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We show that a time-varying bathymetry can be implemented in a r-coordinate free-surface ocean

model with only slight modifications to the original numerical algorithm. A consistent choice of variables

for the height of the water column is proposed. The resulting algorithm creates new opportunities in

ocean model configurations in which bathymetry changes at time scales comparable with those of ocean

dynamics (e.g., near shore bed motion and seismic or volcanic catastrophes) or in direct modeling of

laboratory experiments with a moving bottom. The new numerical implementation is carefully compared

with a laboratory experiment involving internal wave generation by an oscillating, ridge-shaped

topography.

An energy formulation of the time-varying bathymetry is proposed, and energy fluxes are computed to

characterize and quantify the cascade of energy leading to the generation of internal waves by an

oscillating ridge.

1. Introduction

Most ocean models postulate that bottom topography is time

independent. Indeed, topography variations associated with slow

geological events usually occur on timescales much longer than

the timescales of ocean dynamics (hundreds to millions of years

for geological events compared with a few decades at most for

ocean dynamics). There are several circumstances in which this

assumption is no longer valid. High frequency variations in ocean

bathymetry can occur as a result of the motion of sand banks

(Williams et al., 2000) or of sediment re-suspension or deposition

(Le Hir et al., 2011). The bathymetry of the prodelta region of the

Amazon shelf can change from one season to another (Le Bars

et al., 2010). Tides or storm surges generate gravitational variations

and can cause deformations of ocean bathymetry with amplitudes

of a few tens of millimeters (Le Provost et al., 1998; Fratepietro

et al., 2006). On even shorter timescales, seismic motion, volcanic

eruptions or even asteroid impacts can induce dramatic changes

in the water column depth, generating tsunami waves (Heinrich

et al., 1999; Pavlov et al., 2009; Weiss et al., 2006).

At the laboratory scale, the bottom surface in water tanks can

also be varied to set water in motion (Dossmann et al., 2011). For

example, using ‘‘horizontally oscillating topography’’ can be an

efficient way of studying tide-topography interactions at the labo-

ratory scale. Gerkema and Zimmerman (2005) demonstrated that

for a linear Boussinesq regime, such a (laboratory-based) modeling

setup can be considered ‘‘equivalent to the original problem’’ of

internal tide generation observed from an accelerated frame of ref-

erence co-moving with the surface tide.

We show hereafter that a time-varying bathymetry can be

implemented in a free-surface, non-hydrostatic Boussinesq model

with fewmodifications. The free-surface assumption can be associ-

ated with several types of vertical coordinates ranging from

r-vertical coordinates (Stacey et al., 1995) to pressure-coordinate

or z-coordinate models (Griffies et al., 2010; Marshall et al.,

2004; Losch et al., 2004). Whatever the vertical coordinate used,

an anomaly of the free surface results in a stretching of the entire

water column. To allow variations in the bathymetry, this stretch-

ing can be generalized to the uplift or to the subsidence of the sea

floor. As for the evolution of the free surface, the water column is

separated into two components: one is time-invariant (the mean

depth), and the other is time-variant and allows for a varying sea

floor. This latter component is the sum of the surface and bathym-

etry anomalies.
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As a consequence, the transformation of a free-surface bathym-

etry model to a free-surface, time-varying bathymetry model

requires a few modifications of the original algorithm: (i) a new

definition of the water column anomaly variable (it must now

include both the free-surface and bathymetry anomalies), (ii) the

vertical positioning of the calculation grid, (iii) the bottom bound-

ary conditions, and (iv) the computation of the barotropic compo-

nent of the pressure gradient.

The resulting algorithm is implemented in the non-hydrostatic

algorithm proposed by Auclair et al. (2011) and is applied to a

direct numerical simulation of a laboratory experiment of internal

tide generation in a CNRM-GAME tank.

The proposed implementation of time-varying bathymetry is

detailed in Section 2. In Section 3, a direct simulation of a labora-

tory configuration of internal tides generated by a moving ridge

is proposed and compared with Synthetic Schlieren measurements.

2. Implementation of a time-varying bathymetry

2.1. Dynamical equations

The non-hydrostatic kernel proposed by Auclair et al., 2011 has

been extended to allow time variations in the bathymetry, but the

proposed algorithm can be implemented in any type of free surface

model.

We designated DðtÞ as the total depth of the water column

(DðtÞ > 0). If fðtÞ and DHðtÞ are the surface and bottom anomalies

of the water column, respectively, and H is the time-independent

mean depth, we can write DðtÞ ¼ H þ fðtÞ þ DHðtÞ. The r-

coordinates can then be defined by the depth of the r-level:

zðx; y;r; tÞ ¼ rDðx; y; tÞ � Hðx; yÞ � DHðx; y; tÞ ð1Þ

At the sea surface (z ¼ f), r equals 1, whereas at the bottom

(z ¼ �ðH þ DHÞ), r vanishes. The true vertical velocity vz can be

written as follows:

vzðx; y;r; tÞ �
dz

dt
¼ vr þ

dz

dt

�

�

�

�

r

¼ vr þ r
df

dt
þ ðr� 1Þ

dðH þ DHÞ

dt
ð2Þ

where the subscript ‘‘r’’ refers to the derivation along a r-surface.
Because of the time-dependency of the bottom bathymetry, the last

term of this expression now can be defined as follows:

dðH þ DHÞ

dt
¼

@DH

@t
þ va

@ðH þ DHÞ

@xa
ð3Þ

where a = 1 (for x) or 2 (for y). The density field can be written as

q0 þ q, with q0 representing a reference density and with q repre-

senting the anomaly satisfying the equation of state, q ¼ qðh; S; PÞ,
with h, S and P representing potential temperature, salinity and

