus affects the quantitative trait when the focal mutation is segregating at the 151 

QTL. This corresponds to a form of strong selection weak mutation approximation (SSWM Gillespie 152 

1983, 1991). This scenario requires no further assumption about the reproduction system (sexual or 153 

asexual). In the opposite “polygenic background” scenario, variation in the trait is assumed to be 154 

caused by a large number of weak-effect loci (or “minor genes”), in addition to the effect of the QTL 155 

(or “major gene”). Sexual reproduction is assumed, with fertilization closely followed by meiosis over 156 

a short diploid phase where selection can be neglected. I further assume that minor genes are at 157 

linkage equilibrium among themselves and with the major gene, such that the genotypic background 158 

has a similar distribution for all alleles at the major gene. Following standard quantitative genetics 159 

(Falconer and MacKay 1996; Lynch and Walsh 1998), I assume that additive genetic values in the 160 

background are normally distributed, with mean phenotype m and additive genetic variance G, and 161 

that phenotypes also include a residual component of variation independent from genotype, with mean 162 

0 and variance Ve. This model of major gene and polygenes, which takes its roots in Fisher’s (1918) 163 

foundational paper for quantitative genetics, has been analyzed for evolutionary genetics by Lande 164 

(1983), and later used to investigate selective sweeps at a QTL in constant environment or following 165 

an abrupt environmental shift by Chevin and Hospital (2008). I here extend this work to a randomly 166 

changing environment.  167 

Phenotypic plasticity 168 

I also investigate the case where both the mean background phenotype and the QTL effect may 169 

respond to the environment, via phenotypic plasticity. Let   be a normally distributed environmental 170 

variable (e.g. temperature, humidity…) with mean     and variance   
 , which  affects the development 171 

or expression of the trait. Assuming a linear reaction norm for simplicity, the mean background 172 

phenotype is  173 

           (2) 
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where    is the slope of reaction norm, which quantifies phenotypic plasticity, and the intercept    is 174 

the trait value in a reference environment where     by convention. I neglect evolution of plasticity 175 

in the background for simplicity, and therefore assume that    is a constant, while    is a polygenic 176 

trait with additive genetic variance G as before. The additive effect of the mutation at the QTL is also 177 

phenotypically plastic, such that  178 

           (3) 

with    the additive increase in plasticity caused by the mutation at the QTL, and    the additive 179 

effect on the trait in the reference environment. 180 

The environment of development partly predicts changes of the optimum phenotype for selection, 181 

such that 182 

             (4) 

where   is normal deviate independent from  , with mean 0 and variance   
     

    
   

 , such that 183 

the variance of optimum remains   
 . Note that eq. (4) does not necessarily imply a causal relationship 184 

between   and  , because selection occurs after development/expression of the plastic phenotype and 185 

is thus likely to be influenced by a later environment (Gavrilets and Scheiner 1993a; Lande 2009). In 186 

fact, the optimum may even respond to other environmental variables than  , which jointly constitute 187 

the cause of selection (Wade and Kalisz 1990; MacColl 2011), but can be partly predicted by   upon 188 

development. In this case    is the product of the regression slope of the optimum on the causal 189 

environment for selection, times the regression slope of this causal environment on the environment of 190 

development   (de Jong 1990; Gavrilets and Scheiner 1993a; Chevin and Lande 2015). When the same 191 

environmental variable affects development and selection but at different times, then the latter 192 

regression slope is simply the autocorrelation of the environment between development and selection 193 

within a generation (Lande 2009; Michel et al. 2014).  194 

Evolutionary dynamics 195 

Lande (1983) has shown that the joint dynamics of a major gene and normally distributed polygenes in 196 

response to selection are governed by a couple of equations that are remarkably identical to their 197 

counterpart without polygenes and without a major gene, respectively. In other words, Wright’s (1937) 198 

fitness landscape for genes and Lande’s (1976) fitness landscape for quantitative traits jointly apply in 199 

the context of major gene combined with polygene. For a haploid sexual population, the recursions for 200 

the allelic frequency p of the mutation at the major gene and for the mean phenotype m in the 201 

polygenic background are then 202 

      
     

  
  (5) 

     
     

  
, (6) 
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where the partial derivatives are selection gradients on allelic frequency and mean phenotype, 203 

respectively (Wright 1937; Lande 1976).  204 

With selection towards an optimum as modeled in equation (1), and an overall phenotype 205 

distribution that is a mixtures of two Gaussians with same variance      and modes separated by the 206 

effect of the major gene  , the mean fitness in the population is 207 

 
          

         
 

 
                 

 

 
           

(7) 

where   
 

       
 is the strength of stabilizing selection. Combining eqs (6) and (7), the selection 208 

gradient on the mean background phenotype is  209 

      

  
              

(8) 

As in classical models of moving optimum for quantitative traits (Lande 1976; Kopp and Hermisson 210 

2007), directional selection on the trait is proportional to the deviation of the mean phenotype from the 211 

optimum, multiplied by the strength of stabilizing selection, which is larger when the fitness peak is 212 

narrower. However here, the overall mean phenotype depends on   , the frequency after selection of 213 

the mutation at the QTL. This causes a coupling of dynamics in the background and at the QTL.  214 

For the dynamics at the QTL it will be convenient to focus on the logit allelic frequency of the 215 

mutation,           . With a constant selection coefficient s as assumed in classical models of 216 

selective sweeps,   would increase linearly in time with slope s (Stephan et al. 1992), while   217 

changes non linearly in time even in a constant environment if the mutation is dominant/recessive 218 

(Teshima and Przeworski 2006), or if it affects a quantitative trait with polygenic background 219 

variation as assumed here (Chevin and Hospital 2008). Combining eqs. (5) and (7), after some simple 220 

algebra the recursion for   over one generation of selection is 221 

 
      

  

  
   

  

 
            

(9) 

Note that    is a measure of the selection coefficient s for this generation (Chevin 2011). In a constant 222 

environment where      for all t, the system admits two stable equilibria with fixation at the QTL,  223 

    ,      

   ,        

 

(10) 

and one unstable internal equilibrium 224 

 
  

 

 
          

 

 
   

