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Abstract

User data is becoming increasingly available in multiple domains ranging from the social Web to retail store receipts. User data
is described by user demographics (e.g., age, gender, occupation) and user actions (e.g., rating a movie, publishing a paper,
following a medical treatment). The analysis of user data is appealing to scientists who work on population studies, online
marketing, recommendations, and large-scale data analytics. User data analytics usually relies on identifying group-level
behavior such as “Asian women who publish regularly in databases.” Group analytics addresses peculiarities of user data
such as noise and sparsity to enable insights. In this paper, we introduce a framework for user group analytics by developing
several components which cover the life cycle of user groups. We provide two different analytical environments to support
“hypothesis generation” and “exploratory analysis” on user groups. Experiments on datasets with different characteristics
show the usability and efficiency of our group analytics framework.

Keywords User data analytics - User group analytics - Hypothesis generation - Exploratory analysis

1 Introduction

Nowadays, user data is ubiquitous in various domains rang-
ing from the social Web to medical records, scientific
publications, and retail store receipts. This data is the con-
junction of user demographics (e.g., gender, profession, birth
year) and user actions (e.g., rating a movie, publishing a
paper, following a medical treatment, expressing a political
view). Analysis of such data enables novel insights in various
scenarios such as population studies [1], online recommen-
dation [2] and targeted advertisement [3].

User data analytics is defined as a collection of methods
and tools to extract value from user data. It relates to a special
field of business analytics, referred to as behavioral analytics
[4,5]. The goal of behavioral analytics is to unveil insights
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into the behavior of consumers on eCommerce platforms,
IoT and mobile applications. User data analytics is a need for
analysts in their role as data scientists who seek to conduct
large-scale population studies, and gain insights into various
population segments. It is also appealing to users in their role
as information consumers who use the social Web for routine
tasks such as finding a book club or choosing a restaurant. It
is also useful to domain experts who seek to understand their
users and actions.

Most of the current user data analysis approaches target
“Quantified-Self,” i.e., the typical mindset of user data ana-
lytics with the aim of exploiting massive personal datasets for
self-discovery [6]. In this paper, we shift toward “Quantified-
Us”! and propose user group analytics (UGA), whose aim is
to aggregate users into groups to gain a more focused under-
standing of their behavior. UGA helps analysts make better
and faster decisions [7] with more certainty [8].

1.1 Desiderata of UGA

We believe that the following desiderata should be satisfied
in UGA in order to obtain meaningful aggregations (i.e., user

U http://www.wired.com/2014/04/forget-the-quantified-self-we-need
-to-build-the-quantified-us/.
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groups) which enable improved discoveries, pattern identifi-
cation and meaningful recommendations.

— Sparsity reduction Oftentimes, user data is sparse, i.e.,
many pieces of information for different individual users
are missing. Aggregation of user data (i.e., grouping)
should contribute to sparsity reduction.

— Noise reduction User data may be noisy, i.e., contains
wrong information for individual users. User groups
should reduce the effect of noise.

— Improved analysis Grouping users should unveil new
insights which can be employed “internally” by each
group member to make better decisions, and “externally”
by analysts to make better strategies for the whole group.

We build user aggregations (i.e., groups) based on “fre-
quency.” Each generated user group has a certain amount of
frequency (above a threshold) among all its members. Hence,
a frequent group dissipates negligible values that potentially
represent wrong or missing information. The UGA frame-
work employs this simple notion of aggregation in order
to reduce noise and sparsity in user data and obtain better
insights. However, UGA is not a “data cleaning” contribu-
tion and systemic mistakes in user data can be potentially
propagated to user groups. In [9], we discuss how an ETL
process should precede user group analytics.

1.2 Challenges of UGA

UGA can be very expensive due to the exponential number of
possible groups. Any set of users with at least one attribute
or action in common can form a group. For instance, we
consider a dataset of researchers from 100 different universi-
ties who publish in 100 conferences on 100 different topics.
In this case, the number of possible groups becomes 23%
(i.e., all possible combinations of conferences, topics and
universities) which is roughly in order of 10%. This brings
the prominent challenge of “information overload™: it is a
tedious and nearly infeasible task for the analyst to verify all
possible groups. Hence, we need to address the two following
challenges in UGA.