‘‘total’’ pressure, respectively. Potential temperature and salinity

satisfy the heat and salt evolution equations:

1

D

@Dh

@t

�

�

�

�

r

¼ Arh ð4Þ

1

D

@DS

@t

�

�

�

�

r

¼ ArS ð5Þ

On the right hand side of equations 4 and 5 above, ‘‘A’’ includes dif-

fusion and advection (Auclair et al., 2011). Based on the decompo-

sition of the density and on the hydrostatic balance, the total

pressure can be further decomposed as follows:

p0 þ P ¼ p0 þ pþ q ð6Þ

where p0 and p are the hydrostatic components of the pressure

field, satisfying @ðp0þpÞ
@z

¼ @ðp0þpÞ
D@r ¼ �gðq0 þ qÞ and @p0

@xa
jz ¼ q0g

@f
@xa

. The

remaining non-hydrostatic component of the pressure is given as q.

The horizontal and vertical momentum equations can then be

written:

1

D

@Dva
@t

�

�

�

�

r

¼ �g
@f

@xa
�

1

q0

@P

@xa

�

�

�

�

z

þ Ara ð7Þ

1

D

@Dvz

@t

�

�

�

�

r

¼ �
1

rho0

@P

@z
�
qg
q0

þ Ar3 ð8Þ

The variable ‘‘A’’ in Eqs. (7) and (8) includes advection and diffusion

together with the Coriolis pseudo-force (for details, see Auclair et al.

(2011)). Under the Boussinesq approximation, the continuity equa-

tion simplifies to the following equation:

@va
@xa

�

�

�

�

z

þ
@vz

@z
¼ 0 ð9Þ

Using ‘‘r-coordinates’’, this equation becomes

@Dva
@xa

�

�

�

�

r

�
@

@r
@z

@xa
jrva

� �

þ
@vz

@r
¼ 0 ð10Þ

The bottom and surface boundary conditions are given by the kine-

matic conditions:

vzðr ¼ 0Þ ¼ �
@DH

@t
� vaðr ¼ 0Þ

@ðH þ DHÞ

@xa
ð11Þ

vzðr ¼ 1Þ ¼
@f

@t
þ vaðr ¼ 1Þ

@f

@xa
ð12Þ

In addition to the bathymetry anomaly ðDHÞ, both the horizontal

and vertical components of the velocity of the moving bathymetry

are thus specified as boundary conditions (see Auclair et al.

(2011) for details). This velocity and the bathymetry anomaly must

satisfy Eq. (11).

Integrating the continuity equation (10) from bottom to top and

substituting the kinematic conditions, Eqs. (11) and (12), lead to

the free-surface evolution equation:

@D�va

@xa
¼ �

@ðfþ DHÞ

@t
ð13Þ

where the overbar signifies the vertical average of the horizontal

velocity: �va ¼ 1
D

R f

�ðHþDHÞ vadz. Eqs. (13) and (10) provide exact vol-

ume conservation (rather than mass conservation) in the context

of the Boussinesq assumption. In regard to the free-surface anomaly

ðfÞ, the consequences of high frequency variations of the bottom

perturbation ðDHÞ on the evolution of the water column volume

are dealt with in the barotropic mode of the mode-splitting algo-

rithm presented in Auclair et al. (2011). Atmospheric pressure

anomalies are neglected in the present study and the surface pres-

sure vanishes:

Pðr ¼ 1Þ ¼ pðr ¼ 1Þ ¼ qðr ¼ 1Þ ¼ 0 ð14Þ

2.2. Formulation of time-varying bathymetry

In a free-surface, terrain-following coordinate algorithm, the

total depth of the water column can only change as a result of

the free surface anomaly. Several choices of variables may permit

the implementation of a time-varying bathymetry. The best choice

of variables is the one leading to an algorithm as close as possible

(at least formally) to the original constant-bathymetry algorithm at

the lowest possible computing cost.

In the original algorithm, the depth of the water column can be

accurately described using two variables: ðf; HÞ. The second
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column of Table 1 summarizes the set of non-hydrostatic equa-

tions described by Auclair et al. (2011) in which the surface anom-

aly and the mean depth ðf; HÞ explicitly appear.

Several choices of variables can be proposed to implement time-

varying bathymetry. An obvious choice is obtained by adding the

bathymetry anomaly (DH) to the original set of variables

ðf;DH; HÞ. Another choice of variables is ðg;DH; HÞ ¼

ðfþ DH;DH; HÞ. The third and fourth columns of Table 1 show

the corresponding formulation of the resulting algorithm. Using

the ðf;DH; HÞ formulation, the surface pressure force is the only

term or equation that does not need to be modified. The computa-

tion of the depth of the r-layers, the total depth and thickness of the

levels, the continuity equation, the bottom kinematic conditions

and the free-surface anomaly evolution equation necessitate new

numerical treatment as a result of the introduction of a time-

varying bathymetry anomaly (DH).