(11) 

in line with previous analysis of the diploid version of this model (Lande 1983). Note that the mean 225 

background phenotype evolves to compensate for the effect of the major gene, such that the overall 226 

mean phenotype is at the optimum in all three equilibria,       . 227 
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Approximation for weak fluctuating selection at QTL 228 

The full model with coupled dynamics at the major gene and background polygenes can be used for 229 

numerical recursions, but to make further analytical progress, I rely on an approximation of this model 230 

that neglects the influence of the QTL on the background mean phenotype, as in  previous analysis in 231 

a constant environment (Chevin and Hospital 2008). In a randomly fluctuating environment, this 232 

approximation consists of assuming that selection at the QTL is sufficiently weak that its contribution 233 

to fluctuating selection on the mean background phenotype can be neglected, such that variance in the 234 

directional selection gradient is proportional to 235 

                        (12) 

and similarly for its covariance across generations.  236 

Simulations 237 

The mathematical analysis of this model is complemented by population-based simulations under a 238 

randomly fluctuating optimum. These simulations are based on recursions of equations (5-7), 239 

assuming a constant additive genetic variance G in the background. In each simulation, the optimum is 240 

initially drawn from an normal distribution with mean 0 and variance   
 , and optima in subsequent 241 

generations are drawn using                  , where   is a standard normal deviate, such 242 

that   has stationary variance   
  and autocorrelation   as required. In simulations with phenotypic 243 

plasticity, the environment of development is drawn retrospectively from the optimum, using    244 

  
 

  
               

  

  
 
 
 , where   is drawn from a standard normal, such that   has variance   

  245 

and the regression slope of   on   is   , as required (eq. 4). In simulations with background genetic 246 

variance, the system is left to evolve for 500 generations, to allow the mean background phenotype to 247 

reach a stationary distribution with respect to the fluctuating environment. The initial frequency at the 248 

QTL is set then to   , and the mean optimum is shift by    relative to the expected background mean 249 

phenotype, representing an abrupt environmental shift in the mean optimum at time 0. To simulate 250 

random genetic drift, the allelic frequency at the QTL in the next generation is drawn randomly from a 251 

binomial distribution with parameters    (the effective population size) and    (the expected 252 

frequency after selection in the current generation), consistent with a haploid Wright-Fisher population 253 

(Crow and Kimura 1970). Similarly for the mean background, genetic drift was simulated by drawing 254 

the mean phenotype in the next generation from a normal distribution with mean the expected mean 255 

background phenotype after selection, and variance      (Lande 1976). 256 

Data availability 257 

A Mathematica notebook including code for simulations is available from a FigShare repository.  258 
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Results  259 

We are interested in fluctuating selection at a gene affecting a quantitative trait (or QTL) exposed to a 260 

randomly moving optimum phenotype. The stochastic population genetics at the QTL will be analyzed 261 

on the logit scale            for mathematical convenience (as in, e.g., Kimura 1954; Gillespie 262 

1991), and also because this directly relates to empirical measurements (Chevin 2011; Gallet et al. 263 

2012; see also Discussion). From equation (9), t generations after starting from an initial logit 264 

frequency   , we have  265 

 

      
  

 
             

   

   

   
(13) 

The first term in brackets increases linearly with time, and corresponds to a component of selection 266 

that only depends on the phenotypic effect of the mutation and the strength of selection on the trait, 267 

but not on the background phenotype or the environment. All the influence of the fluctuating 268 

environment and background phenotype arises through the sum (second term in brackets), which 269 

shows that the influences of all past maladaptations (deviations of the mean phenotype from the 270 

optimum) weigh equally in their contribution to population genetics over time, over the range of allelic 271 

frequencies for which drift can be neglected. In a stochastic environment, this means that a chance 272 

event causing a large deviation from the optimum can have persistent effects on genetic change. This 273 

occurs here because selection is assumed to be frequency independent; with frequency-dependent 274 

selection, non-linear dynamics could instead rapidly erase memory of past environments and 275 

maladaptation, as occurs for population dynamics with density dependence (Chevin et al. 2017).  276 

The optimum phenotype is assumed to follow a Gaussian process. In most contexts we will 277 

investigate, this causes the population genetics at the QTL to also follow a Gaussian process on the 278 

logit scale, such that   has a Gaussian distribution at any time. A Gaussian distribution of logit allelic 279 

frequency was also found in phenomenological models without an explicit phenotype, where selection 280 

coefficients were assumed to undergo a Gaussian process (Kimura 1954; Gillespie 1991, p.149). The 281 

reason for this correspondence is that   is linear in phenotypic mismatches with optimum in eq. (13), 282 

and these mismatches themselves follow a Gaussian process (i) in the absence of background 283 

polygenic variation; and (ii) with background polygenic variation, as long as evolution of the mean 284 

background is little affected by the QTL, such that            . When these assumptions 285 

hold, the distribution of allelic frequencies in a stochastic environment can be summarized by their 286 

mean and variance on the logit scale,    and   
 . A simple transformation can then be used to retrieve 287 

the distribution of allelic frequencies, following Gillespie (1991, p.149),  288 

 
     

 

  
      

    
 

 
   

(14) 

where         is the density of a normal distribution with mean E and variance V evaluated at x. This 289 

transformation is illustrated in Figure 1.   290 
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Non-plastic QTL 291 

We first focus on the situation where the phenotypic effect   of the mutation at the QTL does not 292 

change in response to the environment. The environment is assumed to undergo a sudden shift at time 293 

0 in addition to the stochastic fluctuations, such that the expected mean background phenotype 294 

initially deviates from the expected optimum by             , and that a mutation approaching 295 

the mean phenotype from the average optimum is expected to be favored.  296 

Monomorphic background: It is informative to first investigate the simplest case where the trait 297 

does not have background polygenic variation. The focal mutation at the QTL then segregates in a 298 

population that is otherwise monomorphic with respect to adaptation to the fluctuating environment. 299 

This context belongs to the weak-mutation limit often assumed in molecular evolution, for instance in 300 

Gillespie’s (1983, 1991) SSWM regime, and establishes the most direct connection with results from 301 

earlier models of fluctuating selection that do not include an explicit phenotype under selection 302 