Semantics By keeping only an interesting subset of groups,
the analysis task becomes more manageable (i.e., less infor-
mation overload). To define the “interestingness” of a user
group, we propose quality dimensions [10], i.e., functions
which take a user group as input and return a scalar score.
Navigation Incorporating quality dimensions may not fully
address information overload, as there may still exist many
interesting groups to verify. Hence there should be a seam-
less navigation mechanism which enables analysts to walk
through the group space and explore one or several groups
of interest. Note that while MDL-based summarization
approaches tackle information overload as well [11], the

@ Springer

Mine user groups on D (using LCM)

3.

User data D |

Index
group sets

Obtain all optimal

k group sets Search group sets

A

GNavigate (exploratory analysis)

Index
groups

Obtain k Choose one group and
optimal groups [*=| a navigation operation

Fig.1 UGA Framework

lossy compressions and/or high-level abstractions may put
burden on analysts for understanding the group space.

1.3 Applications of UGA

In this paper, we describe a UGA framework which targets
the aforementioned challenges. We incorporate several ana-
lytical components into a unique framework which covers
the life cycle of user groups. Figure 1 illustrates our frame-
work. It starts by forming user groups out of raw user data.
Once groups are materialized, our framework serves two
major applications in UGA, i.e., “hypothesis generation” and
“exploratory analysis,” described as follows.

Hypothesis generation. In hypothesis generation, the ana-
lyst is after collecting evidences in user data which support
the hypothesis testing phase. For this aim, our proposed UGA
framework generates, stores and indexes all “interesting”
sets of user groups. Then a search interface (as the interac-
tion means) is made available for the analyst to look for her
interests among generated group sets. Example 1 describes
a realistic use case.

Example 1 (Hypothesis generation) It is generally believed
that Western-genre movies (e.g., Unforgiven, 1992) are
mostly watched by the older generation. This observation
is based on demographics breakdown reports on IMDb web-
site.” Anna, a social scientist wants to verify this belief by
generating possible hypotheses (in form of user groups) for
users who watched Western movies. For instance, she obtains
the following groups: old male users, young female users, and
middle-age users from Texas. By observing those groups,
Anna finds that although the overall belief is valid, it also
depends on other demographic attributes like gender and
location. More precisely, found groups show that not all old
people prefer Western movies.

Exploratory analysis It is common that analysts do not have
a clear understanding of their needs on user data or it is par-

2 Internet Movie Database: http://www.imdb.com.
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tially formulated. In this case, the analyst needs to navigate
through various sets of user groups in order to build a knowl-
edge around her interests toward target groups. For this aim,
UGA populates interesting group sets on-the-go. Ateach step
of the navigation, the analyst interacts with UGA to reflect
her preferences, based on which a set of interesting groups
will be generated. Example 2 describes a realistic example.

Example 2 (Exploratory analysis) Tiffany wants to find a per-
son she met at last night’s party in Westford, Massachusetts
(MA). She doesn’t remember his name or any other indicat-
ing contact. Hence no querying mechanism is of help. Tiffany
employs UGA to inspect the list of Mike’s friends (Mike is
the party host.) The UGA framework returns the following
groups: engineers in MA who work in NextWorth company
and engineers in bioinformatics. This reminds Tiffany that
the person was talking about “data visualization,” thus he
should not be working for NextWorth, a recycling company.
Hence she selects the other group. This preference leads her
to other relevant groups where she notices a group of soft-
ware engineers in BioView (a cell imaging company) where
she finds the person she was looking for.

1.4 Contributions of UGA

UGA components provide semantic-based and navigation-
based solutions to prevent information overload. We imple-
ment effective semantics for “hypothesis generation” by
enabling a birds-eye-view on all interesting group sets,
and effective navigation means for “exploratory analysis”
by enabling preference-based interactions with groups. Our
UGA framework makes the following contributions.