Another possible formulation of the algorithm is based on the

three variables ðg;DH; HÞ ¼ ðfþ DH;DH; HÞ and leads to a simpler

numerical implementation. The computation of the depth of the r-
layers needs to be slightly modified (the bathymetry anomaly DH

must be subtracted), and the surface pressure force needs slight

modifications as well. If a no-flux boundary condition is applied,

the bottom kinematic condition can be satisfied automatically

without changing the original formulation of Auclair et al. (2011)

by summing the continuity and free-surface evolution equations

from bottom to surface. Consequently, the implementation of this

equation does not require any further modifications.

In conclusion, the second set of variables ðg;DH; HÞ leads to a

small number of insignificant modifications associated with the

depth of the r-layer, with the surface pressure force and with

the bottom kinetic condition. To switch from the original algorithm

to this set of variables, free-surface anomaly variables must be

associated with total water-column anomalies (i.e., surface and

bottom anomalies). Based on the advantages listed above, this sec-

ond set of variables has been chosen in the present implementa-

tion. The original model variable for the surface anomaly is thus

modified to become the total water-depth anomaly (i.e.,

g ¼ fþ DH). Such an implementation of time-varying bathymetry

does not require additional computations. Thus, the numerical cost

of the resulting algorithm remains (approximately) constant.

2.3. Evolution of the kinetic energy content

Once the free-surface r-coordinate algorithm has been

extended to allow time-varying bathymetry, the modification of

the simulated dynamics can be analyzed in detail. Indeed, the pos-

sibility of bathymetry changing with time can be viewed as a new

forcing in the ocean model. Tsunami generation by a violent mod-

ification of the submarine topography is a dramatic example of

such forcing.

The motion of the topography can consequently either reduce

or enhance the kinetic energy of the water column. The numerical

version of the evolution equation of both the potential and kinetic

energies has been discussed in Floor et al. (2011) regarding the

generation of internal waves by the impingement of a barotropic

tide over a time-invariant ridge. In Section 3, the evolution equa-

tion of the kinetic energy is considered for the generation of inter-

nal waves by an oscillating ridge. The evolution of the kinetic

energy can be obtained by multiplying the momentum equations

(7) and (8) by the corresponding velocities. Two terms are of par-

ticular interest in regard to the consequences of the variations of

the bottom topography: the rate of work produced by the pressure

force and the buoyancy flux. In this study, the investigation is lim-

ited to the depth integral of the energy exchanges to simplify the

discussion and to avoid the analysis of most of the r-coordinate
specific contributions.

Table 1

Necessary modifications to dynamical equations for two sets of variables describing the water column depth anomaly.

Grey cells indicate formal differences with respect to the original algorithm which is based on a ‘‘time-independent’’

bathymetry.
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Using the chain rule several times, the work rate of the depth-

integrated horizontal component of the pressure force associated

with the total anomaly P can be written as follows:

Z 1

0

�Dva
@P

@xa
jzdr ¼

Z 1

0

�Dva
@P

@xa
jrdrþ

Z 1

0

va
@z

@xa
jr
@P

@r
dr

¼

Z 1

0

�
@DPva
@xa

jrdrþ

Z 1

0

P
@Dva
@xa

jrdr

þ

Z 1

0

va
@P

@r
@z

@xa
jrdr

¼ F þ

Z 1

0

P
@Dva
@xa

jrdr

�

Z 1

0

P
@

@r
ðva

@z

@xa
jrÞdrþ ½Pva

@z

@xa
jr�

1

0

ð15Þ

where F ¼
R 1

0 � @DPva
@ xa

jrdr is the flux rate resulting from the pressure

force though the open boundary. The depth integral of the vertical

component is

Z 1

0

�vz
@P

@r
dr ¼ �½Pvz�

1
0 þ

Z 1

0

P
@vz

@r
dr ð16Þ

Eqs. (15) and (16) can be summed, leading to the following

equation:

Z 1

0

�Dva
@P

@xa

�

�

�

�

z

drþ

Z 1

0

�vz

@P

@r
dr

¼ F þ P �vz þ va
@z

@xa

�
�

�

�

�

r

� ��1

0

þ

Z 1

0

P
@Dva
@xa

�

�

�

�

r

�
@

@r
va

@z

@xa

�

�

�

�

r

� �

þ
@vz

@r

� �

dr

The last term on the right-hand side vanishes due to the continuity

equation (Eq. (10)), and the expression for the vertical velocity (Eq.

(2)) can be substituted in the brackets, leading to the equation

below:

Z 1

0

�Dva
@P

@xa

�

�

�

�

z

drþ

Z 1

0

�vz
@P

@r
dr

¼ F þ P �vr � r
@f

@t
� ðr� 1Þ

@DH

@t

� �� �1

0

ð17Þ

As there is no water flux through the top and bottom r-surfaces
(r ¼ 0 and r ¼ 1), the rate of work resulting from the pressure force

can consequently be decomposed into 3 terms:

Z 1

0

�Dva
@P

@xa

�

�

�

�

z

drþ

Z 1

0

�vz
@P

@r
dr ¼ F � Pð1Þ

@f

@t
� Pð0Þ

@DH

@t

¼ F � Pð0Þ
@DH

@t
ð18Þ

where ð�Pð1Þ @f
@t
Þ and ð�Pð0Þ @DH

@t
Þ are the work rates of the pressure

force, induced by the free-surface and bottom-bathymetry anoma-

lies, respectively. The first term vanishes in the present study

because Pð1Þ ¼ 0.