(Wright 1948; Kimura 1954; Nei 1971; Ohta 1972; Gillespie 1973, 1979, 1991; Nei and Yokoyama 303 

1976; Takahata and Kimura 1979). With monomorphic background, from eq. (13) the expected logit 304 

allelic frequency at time t starting from a known frequency    is 305 

         
  

 
           (15) 

In this context, the expected logit allelic frequency thus increases linearly in time, with a slope given 306 

by the expected selection coefficient        
  

 
       . This selection coefficient is not 307 

affected by random fluctuations in the optimum, and instead only depends on the constant mismatch   308 

between the background mean phenotype   and the expected optimum     . The mutation at the 309 

QTL is expected to spread in the population only if it allows approaching the optimum, that is, if 310 

         . 311 

Even though fluctuations in the optimum do not affect the expected trajectory, they do increase the 312 

variance of the stochastic population genetic process. The variance of logit allelic frequency at time t, 313 

starting from a known frequency   , is (from eq. 13), 314 

 

    
                 

   

   

               

   

     

   

   

   

(16) 

When the optimum undergoes a stationary AR1 process as assumed here, the variance of the 315 

population genetic process at the QTL becomes 316 

 
    
        

  
   

   
  

        

      
   

(17) 

where   
  is the stationary variance of random fluctuations in the optimum, and   is their 317 

autocorrelation over one generation. Note that in this scenario,   is also the per-generation 318 
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autocorrelation of selection coefficients     , while the variance of selection coefficients is  319 

              
 . For large times    

 

   
 , eq. (17) further simplifies as 320 

     
        

  
   

   
  

  

      
    (18) 

which shows that the variance in logit allelic frequency eventually increases near to linearly with time 321 

(Figure 3A), and converges more rapidly to this linear change under smaller autocorrelation in the 322 

optimum. Stochastic variance in the optimum increases faster under larger autocorrelation in the 323 

optimum. Figure 1 shows that the distribution of   is well predicted by a Gaussian with mean and 324 

variance given by eqs. (15) and (17). Increasing environmental autocorrelation does not change the 325 

expected evolutionary trajectory on the logit scale, but increases its variance (Figure 1A-B). When 326 

transforming to the scale of allelic frequencies, increased environmental autocorrelation causes a 327 

broadening of the time span over which selective sweeps occur in the population (Figure 1C-D). 328 

Polygenic background: With polygenic variation in the background, the mean background 329 

phenotype is no longer constant, but instead evolves in response to deterministic and stochastic 330 

components of environmental change. Away from the unstable equilibrium in eq. (11), the  expected 331 

evolutionary trajectory at the QTL is similar to that investigated without fluctuating selection (Lande 332 

1983; Chevin and Hospital 2008). In particular, when the influence of the QTL on evolution of the 333 

background trait can be neglected, then combining eqs. (6) and (8) the expected mean background 334 

phenotype approaches the expected optimum geometrically,                    (Lande 335 

1976; Gomulkiewicz and Holt 1995). Combining with eq. (13), the expected logit allelic frequency is 336 

         
  

 
      

         

  
 . (19) 

This shows that even when a mutation at the QTL is initially beneficial because it points towards the 337 

optimum, its dynamics slows down in time as the mean background approaches the optimum (Lande 338 

1983; Chevin and Hospital 2008). Equation (19) even predicts that an initially beneficial mutation 339 

eventually becomes deleterious, and starts declining in frequency when the mean background is 340 

sufficiently close to the optimum that the QTL causes an overshoot of the latter (Lande 1983; Chevin 341 

and Hospital 2008). This can be seen by noting that in the long run, the term in parenthesis in eq. (19) 342 

tends towards          and eventually becomes dominated by   , leading to an expected 343 

dynamics that declines linearly with slope        . An initially beneficial mutation starts declining 344 

when its selection coefficient crosses 0. Applying the weak-effect approximation for evolution of the 345 

mean background (above eq. 19) to eq. (9), this occurs when               , that is, at time  346 

 
      

     
 

  
 

         
.  

(20) 

At this point, the expected logit allelic frequency of the mutation at the QTL reaches its maximum, 347 

which is (combining eqs. 20 and 19) 348 
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 .  

(21) 

However, this scenario may actually be avoided if the focal mutation reaches       (   ) before 349 

     , such that the system gets beyond the unstable equilibrium in eq. (11). The mutation at the QTL 350 

then sweeps to fixation, and the mean background evolves away from the optimum to compensate for 351 

the QTL effect (Lande 1983; Chevin and Hospital 2008). We will investigate this scenario in more 352 

detail below, but let us first turn to the variance of the stochastic process. 353 

For the variance of the process, we rely on the weak-effect approximation in eq. (12), whereby 354 

fluctuating selection on the mean background phenotype is little affected by dynamics at the QTL. 355 

More broadly speaking, we assume the system is away from the unstable equilibrium in eq. (11). 356 

When this holds, we can build upon previous evolutionary quantitative genetics results for the 357 

dynamics of the mean background phenotype in a fluctuating environment, to derive the dynamics at 358 

the QTL. For an AR1 process as modeled here, the stationary variance of mismatch of the mean 359 

background phenotype with the optimum is (Charlesworth 1993)  360 

 
    
  

   
      

                 
   

(22) 

and its temporal autocorrelation function over  generations is   361 

 
        

  
          

   
  

(23) 

where     
     

      
 (Cotto and Chevin 2019; see also continuous-time approximation in Chevin and 362 

Haller 2014). Combining with eq. (16) leads, after some algebra, to the stochastic variance of logit 363 

allelic frequency, 364 

 
    
         

 
                                       

                           
  

(24) 

Quite strikingly, contrary to the case of a monomorphic genetic background,     
  does not increase 365 

indefinitely with polygenic background; instead, its dynamics slows down towards an asymptotic 366 

maximum,  367 

 
    
         

 
         

                   
   

(25) 

In other words, with a polygenic background, the distribution of logit allelic frequency   at the QTL 368 

tends to a traveling wave, i.e. a Gaussian with moving mean but constant variance, as shown in Figure 369 

2. This property holds as long as the population is not near the unstable equilibrium in eq. (11), and 370 

frequencies at the QTL are sufficiently intermediate that drift is not the main source of stochasticity 371 