The implementation of a time-varying bathymetry also has an

impact on the buoyancy flux, obtained as the work rate of the force

of gravity:

/z ¼

Z f

�ðHþDHÞ

�qgvzdz ð19Þ

The buoyancy flux is responsible for the transfer of energy between

the kinetic and potential energy compartments (Winters et al.,

1995). The analytical derivation of this term is rather straightfor-

ward, whereas a consistent evaluation of this term in a numerical

model is not necessarily as clear. The hydrostatic component of

the vertical pressure force and the force of gravity traditionally can-

cel out. As a result, the buoyancy force must be recovered in the

kinetic energy evolution equation via the horizontal component of

the hydrostatic pressure force and the continuity equation (see,

for instance, Floor et al. (2011)). In the evolution equation of poten-

tial energy, and for a linear incompressible equation of state, this

buoyancy flux is recovered exactly (with a minus sign) from the

advection of potential temperature and salinity and from the verti-

cal motion of the r-surfaces associated with the motion of the free

surface using the (linear) equation of state. Therefore, these

schemes must be consistent with each other to avoid any numerical

leakage during transfers between the energy compartments

(Marsaleix et al., 2008). This need for consistency is particularly true

when these transfers are associated with internal gravity waves and

are consequently periodic.

Substituting for the vertical velocity (Eq. (2)), the buoyancy flux

(Eq. (19)) can be rewritten:

/z ¼

Z 1

0

�Dqg vr þ r
@f

@t
þ ðr� 1Þ

@DH

@t
þ va

@z

@xa

�

�

�

�

r

� �

dr ð20Þ

The modification of the water column depth enhances the transfer

of energy between the kinetic and potential energy compartments

through
R 1

0
�Dqgðr� 1Þ @DH

@t
dr. Integrating by parts, Eq. (20) can

be rewritten in terms of the hydrostatic component of the pressure:

Z 1

0

�Dqg r
@f

@t
þ ðr� 1Þ

@DH

@t

� �

dr

¼
@f

@t
ðpð1Þ � �pÞ þ

@DH

@t
ðpð0Þ � �pÞ ð21Þ

where �p ¼
R 1

0
pdr and pð1Þ ¼ 0. The buoyancy flux can thus be

decomposed into several terms, two of which depend explicitly

on the time-variation of the free-surface and bottom-bathymetry

anomalies:

/z ¼

Z 1

0

�Dqgvzdr

¼

Z 1

0

�Dqg vr þ va
@z

@xa

�

�

�

�

r

� �

dr�
@f

@t
�pþ

@DH

@t
ðpð0Þ � �pÞ ð22Þ

Relations (18) and (20) show that a moving bottom enhances direct

energy exchanges in two ways. A source term ð�Pð0Þ @DH
@t
Þ appears in

the equation of evolution of the kinetic energy. This term is directly

associated with the modification of the water column depth and is

proportional to the total (i.e., hydrostatic and non hydrostatic) bot-

tom pressure (P(0)). The time-varying bathymetry also enhances

energy transfers between the kinetic and potential energy compart-

ments through a contribution in the buoyancy flux:
R 1

0
�Dqgðr� 1Þ @DH

@t
dr.

Relations (18) and (22) additionally show the symmetry

between the transfers associated with the free-surface and

bottom-bathymetry anomalies: in both relations, their variation

with time induces energy transfers.

Several terms in the expressions of the pressure force (Eq. (18))

and buoyancy flux (Eq. (22)) are not specific to the time-varying

bathymetry. The pressure force (Eq. (18)) includes a flux term (F)

whose amplitude depends both on the chosen ‘‘control volume’’

over which this term is integrated and on the processes directly

induced by the bathymetry motion. The main contribution to the

flux (F) is the energy radiated by internal waves (Section 3). For a

closed domain, this flux term vanishes.

The form of the first term in the expression of the buoyancy flux

(Eq. (22)), ð
R 1

0 �Dqgðvr þ va
@ z
@ xa

jrÞdrÞ, is specific to the choice of

coordinate system (namely, to the expression of the coordinate

system). In r-coordinates, the first term in the buoyancy flux Eq.

(22) is the sum of the flux caused by the vertical velocity across
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the r-layers (vr) and by the slope of these r-layers with respect to

the horizontal. This term is associated with the vertical transfer of

energy from the time-varying bathymetry to the water column and

can also be associated with internal waves. The second term in the

expression of the buoyancy flux (Eq. (22)) ð� @f
@t
�pÞ is a direct conse-

quence of the displacement of the free surface. The amplitude of

this term strongly depends on the studied configuration as well.