(below).  372 

Inspection of eq. (24) indicates that the rate of approach to the asymptotic variance is determined 373 

by the smallest of        and  . In realistic parameter ranges, the rate of response to selection in the 374 

background    is small, while   may be well below 1, so the time scale of approach to equilibrium for 375 
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  should scale in        . This is confirmed by the simulations, which show that     

  converges 376 

faster to its asymptote under larger background genetic variance, while the rate of convergence is little 377 

affected by   (Figure 3). The asymptotic variance may be well below that in the absence of polygenic 378 

background variation (compare panel A to B-C in Figure 3). As predicted by eq. (25), the asymptotic 379 

variance     
  decreases with increasing genetic variance   in the background, and increases with 380 

increasing environmental autocorrelation   (Figure 3). The influence of autocorrelation is highly non-381 

linear: in our example     
  is approximately doubled from        to      , but multiplied by 4-5 382 

from        to       (Figure 3 B-C). As expected, eq. (24) converges to its equivalent with no 383 

background polygenic variation (eq. 17) in the limit of small genetic variance (    ), as illustrated 384 

in Figure 3D. 385 

 The variance of the stochastic population genetic process has consequences for the bistability of 386 

genetic architecture, and the likelihood of a complete sweep. In particular, when the expected 387 

trajectory in eq. (19) reaches the vicinity of the unstable equilibrium in eq. (11), the process variance 388 

may cause paths to split on each side of this equilibrium and reach alternative fixed equilibria, with 389 

either complete sweep or loss of the mutation at the QTL (eq. 10). This is illustrated in Figure 4. In 390 

this example, the expected trajectory involves a loss of the mutation at the QTL, which occurs for all 391 

sample paths shown in Figure 4A. However, increasing environmental autocorrelation causes some 392 

trajectories to sweep to high frequency (Figure 4B). This occurs because environmental 393 

autocorrelation increases the stochastic variance of the population genetic process (eqs. 24, 25), and 394 

thereby the probability that some trajectories cross the unstable equilibrium, reaching the basin of 395 

attraction of the high-frequency equilibrium. Based on this rationale, the proportion of trajectories that 396 

reach each alternative stable equilibrium (fixation or loss) may be approximated from the expected 397 

proportion of trajectories that are above and below the unstable equilibrium, based on the predicted 398 

Gaussian distribution of   at time     , when the expected frequency is predicted to be highest based 399 

on the simplified model where the QTL does not affect evolution of the mean background (eq. 20). 400 

Figure 4C shows that this approach correctly predicts how the proportion of sweeps changes with 401 

environmental autocorrelation  . Importantly, since the expected trajectory does not depend on 402 

stochastic environmental fluctuations (neither   
  nor   appear in eq. 19), all effects of environmental 403 

autocorrelation (or variance) on the probability of a sweep are mediated by the stochastic variance of 404 

the process. 405 

QTL for phenotypic plasticity 406 

Let us now turn to the case where the QTL influences not only the phenotype, but also how this 407 

phenotype responds to the environment. Phenotypic plasticity, the phenotypic response of a given 408 

genotype to its environment of development or expression, is a ubiquitous feature across the tree of 409 

life (Schlichting and Pigliucci 1998; West-Eberhard 2003). There is also massive evidence for  genetic 410 
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variance in plasticity in the form of genotype-by-environment interactions, one of the oldest and most 411 

widespread observations in genetic studies  (Falconer 1952; Via and Lande 1985; Scheiner 1993; 412 

Gerke et al. 2010; Des Marais et al. 2013), with molecular mechanisms that are increasingly 413 

understood (Angers et al. 2010; Beldade et al. 2011; Ghalambor et al. 2015; Gibert et al. 2016). For 414 

simplicity I here assume linear reaction norms, where the slope quantifies plasticity. Although this is 415 

necessarily a simplification of reality, it is generally a good description over relevant environmental 416 

ranges for phenological traits, a major class of phenotypic responses to climate change (e.g., 417 

Charmantier et al. 2008). This also allows comparing our results to the large body of theoretical 418 

literature also based on the assumption of linear reaction norms (Gavrilets and Scheiner 1993b; 419 

Scheiner 1998; Lande 2009; Chevin and Lande 2015; Tufto 2015). Such models likely capture the 420 

broad evolutionary effects of plasticity for monotonic reaction norms. More complex monotonic 421 

reaction norm shapes can be modeled to focus on more specific scenarios such as threshold traits with 422 

a bounded range of expression (Chevin and Lande 2013), while non-monotonic reaction norms with 423 

an optimum are more appropriate for fitness or performance traits (Lynch and Gabriel 1987; Huey and 424 

Kingsolver 1989), which are not the focus here. I also assume for simplicity that the background has 425 

constant plasticity, such that all genetic variance in plasticity comes from the major gene. A final 426 

assumption in this section will be to focus on stationary environmental fluctuations with no major shift 427 

(   ). Such purely stationary fluctuations are expected to counter-select any mutation at the major 428 

gene in the absence of plasticity (eqs. 15 and 19), so it is a good benchmark on which to assess 429 

selection on a plasticity QTL. 430 

Monomorphic background: In the low mutation limit where the background mean phenotype does 431 

not evolve while the mutation is segregating at the QTL, but has still evolved on a longer time scale to 432 

match the expected optimum at the onset of selection at the QTL, the expected logit allelic frequency 433 

increases linearly in time as in eq. (15), with expected selection coefficient (Appendix) 434 

 
       

 

 
   

                    
    

(26) 

The first term in curly brackets is a component of selection that does not depend on the pattern of 435 

environmental fluctuations, and is similar to the expected selection coefficient without plasticity (15) 436 

and without a major environmental shift. This component reduces the expected selection coefficient, 437 

as it increases the mismatch with the expected optimum phenotype. The second term is a component 438 

of selection caused by the effect of the QTL on phenotypic plasticity. This term shows that the plastic 439 

effect    of the mutation at the QTL is favored by selection if it allows approaching the optimal 440 

response to the environment of development   , that is if                   . The expected 441 

selection coefficient is maximum for          , regardless of   . Importantly, whereas the 442 

expected selection coefficient on a non-plastic mutation does not depend on the variance of 443 

fluctuations (eq. 15), the component of the expected selection coefficient caused by plasticity is 444 
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stronger under larger variance   
  of the environment of development, and thus depends on 445 

fluctuations in the optimum (from eq. 4). This reflects the fact that, in a stationary environment, 446 

selection on phenotypic plasticity stems from its effect on the variance of phenotypic mismatch with 447 

the optimum, rather than on the average mismatch (Lande 2009; Ashander et al. 2016). As the 448 

variance of the environment of development   
  increases, a mutation with a given beneficial effect on 449 

phenotypic plasticity becomes increasingly likely to spread even if it causes a systematic mismatch 450 

with the optimum in the mean environment, with a deleterious side-effect  
 

 
  
 . In the absence of 451 

background genetic variation, the expected selection at the plasticity QTL does not depend directly on 452 

autocorrelation in the environment, but only on the dependence of the optimum on the environment of 453 

development, through the parameter   . Note however that if phenotypic development/expression and 454 

movements of the optimum respond to the same environmental variable (e.g. temperature), but at 455 

different times in a generation, then    is directly related to the autocorrelation   of the optimum 456 

(Lande 2009; Michel et al. 2014).  457 

The variance of selection coefficients with plasticity but no background genetic variation is 458 

         
  

 
    

   
    

              
   

      
           

  

  
   

    
  . 

(27) 

Equation (27) implies that mutations that have the same expected selection coefficient, because they 459 

cause the same deviation from the optimal plasticity    , can have different variances in allelic 460 

frequency change. This is illustrated in Figure 5, which shows that a mutation that leads to hyper-461 

optimal plasticity has more stochastic variance than a mutation that cause equally sub-optimal 462 

plasticity, because the former causes overshoots of the optimum while the latter causes undershoots. 463 

This difference in stochastic variance between mutations with the same expected selection coefficient, 464 

which should impact their relative probabilities of quasi-fixation (Kimura 1954), is stronger for larger 465 

deviation from the optimal plasticity (Figure 5B).  466 

Polygenic background: When the mean background phenotype also evolves via polygenic variation, 467 

the expected dynamics at the QTL are modified in two main ways. First, background genetic variance 468 

contributes to adaptive tracking of the mean phenotype via genetic evolution, thus reducing the benefit 469 

of phenotypic plasticity, as in pure quantitative genetic models (Tufto 2015). The level of plasticity 470 

that maximizes the expected selection coefficient then becomes (Appendix) 471 

            
         

         
 (28) 

where the last term is the regression slope of the background mean reaction norm intercept on the 472 

environment of development, caused by evolution of the mean background in response to the 473 

fluctuating environment. Figure 6A illustrates how selection via the QTL effect on plasticity is 474 

reduced by adaptive tracking of the optimum by evolution of the mean background.  475 
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Second, when the benefit of plasticity allows the mutation at the QTL to spread despite a 476 

pleiotropic effect    on the intercept of the reaction norm, the expected mean background phenotype 477 

can evolve away from the optimum in the average environment to compensate for the associated cost, 478 

that is, it evolves to       (Figure 6D). Intriguingly, after this has occurred the mutation at the 479 

QTL becomes more strongly selected than if it did not have a pleiotropic effect on the reaction norm 480 

intercept (Figure 6B). This occurs because the QTL effect on reaction norm intercept now allows 481 

compensating for maladaptation in the background, which adds a positive component    
    to the 482 

benefit via the QTL effect on phenotypic plasticity. In other words, what initially caused a 483 

displacement from the mean optimum allows approaching the mean optimum after the mean 484 

background has been displaced. Furthermore, the spread of the mutation at the plasticity QTL reduces 485 

the effective magnitude of fluctuating selection on background mean reaction norm intercept, resulting 486 

in smaller evolutionary fluctuations in the background (Figure 6C, D).  487 

Drift versus fluctuating selection 488 

All the analytical results above neglect the influence of random genetic drift, and simulations were run 489 

under large    to single out the influence of fluctuating selection as a source of stochasticity. 490 

However, it is useful to delineate more precisely the conditions under which drift can be neglected 491 

relative to environmental stochasticity. The overall variance in allelic frequency change, accounting 492 

for both fluctuating selection and random genetic drift in a Wright-Fisher population, can be obtained 493 

from the law of total variance, and was previously shown (Ohta 1972) to be  494 

           
 

  
        

(29) 

where          is the variance of selection coefficients caused by fluctuating selection. From this 495 

it entails that fluctuation selection dominates drift as a source of stochasticity when      
 

  
, that is 496 

for  497 

 

  

      

   
 

 
  

      

     
 
 

 
  

      

     
  
  

 

(30) 

This can be translated into a condition for the logit allelic frequency  ,  498 

   

 
 
 

 
 

      

      

 

 
   

      
    

   
      
     

  
  

 

 

(31) 

Very similar results are obtained (not shown) if the criterion is based on the stochastic variance of  , 499 

for which the fluctuating selection component is independent of   (as derived in the main text), but 500 

the drift component is not. Equation (31) shows that an absolute condition for fluctuating selection to 501 

be the dominant source of stochasticity is         When this holds, fluctuating selection dominates 502 
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over a range of intermediate allelic frequencies, while drift dominates at extreme frequencies outside 503 

of this range. The bounds of this range are entirely determined by the compound parameter     , as 504 

shown by eqs. (30-31) and Figure 7A. Figure 7 further illustrates that for small     , small initial 505 

frequencies and/or large final frequencies result in inflated variance relative to the expectation under 506 

pure fluctuating selection (panels B-C), as well as fixation events by drift (panel B). As      increases 507 

from panel B to D, the predictions under pure fluctuating selection become increasingly accurate, all 508 

the more so as the initial allelic frequency is within the range defined by eq. (31). 509 

Discussion 510 

Analysis of a simple model combining population and quantitative genetics has revealed a number of 511 

interesting properties about fluctuating selection at a gene affecting a quantitative trait (or QTL), when 512 

this trait undergoes randomly fluctuating selection caused by a moving optimum phenotype. The first 513 

important observation is that, when assessed on the logit scale - a natural scale for allelic frequencies 514 