In the real ocean, a pressure disturbance generated by a modifica-

tion of the bathymetry is, for instance, radiated by acoustic waves

to the surface, where the resulting anomaly can generate several

types of surface waves (see Nosov, 1999). On longer time scales,

the response of the free surface can indirectly depend on the

amplitude of the forcing because of the time-varying bathymetry

and because of the possible occurrence of a hydraulic control

(Baines, 2004, Section 2). In the case of the oscillating ridge studied

in the following section, the contribution of the free-surface anom-

alies can be neglected in front of the energy exchanged with the

time-varying bottom ð@DH
@t

ðpð0Þ � �pÞÞ.

3. Modeling the generation of internal waves by an oscillating

ridge

3.1. Oscillating ridge configuration

Internal gravity waves can be generated in a stratified ocean by

any vertical displacement of the isopycnal surfaces from equilib-

rium. In the ocean, such displacements can be induced by the

impingement of surface tides on bathymetry variations such as

ridges, seamounts or shelf breaks, by wind-induced motions and,

more generally, by encountering cross-isopycnal velocities of sig-

nificant amplitudes. These displacements can be reproduced in

stratified water tanks by oscillating objects (Mowbray and Rarity,

1967) or by moving bottoms (Dossmann et al., 2011). A direct

numerical simulation of this type of flow can be obtained with

the algorithm derived in this study and is now presented.

Internal gravity waves are generated by moving a Gaussian

ridge back and forth in a salt-stratified tank in the CNRM-GAME

(Meteo-France/CNRS) hydraulic laboratory. These internal waves

propagate from the oscillating ridge and reflect at the closed-tank

walls. With the exception of the lateral boundaries, the experimen-

tal configuration is 2D-vertical and is consequently simulated

numerically as a vertical section in the (x–z) plane.

The Gaussian ridge oscillates at a period of T0 = 10.05 s over a

flat bottom with depth H = 394 mm. For x 2 ½�2m;2m�,

DHðx; tÞ ¼ �h0 exp �
ðx� x0ðtÞÞ

2

L20

!

ð23Þ

where the center of the ridge is located at x0ðtÞ ¼ A0 sinð
2pt
T0
Þ and

where L0 is the horizontal characteristic length scale of the bathym-

etry. The characteristics of the experimental configuration and the

model parameters are given in Table 2.

The tank stratification is obtained experimentally and mim-

icked numerically by generating salt gradients at a constant tem-

perature. The horizontally and vertically averaged resolutions are

approximately 1 mm, allowing for the use of the molecular viscos-

ity and salt diffusivity.

3.2. Corresponding large-scale ocean configuration

In regard to the topography, the aspect ratio of the tank

bathymetry is given by eb;tan k ¼ 100=394 � 0:25. This ratio corre-

sponds to a ridge height of approximately 1000 m over an average

abyssal plain height Hocean � 4000 m, which is the same order of

magnitude as the height of the Pacific ridge in the region of Hawaii.

The Pacific ridge (Pinkel and Rudnick, 2006) and the Luzon Strait

(Zhang et al., 2011) are indeed some of the most well-known gen-

erators of internal tides in the Pacific Ocean. A characteristic length

scale for the tank’s ridge is L � 2L0 ¼ 73 mm, whereas its motion

can be associated with a pulsation x � 2p=T0 ¼ 0:6 rad s�1 and

with a velocity U � L=T0 ¼ 7 mm=s.

The dynamical regime is thus characterized by a rather large

non-hydrostatic parameter dNH ¼ x=N � 0:6. Such a regime can

be observed in the ocean as a result of M2 tidal influence and with

an average stratification Brunt Väisälä pulsation Nocean �

2:510�4 rad=s
�1
. The initial density stratification is given by

qðzÞ ¼ q0 1�
N2z

g

!

with q0 ¼ 1029 kg=m3

The ratio of the internal wave to the surface wave speeds,

dspeed ¼ NH=
ffiffiffiffiffiffi

gH
p

, is approximately equal to 0.014 in the ocean con-

figuration and 0.2 in the tank configuration, indicating in both cases

weak non-linear interactions between surface and internal waves

(Pedloskly, 2003, p. 85; Floor, 2009, p. 130).

This rapid evaluation of the main characteristics of the dynam-

ical regime shows that the tank configuration is non-hydrostatic

and that it can reasonably provide insights into the generation of

internal waves by a barotropic tide over an oceanic ridge. This eval-

uation also illustrates some of the limits of this approach as the

ratio of the internal to the surface wave speeds, dspeed, is small

but not insignificant. The tank configuration will not, however,

provide significant information about the non-linear interactions

between the barotropic tides and the internal tides they induce.

In a similar configuration, Gerkema and Zimmerman (1995) also

showed that the tidal motion over a ridge could be considered as

equivalent to a moving ridge if the topography ratio eb and the

parameter of nonlinearity eNL ¼ Ueb=xL were both small

(eb; eNL << 1). In the present tank configuration, these parameters

are eb;tan k � 0:25 and eNL; tan k � 210�2. Although rather small, eNL
is lower than 1 but not insignificant, indicating possible discrepan-

cies between internal tides generated by tidal motion compared

with the generation of internal waves by the motion of the ridge.