(Kimura 1954; Gillespie 1991; Chevin 2011; Gallet et al. 2012) -, the dynamics at the QTL has a 515 

simple connection to movements of the optimum, since the selection coefficient depends linearly on 516 

the mismatch between the mean background phenotype and the optimum (eq. 9;  see also Martin and 517 

Lenormand 2006). For a QTL that has the same phenotypic effect in all environments (no phenotypic 518 

plasticity), the expected trajectory only depends on the expected phenotypic mismatch with the 519 

optimum, not on the pattern of fluctuations in this optimum. However the variance of trajectories, an 520 

important determinant of probabilities of quasi-fixation (Kimura 1954), is strongly affected not only 521 

by the magnitude of fluctuations in the optimum, but also by their autocorrelation (eq. 17, Figure 1). 522 

When the focal QTL is the only polymorphic gene undergoing fluctuating selection, this stochastic 523 

variance increases linearly over time (Figure 3A), at a rate that is faster under larger positive 524 

autocorrelation in the optimum. In contrast, when polygenic variation elsewhere in the genome allows 525 

for evolution of the mean background phenotype, stochastic variance at the QTL is bounded by a 526 

maximum asymptotic value, which is lower under higher genetic variance in the background (eqs. 24-527 

25 and Figure 3 B-C). This stochastic variance caused by fluctuating selection interacts with the 528 

inherent bi-stability of genetic architecture in this system (Lande 1983; Chevin and Hospital 2008), 529 

and may increase the probability that the mutation at the QTL reaches fixation at the expense of the 530 

background mean phenotype (as illustrated in Figure 4), or the reverse.  531 

When the mutation at the QTL also affects phenotypic plasticity via the slope of a linear reaction 532 

norm, then even its expected trajectory depends on the pattern of fluctuations, with stronger selection 533 

under large fluctuations (eq. 26), contrary to the case of a non-plastic QTL. Interestingly, mutations 534 

with the same expected selection coefficient - because they cause the same deviation from the optimal 535 

plasticity – may have very different variances in allelic trajectories, depending on whether they tend to 536 

cause overshoots or undershoots of the fluctuating optimum (Figure 5). Finally, a mutation that is 537 
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sufficiently strongly selected via its effect on phenotypic plasticity can spread despite causing a 538 

systematic mismatch with the optimum in the average environment. When the mean background 539 

phenotype can evolve by polygenic variation, it can compensate for this pleiotropic effect on reaction 540 

norm intercept. Quite strikingly, this increases selection at the plasticity QTL, causing the mutation to 541 

spread faster than if it only affected plasticity (Figure 6B).  542 

 Consistent with previous uses of this model with a major gene and polygenes (Lande 1983; 543 

Agrawal et al. 2001; Chevin and Hospital 2008; Gomulkiewicz et al. 2010), I did not model explicitly 544 

the maintenance of genetic variance in the background, instead assuming that it had reached an 545 

equilibrium between mutation and stabilizing/fluctuating selection. This has provided simple and 546 

robust analytical insights about the interplay of selection at a major gene with background polygenic 547 

variation. Although environmental fluctuations should affect the expected additive genetic variance G 548 

to some extent (Burger and Gimelfarb 2004; Svardal et al. 2011), this does not necessarily affect our 549 

results because they are conditioned on G, rather than on mutational variance for instance, which is 550 

less directly amenable to empirical measurement. More critical is the fact that the background additive 551 

genetic variance should itself fluctuate in time as alleles in the background change in frequency, 552 

especially in a finite population (Bürger and Lande 1994; Höllinger et al. 2019). This should increase 553 

temporal variation in the evolutionary process, so that results about stochastic variance here may be 554 

considered as lower bounds, if the long-term mean G is used in formula. Modeling explicitly the 555 

dynamics of background quantitative genetic variance in a random environment would require using 556 

individual-based simulations, as done for instance by Bürger and Gimelfarb (2002). Previous work 557 

based on a similar environmental context as modeled here proved that most results are little affected in 558 

regimes where substantial genetic variation can be maintained for a quantitative trait (Chevin and 559 

Haller 2014; Chevin et al. 2017), as assumed here.  560 

 Although the simulations included random genetic drift, all the analytical results were derived by 561 

neglecting the influence of drift. These analytical results are therefore valid over a range of allelic 562 

frequencies that is entirely determined by the product of the effective size by the variance of selection 563 

coefficients, as shown in eqs. (30-31) and Figure 7. In most simulations, I have assumed that the 564 

mutation at the QTL is initially at low frequency, but still common enough to be within the range 565 

defined by eqs. (30-31), where frequency change is entirely driven by selection. It would be 566 

worthwhile investigating in future work the probability of establishment of a mutation that starts in 567 

one copy and affects a trait exposed to randomly fluctuating selection, but this requires developments 568 

that are beyond the scope of the present study. For our purpose, we can consider that the initial 569 

frequency p0 stems either from the trajectory of a newly arisen mutation conditional on non-extinction, 570 

which is expected to rapidly rise away from 0 (Barton 1998; Martin and Lambert 2015), or from a 571 

distribution at mutation-selection drift equilibrium (Wright 1937; Barton 1989; Höllinger et al. 2019).  572 

 Our analytical results about the distribution of logit allelic frequency lend themselves well to 573 

comparisons with empirical measurements. Indeed the logit of allelic frequencies is readily obtained 574 
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from number of copies of each type, since      
 

 
           , where    and    are the 575 

copy numbers of the mutant (derived) and wild-type (ancestral) allele, respectively. In fact, when 576 

frequencies are estimated on a subsample from the population, the strength of selection on genotypes 577 

is generally estimated using logistic regression (Gallet et al. 2012), a generalized linear (mixed) model 578 

that uses the logit as link function. Our theoretical predictions therefore apply directly to the linear 579 

predictor of such a GLMM, without requiring any transformation. For instance if we consider an 580 

experiment where multiple lines undergo independent times series of a stochastic environment (i.e., 581 

different paths of the same process), the stochastic variance among replicates can be estimated as a 582 

random effect in a logistic GLMM. If multiple loci are available, this random effect should strongly 583 

covary among loci within an environmental time series, because they share the same history of 584 

environments, in contrast to frequency changes caused by drift, which should only be similar between 585 

tightly linked loci. 586 

 The results here are based on a model of fluctuating optimum for a quantitative trait, similar to  587 

previous theory by Connallon and Clark (2015), but extend this theory by allowing for environmental 588 

autocorrelation, and by deriving the stochastic variance of the population genetic process. Importantly, 589 

most of the present results should also be relevant to cases where an explicit phenotype under selection 590 

is not identified or measured, but the relationship between fitness and the environment has the form of 591 

a function with an optimum, which can be approximated as Gaussian (Lynch and Gabriel 1987; 592 