Because the tank is static with respect to the surface of the earth,

the only rotation to which the tank flow is submitted is the earth’s

rotation. As a result, its characteristic Rossby number,

Ro � U=ð10�4LÞ, is several orders of magnitude smaller than typical

ocean Rossby numbers at the mid-latitudes. Consequently, none of

the rotation-induced characteristics of real-ocean internal tides

can be studied in the present tank configuration.

Table 2

Main characteristics of the experimental and numerical internal wave configurations

in a closed tank.

Size of the stratified tank (mm) (4000 � 500 � 394)

Gaussian ridge height and e-folding

width (mm)

(h0 ,L0) (100, 36.86)

Number of points of model grid in x, and

y direction.

ðimax; jmaxÞ (4096, 3)

Horizontal model grid (mm) Dx = Dy 1

r-levels kmax 400 equally-spaced

levels

Internal mode time step (ms) Dtint 0.647

External mode time step (ms) Dtext 0.162

Brunt–Väisälä frequency (rad s�1) N 0.92461

Equation of state Incompressible and

linear

Viscosity (m2 s�1) m 10�6

Diffusivity (m2 s�1) KD 10�9

Bottom boundary condition No-slip

Amplitude and period of forcing (A0, T0) (1 mm, 10.05 s)
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3.3. Characteristics of the internal wave

A vertical section of the square Brunt-Väisälä frequency anom-

aly after ten periods is presented in Fig. 1. Fig. 1a shows the anom-

aly obtained by Synthetic Schlieren visualization, and Fig. 1b shows

the same anomaly simulated numerically. The computed Brunt–

Väisälä frequency anomaly is a diagnostic variable obtained from

the density field.

In both figures, internal wave rays form a Saint-Andrew’s cross,

with a characteristic angle / equal to the angle predicted by the

dispersion equation ðsin/ ¼ x=NÞ. The rays reflect at the bottom

and at the free surface and weaken during the reflection process.

In both fields, the motion of the ridge creates a low-amplitude, per-

manent circulation, forming a horizontal straight line at the level of

the ridge top.

Two primary types of discrepancies can be found between the

experiment and the numerical simulation. The first discrepancy

concerns the reflection of the ray. The reflection occurs a few cen-

timeters below the free surface in the experiment, whereas the

reflection is located right at the free surface in the numerical sim-

ulation. This discrepancy can be attributed to the formation of a

well-mixed layer along the boundary in the experiment before

the ridge motion is started. A first consequence of this discrepancy

is that the reflected rays are slightly translated in the experiments.

A second consequence is that energy losses are more significant in

the experiment because part of the ray energy appears to be

trapped in the mixed layers, enhancing the ‘‘mixing process’’ and

reducing the amplitude of the reflected ray. Because of the pres-

ence of the solid wall at the bottom boundary, Schlieren measure-

ments are available only a few centimeters above the bottom, and

direct comparisons are more difficult. The conditions at the bottom

are not identical in both simulations because the entire bottom

surface moves with the ridge in the numerical simulation, whereas

only the ridge moves in the experiment. However, unlike rays in

the surface layer, both the locations of the reflection points and

the amplitudes of the reflected rays are quite similar in both sim-

ulations. Therefore, no further refinement of the numerical config-

uration was necessary.

Another difference between the experiment and the numerical

simulation concerns the ray itself, which appears much more reg-

ular in the numerical simulation than in the experiment. The dif-

ferences in ray reflection might partially explain such

discrepancies. In Fig. 1a, the first upward ray shows two lighter

regions corresponding to a higher amplitude of the Brunt–Väisälä

frequency, separated by a darker region (approximately halfway

along the ray’s path). These differences are consistent with a reflec-

tion of the ray at different locations, with the lighter regions asso-

ciated with two reflected rays in the tank. Further comparisons of

the ray structure between the experiment and the simulation can

then be made by plotting the evolution of the Brunt–Väisälä fre-

quency anomaly along segments transverse to the rays. These seg-

ments are shown in Fig. 2 at four locations along the first upward

ray. A global comparison is satisfactory for the amplitude of the ray

(approximately 0.05 rad2/s2) and for its e-folding width (approxi-

mately 6 cm), even if in numerical simulations rays have slightly

smaller amplitudes and are less focused than in the tank experi-

ment. Globally, the amplitude decreases and the thickness

increases along the ray, moving away from the ridge (from S1 to

S4). At the third location (S3 and S03), ray shapes are rather similar.

The largest differences are found at the same locations: near and

far from the ridge (i.e., in Segments S1–S
0
1 and S4–S

0
4, respectively).

We note in particular that at the fourth location, the amplitude of

the ray significantly increases in the experiment while it continues

to decrease in the model field. A possible explanation, already pro-

posed for the corresponding differences in Fig. 1, is the presence of

a reflected ray in the experiment.

In regard to the occurrence of a mixed layer along the free sur-

face, the objective of the present simulation was to study the gen-

eration of internal rays by the oscillations of a Gaussian-shaped

ridge in a linearly stratified fluid, rather than the study of reflec-

tions or of the general properties of the internal tide field away

from the ridge. Namely, no specific effort has been made to initial-

ize the numerical simulation with a salinity field that corresponds

to that of the experiment.