Gabriel and Lynch 1992; Gilchrist 1995). For many organisms, especially microbes, measuring 593 

individual phenotypes can be challenging, and it may prove difficult to identify most traits involved in 594 

adaptation to a particular type of environmental change (ie temperature, salinity…). A common 595 

solution is to directly measure fitness or its life-history components (survival, fecundity) across 596 

environments, to produce an environmental tolerance curve (Deutsch et al. 2008; Thomas et al. 2012; 597 

Foray et al. 2014). An influence of the history of previous environments on these tolerance curves can 598 

also be included, via plasticity-mediated acclimation effects (Calosi et al. 2008; Gunderson and 599 

Stillman 2015; Nougué et al. 2016). It has been highlighted previously that tolerance curves can be 600 

thought of as emerging from a moving optimum phenotype on unmeasured, possibly plastic, 601 

underlying traits (Chevin et al. 2010; Lande 2014), so that a simple re-parameterization can translate 602 

all the results above in terms of evolution of tolerance breadth and environmental optimum. Such a 603 

connection has recently been  invoked to analyze population dynamics in a stochastic environment 604 

(Chevin et al. 2017; Rescan et al. 2019), suggesting that results from the current study are not 605 

restricted to cases where relevant quantitative traits under fluctuating selection can be measured, but 606 

may instead apply to a broad range of organisms exposed to randomly changing environments.  607 
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 862 

Figures 863 

 864 

 865 

 866 

Figure 1: Fluctuating selection at a QTL in a monomorphic genetic background. The dynamics of 867 

logit allelic frequency   (A-B) and allelic frequency p (C-D) are shown as gray lines for 50 868 

simulations with low (     , left) or high (     , right) positive autocorrelation in the optimum. 869 

Panels A-B also show percentiles from the predicted normal distribution with mean and variance 870 

provided by eqs. (15) and (17), respectively: 50% (median) in thick, 5% and 95% in thin, and 1% and 871 

99% in dashed lines. Insets show distributions at generation 150, where histograms are computed from 872 

1000 simulations, while the solid black line is the predicted density based on the moments in eqs. (15) 873 

and (17) for A-B, and their transformation using eq. (14) for C-D. Parameters were       , 874 

  
    ,    ,        ,       , and        , and       . 875 

 876 

  877 
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 878 

 879 

Figure 2: Fluctuating selection at a QTL with a polygenic genetic background. A: The dynamics 880 

of logit allelic frequency  are shown as gray lines for 50 simulations. Also shown are percentiles 881 

from the predicted normal distribution, with mean and variance given by eqs. (19) and (24), 882 

respectively: 50% (median) in thick, 5% and 95% in thin, and 1% and 99% in dashed lines. B: 883 

Histograms show distributions of along time for 500 simulations, while the solid black lines are the 884 

predicted normal densities based on eqs. (19) and (24). Note how the distribution reaches a stationary 885 

variance with a moving mean, that is, a traveling wave with direction given by the arrow in B. Note 886 

also that in this example, the sweep at the QTL is interrupted by the mean background evolving 887 

towards the optimum, as investigated in detail in Figure 4. Parameters were       ,   
    ,   888 

        ,         ,        ,    ,        , and       . 889 

  890 
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 892 

 893 

Figure 3: Stochastic variance at the QTL with or without a polygenic background. A-C: The 894 

variance across replicates of logit allelic frequency , starting from a known frequency   , is 895 

represented along time in simulations without (A) or with (B, C) background polygenic variance for 896 

the trait. Also shown in dashed are the predicted dynamics based on equation (17) in A, and eq. (24) in 897 

B-C. Note the qualitative difference between the near linear increase in the absence of background 898 

genetic variance, versus the saturating dynamics with background genetic variance, for which the 899 

maximum asymptotic value from eq. (25) is also plotted as horizontal solid line. The autocorrelation 900 

of the optimum is       (gray),       (dark gray) or       (black), additive genetic variance in 901 

the background is     (A)        (B) or     (C), effective population size is       , and 902 

other parameters are as in Figure 1. D: the change in stochastic variance of , as predicted by 903 

  
        

  in eq. (24) with      , tends to that in the absence of background polygenic variance 904 

(eq. 17, dashed) as the background genetic variance vanishes (continuous lines, 905 

                       from black to light gray).  906 

  907 
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 908 

 909 

 910 

Figure 4: Environmental autocorrelation and probability of a full sweep. The bistability of genetic 911 

architecture between major gene and polygenes in this system (eqs. 10-11) is amplified by stochastic 912 

fluctuations in the environment. A-B: Joint evolutionary trajectories of logit allelic frequency   at the 913 

major locus and background mean phenotypic deviation from the optimum     are represented for 914 

10 sampled simulations (dark gray line). The thick black line represents the expected trajectory, 915 

neglecting the influence of the QTL on the mean background, obtained by combining eq. (19) with the 916 

geometric decline for    . Shadings represent the fitness landscape in the mean environment, using 917 

eq. (7). The dashed line is where the overall mean phenotype is at the optimum,       .  All 918 

equilibria lie on this line; the unstable equilibrium in eq. (11) is shown as a dot, while the fixed 919 

equilibria in eq. 10 cannot be represented on the logit scale. C: The proportion of simulations where 920 

the mutation at the QTL eventually reaches frequency higher than 0.95 (dots) is well predicted (lines) 921 

using a Gaussian distribution for  , with equilibrium variance from eq. (25), and mean provided by 922 

the expected trajectory at its maximum (eq. 21, black), or the actual maximum frequency in 923 

deterministic recursions without environmental fluctuations (gray). For each autocorrelation   924 

(ranging from 0 to 0.95 by increments of 0.05), 1000 simulations were run, and the proportion of 925 

simulations with        at generation 2000 was recorded. The parameters for these simulations 926 

were      ,       ,   
   ,    ,       ,           , and        , and        . 927 

 928 
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 931 

 932 

Figure 5: Mean and variance of selection at a QTL for plasticity. A: The dynamics of logit allelic 933 

frequency   at the QTL are represented for simulations where the mutation at the QTL has a small 934 

(             , dark gray) or large (             , light gray) effect on phenotypic 935 

plasticity, with same expected selection coefficient materialized by the thick black line (based on eq. 936 

26). B: The mean (dashed line: eq. (26); squares: simulations) and variance (continuous line: eq. (27); 937 

dots: simulations) of selection coefficients    are shown as a function of the relative increment   in 938 

plasticity caused by the mutation at the QTL, such that                . This shows that 939 

mutations with same expected selection coefficient may have different variances in selection, and 940 

more so as they deviate more from the optimal plasticity           (that is, from    ). 941 

Parameters are   
   ,      ,   

   ,       ,         ,           ; other 942 

parameters are as in Figure 1. 943 

  944 
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 945 

 946 

 947 

Figure 6: Selection at a QTL for plasticity with background polygenic variation. The dynamics of 948 

logit allelic frequency   at the QTL (A, B) and of the background mean reaction norm elevation    949 

(C, D) are represented for the cases where the QTL affects only plasticity (with effect    on reaction 950 

norm slope, A, C), or also the reaction norm intercept (with effect   , B, D). In all cases, the gray line 951 

show 100 simulations under a randomly changing environment. In panel A, the continuous black line 952 

represents the expected dynamics with the selection coefficient in eq. (28), while the dashed line is the 953 

prediction that neglects the influence of adaptive tracking of the optimum by the mean background 954 

(eq. 26). In panel B, the continuous black line represents the selection coefficient that includes the 955 

pleiotropic fitness cost of reaction norm intercept (    
   ), the dashed line represents the selection 956 

coefficient that includes a reciprocal benefit     
   , and the dotted line neglect the pleiotropic effect 957 

altogether (as in A), after time                       . The higher stochastic variance in panel 958 

B relative to A is a consequence of the additional effect of the QTL on the reaction norm intercept, 959 

consistent with eq (27). In panel D, the black line represents the mean background reaction norm 960 

intercept after it has evolved to compensate for the pleiotropic effect of the QTL in the mean 961 

environment, such that      . Parameters are    ,      ,      (A, C) or      (B, D), 962 

        ,         and other parameters are as in Figure 5.  963 
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 964 

Figure 7: Drift versus fluctuating selection. A: The threshold logit frequency beyond which drift 965 

dominates fluctuating selection as a source of stochasticity (from eq. 31, full line) is plotted against the 966 

compound parameter     . The dashed line represents the hard threshold at       . B-D: The 967 

dynamics of logit allelic frequency   is plotted over time for 50 simulations with selection and drift, 968 

and without plasticity or background genetic variation, similarly to Figure 1. The continuous lines 969 

show the predicted quantile of the distribution, as in Figure 1. The shaded region indicates the range 970 

of   over which fluctuating selection is expected to dominate, using eq. (31) with          
 . The 971 

dashed lines show the fixation threshold at      . The effective population sizes are indicated in 972 

each panel, and other parameters are as in Figure 1. 973 
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Appendix: Details of plasticity model 975 

In the model with plasticity, the environment is assumed to undergo stationary fluctuations, before and 976 

after the appearance and spread of the mutation at the QTL. Before the mutation at the QTL reaches 977 

appreciable frequency, the recursion for the mean background phenotype is (combining eqs. (2), (4), 978 

(6) and (8))  979 

                             . 980 

Integrating over the distribution of environments of development   and residual component of 981 

variance in the optimum  , the expected mean reaction norm intercept at equilibrium in a stationary 982 

environment, before the mutation at the QTL establishes and starts spreading, is  983 

                          . 984 

This shows that the mean reaction norm intercept evolves so as to compensate for the effect of 985 

plasticity, such that the overall mean background phenotype                  is at the expected 986 

optimum   . However, the intercept of a reaction norm has no meaning per se, as it depends on the 987 

arbitrary choice of a reference environment where    . We thus choose to set as reference the 988 

stationary mean of the environment of development, de facto setting     . This is just a way of 989 

parameterizing the model such that the intercept for the optimum is simply the stationary mean 990 

optimum,      , which is also equal to the expected reaction norm intercept       in the absence of 991 

any influence from the QTL. 992 

The recursion for the change in logit allelic frequency over a generation can be obtained by 993 

combining equations (9) and (2-4), leading to  994 

    
 

 
         

                               

which can be expanded to yield 995 

 
   

 
                 

    
              

  

                              

             

Integrating over the distribution of environments of development   and residual component of 996 

variance in the optimum   yields 997 

 
      

 
                                       

             , 998 

where the covariance           is caused by adaptive tracking of the moving optimum phenotype by 999 

evolution of the mean background phenotype. In the absence of polygenic variation during the sweep, 1000 

we have            , and          in the long run in a stationary environment, leading to eq. 1001 

(26) in the main text. With polygenic variance in the background, we have, from Michel et al.  (2014),  1002 
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  1004 

 1005 

The stochastic variance of logit frequency change is 1006 

        
  

 
            

                               

In the absence of background genetic variance, we have 1007 

 

  
                    

                                

       
                  

                            . 1008 

Integrating over the distribution of environments of development   and residual component of 1009 

variance in the optimum  , this yields 1010 
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       , 1012 

where we have used the fact that, when   and   are independent and with mean 0, 1013 

                                                             . 1014 

We can also use 1015 

         

           
  

                                               
   

  

To get 1016 

 

  
           

              
   

     
             

   
     

    
    

   
   

such that 1017 

        
  

 
   

              
   

      
           

    
   

    
     

   
    

In the simpler case where the mutation only affects plasticity, but not the reaction norm intercept, this 1018 

simplifies as 1019 

        
  

 
   

              
   

     
   

   
   