3.4. The internal wave generation process

A comparison between experimentally and numerically simu-

lated internal waves shows close correspondence between the

two types of waves. Both types of simulations lead to internal

waves, but as shown in Section (3.2), the generation mechanism

of these simulated waves is different from the generation of inter-

nal waves (the so-called internal tides) by tidal waves over a ridge

(Floor et al., 2011).

All of the energy fluxes considered in the present section are

integrated in space over the computational domain, and their run-

ning mean over a forcing period (written hiT0 ) is plotted in Fig. 3.

Fig. 4 gives a schematic representation of the corresponding

exchanges. The density profile is given in Section 3.2 and is chosen

so that at the surface, qð1Þ ¼ q0.

The running mean of the work rate of the time-dependent

bathymetry against the bottom hydrostatic pressure (relation 18,

triangles in Fig. 3a) initially leads to an increase in kinetic energy:

h�pð0Þ @DH
@t

iT0 > 0. The averaged non-hydrostatic contribution to

this work rate (squares) is initially negative, indicating a net loss

Fig. 1. Vertical section of square Brunt–Väisälä frequency anomaly (rad2 s�2) after

10 forcing periods (a) measured by Synthetic Schlieren, (b) simulated numerically.

Black line segments across internal wave rays indicate positions of cross radius

Brunt–Väisälä frequency evolution shown in Fig. 2. Segments are labeled (S1) to (S4)

for Synthetic Schlieren and (S01) to (S04) for numerical simulation.
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Fig. 2. Evolution of Brunt––Väisälä frequency along black segments shown in Fig. 1, Left: measured by Synthetic Schlieren in Segments (S1) to (S4), Right: simulated

numerically with SNH model in Segments (S01) to (S04). Curves are plotted every second for t 2 ½10T0;11T0�,

Fig. 3. Running mean of the various transfers of energy (W=q0) over a forcing period (T0). All energy transfers are integrated over the computational domain and normalized

by q0. (a) Transfers associated with the motion of the bottom. black line: «/z» = h/ziT0 ¼ h
R 1

0
�DqgvzdriT0 , circles: «/z: bottom» = h@DH

@t
ðpð0Þ � �pÞiT0 , dashed line: «/z:

hydro» = h@DH
@t

pð0ÞiT0 , dashed-dotted line: «/z: mean» = h� @DH
@t

�piT0 , plus signs: «PG: bottom» = h�Pð0Þ @DH
@t

iT0 , triangles: «PG: hydro» = h�pð0Þ @DH
@t

iT0 , squares: «PG:

NH» = h�qð0Þ @DH
@t

iT0 , crosses: «KE: bottom» = h� @DH
@t

ðqð0Þ þ �pÞiT0 . (b): Several contributions to the buoyancy flux. dashed line: «/z» = h/ziT0 ¼ h
R 1

0
�DqgvzdriT0 , circles:

«/z : Dz=Dt» = h� @f
@t
�pþ @DH

@t
ðpð0Þ � �pÞiT0 , dashed-dotted line: «/z : u:Dz=Dxþx» = h

R 1

0 �Dqgðvr þ va
@z
@xa

jrÞdriT0 , black line: «/z : x» = h
R 1

0 �DqgvrdriT0 , plus signs:

«/z : u:Dz=Dx» = h
R 1

0 �Dqgva
@z
@xa

jrdriT0 .
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of kinetic energy: h�qð0Þ @DH
@t

iT0 < 0. However, the overall pressure

anomaly contribution remains initially positive: h�Pð0Þ @DH
@t

iT0 > 0.

The averaged contribution of the bottom bathymetry to the buoy-

ancy flux h@DH
@t

ðpð0Þ � �pÞiT0 (relation 22, circles) remains negative,

indicating that kinetic energy is lost while potential energy is

enhanced. The total averaged buoyancy flux (black line) remains

positive.

The sum of the running mean of the contributions of the moving

bottom (buoyancy flux plus pressure gradient force) and the

kinetic energy balance (crosses) is eventually negative: overall,

kinetic energy is lost through direct motion of the bathymetry,

while potential energy is enhanced. The overall loss of kinetic

energy is, however, much smaller than the gain through the total

buoyancy flux (black line), and kinetic energy is thus enhanced

overall as a result of the motion of the bottom ‘‘ridge’’.

To further study the evolution of the buoyancy flux, Fig. 3b

details several contributions to the running mean of the buoyancy

flux, based on Eq. (22). The running mean of the buoyancy flux over

one forcing period T0 is recalled (black curve in Fig. 3b). The total

contribution of the time variations of the r-layer (circles) is rather
small compared with the total buoyancy flux and is mostly induced

by the time variations of the bathymetry: jh� @f
@t
�piT0 j << j

h@DH
@t

ðpð0Þ � �pÞiT0 j. The barotropic potential energy associated with

the free-surface anomaly and the associated energy transfers can

be neglected in the present configuration providing that the maxi-

mal amplitude of the free-surface anomaly never exceeds 10�5 m in

the numerical configuration. This maximum amplitude is con-

firmed experimentally as no surfacewave or free-surface anomalies

have been observed in the CNRM-GAME tank. These very small free

surface anomalies lead to negligible barotropic energy transfers.

The remaining portion of the buoyancy flux is approximately

equal to the baroclinic contribution ð/0
zÞ defined by Floor et al.

(2011) (plus-signs in Fig. 3b):

Z 1

0

�Dqg vr þ va
@z

@xa

�

�

�

�

r

� �

dr
� 	

T0

� h/0
ziT0

�

Z 1

0

�Dqg vr þ v
0
a

@z

@xa

�

�

�

�

r

� �

dr
� 	

T0

ð24Þ

where v 0
a ¼ va � �va.

The individual contribution of the cross-r vertical velocity

h
R 1

0
�DqgvrdriT0 (black curve) and of the sloping of the r-layers

h
R 1

0
�Dqgva

@z
@xa

jrdriT0 (dashed curve) are approximately anti-

correlated.

The remaining ‘‘barotropic’’ contribution (ð�/zÞ, see Eq. (3.2) of

Floor et al., 2011) is approximately equal to the contribution of

the time-varying bathymetry (red curves):

@DH

@t
ðpð0Þ � �pÞ

� 	

T0

� h�/ziT0 �

Z 1

0

�Dqg r
@f

@t
þ �va

@f

@x

� ���

þðr� 1Þ
@DH

@t
þ �va

@ðH þ DHÞ

@x

� ��

dr
	

T0

ð25Þ

This contribution is smaller than the baroclinic component h/0
ziT0 .

Oscillations at half the forcing period can be observed over both

the buoyancy flux and its ‘‘baroclinic’’ component. Period halving is

a result of the correlated variations of the velocity and density

anomalies in ð/0
zÞ. The oscillations of the ‘‘baroclinic component’’

at half the forcing period confirm the generation of internal waves

by the ridge. After 4 to 5 forcing periods, internal waves have prop-

agated over a large portion of the tank, allowing for their contribu-

tion to the overall buoyancy flux to become significant. The energy

flux associated with these waves reaches a quasi-stationary state

after 10 to 11 forcing periods (not shown) and, on average, poten-

tial energy is transformed into kinetic energy because the baroclin-

ic contribution to the buoyancy flux remains positive.

As a conclusion (Fig. 4), the running mean of the buoyancy flux

over one forcing period can be written approximately as follows:

h/ziT0 ¼ h/0
ziT0 þ h�/ziT0

�

Z 1

0

�Dqg vr þ v
0
a

@z

@xa

�

�

�

�

r

� �

dr
� 	

T0

þ
@DH

@t
ðpð0Þ � �pÞ

� 	

T0

ð26Þ

The motion of the bathymetry initiates the generation of internal

waves by initially enhancing kinetic energy through the varying-

bathymetry contribution to the work rate of the pressure force

ðh�Pð0Þ @DH
@t

iT0 Þ. Kinetic energy is then reduced, and potential

energy is enhanced through the contribution of the time-varying

Fig. 4. Schematic representation of the running-mean of the energy fluxes associated with the motion of the bottom bathymetry over one forcing period (T0) (solid arrow).

Both kinetic energy (KE) and potential energy (PE) compartments are represented. The running mean of the internal wave radiative flux ðhFiT0 ¼ h
R 1

0
� @DPva

@ xa
jrdriT0 Þ is

represented with a dashed arrow (this flux vanishes when integrated over the entire tank).
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bathymetry to the ‘‘barotropic component of the buoyancy flux’’

ð�/zÞ. These results are rather similar to those obtained by Floor

et al. (2011) for the generation of internal waves by barotropic tides

over a ridge. In the configuration studied by Floor et al. (2011),

energy is directly supplied by tides, i.e., by long surface waves

and isopycnal surfaces are displaced by tidally induced diapycnal

currents. Floor et al. (2011) further showed that potential energy

is then enhanced by the barotropic component of the buoyancy flux

(Eq. (25)), whereas in the present configuration, surface waves play

no significant role. In both cases (time-varying versus constant

bathymetry), potential energy is eventually reduced on average by

the propagation of internal waves through the ‘‘baroclinic compo-

nent of the buoyancy flux’’ ð/0
zÞ.

4. Discussion and conclusion

A simple implementation of a time-varying bathymetry is pro-

posed for a r-coordinate free-surface ocean model, offering new

perspectives for the modeling of ocean configurations presenting

topography variations. We have shown, in particular, that a careful

choice of model variables can notably reduce the modifications to

the numerical model algorithm. Considering the total change in the

water column depth ðg ¼ fþ DHÞ, the numerical equations associ-

ated with volume conservation under the Boussinesq approxima-

tion in particular remain advantageously unchanged. The

resulting implementation of time-varying bathymetry requires

only a few additional operations and has thus (nearly) no effect

on the global numerical cost.

The new time-varying bathymetry ocean model has been com-

pared to a laboratory configuration of internal tide generation by a

moving ridge in a CNRM-GAME tank. The resulting internal tide

rays have been shown to be in close agreement with Synthetic

Schlieren measurements. The ‘‘new’’ forcing caused by the varia-

tion of the bathymetry has been characterized by deriving the

mechanical energy equations and numerically computing the

resulting mechanical energy transfers associated with the pressure

force and buoyancy flux. The proposed mechanism for the energy

cascading leading to the generation of internal waves by a moving

‘‘ridge’’ in a stratified tank is found to be similar to the one pro-

posed by Floor et al. (2011) for the generation of internal tides.
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