— We introduce a component for “hypothesis generation”
in UGA by formalizing the problem of discovering
interesting group sets. We introduce following quality
dimensions to quantify the interestingness of group sets:
coverage, diversity and rating diameter. As all group sets
should be materialized before analyst consumption, they
should all have optimal values on all quality dimensions.
Hence, we formalize the problem as a constrained multi-
objective optimization problem with quality dimensions
as objectives. We develop an «-approximation algorithm
(called a-DISCOVER) and a heuristic algorithm (called
h-DISCOVER) as solutions for hypothesis generation.

— We introduce a component for “exploratory analysis”
in UGA by formalizing the problem of navigating the
user group space. For an effective navigation, we pro-
pose GNAVIGATE, an interactive analysis framework on
user groups based on simple yet powerful group naviga-
tion operations which enable the exploratory analysis of
user groups.

User Demographics Users Items (Movies)
T —a—
-
N ]

Celtic Pride

Age 1825 <—_\>/user/

1

7.
/

/

Student Sanjuro

Kazaam

/
Male &
\wrg \
Doct Sl ®
octor
- —
. — User 4 I~

etc. etc.

Toy Story

In Paris -+ Jurassic Park

I/

Fig.2 The figure shows that user 1 is a female student and has watched
movies American Beauty, Celtic Pride and Sanjuro. It also shows that
the group of male users consists of users 2, 3 and 4, while the group of
Jurassic Park watchers contain users 3 and 4

— In an extensive set of experiments, we illustrate the effi-
ciency and effectiveness of our UGA framework. In a
comprehensive user study, we show the added value of
group-based analytics. We also evaluate the performance
of our components and provide data-centric insights for
real applications of group analytics. All experiments are
validated on several user datasets.

The rest of the paper is organized as follows. Section 2
covers preliminary definitions. Sections 3 and 4 discuss our
proposed UGA components (for hypothesis generation and
exploratory analysis, respectively). A set of quantitative and
qualitative experiments is presented in Sect.5. We review
related work in Sect. 6. Last, we conclude and discuss our
future work in Sect. 7.

2 User group model

User data User data contains a set of users U, a set of
items Z, and a database D of tuples (u, c,i) where u € U
and i € 7 and c is an action. A tuple (u, c, i) represents
the action ¢ (such as authored, recorded, rated, purchased,
tagged, voted, followed treatment) performed by user u on
item i. For instance, the tuple (John, watched, Titanic) means
that the user John has watched the movie Titanic. We don’t
mention actions wherever they are clear from the context,
hence a tuple becomes (u, i). Our data model can be seen as
a bipartite graph centered on users, having demographics on
one side and items on the other side (Fig. 2).

User attributes Each user u is described with attributes
drawn from a set A, representing demographics informa-
tion such as “gender” and “age.” We also associate a set of
attributes to Z denoted as .A; representing item details such
as “director” for a movie. We refer to the set of all attributes
as A = A, U A; and each attribute a; € A has values
in {vi1 vlJ ...}. The domain of values for attribute a; is

@ Springer
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denoted as D,; with D 4 = UD,,. For example, if we use a;
to refer to the gender attribute, it takes two values v } and v%
representing “male” and “female,” respectively.

User datasets Multiple datasets could be represented in our
model. Examples are 1.7M research publishing activities of
database researchers [3], 5B tweets [12], 300M customer
receipts from a retail chain of 1800 stores [13], 10M rat-
ing records from MOVIELENS [14], 50M artist ratings from
LASTFM [15], IM electronic health records (EHR) [16] and
200K book ratings from BOOKCROSSING [17]. We provide
more details about the datasets that we use in this paper in
Sect.5.1.

Now, we formally define user groups as follows.

Definition 1 (User Group) A group g is a set of tuples
(u,i) € Dwhereu ¢ U’ CU andi € 7' C 7 identified with
alabel g = [PY, Pé, 7’1 where Péf’ and Pst; are conjunctions
of predicates on user attributes and item attributes, respec-
tively. Each user in &/’ must satisfy Py and Vi € 7', i satisfies

PL.

Based on Definition 1, a user group g; = [(gender,
female), (movie, Titanic)] contains females who watch (or
rate) the Titanic movie. When attributes are clear from the
context, we usually show group labels in a more concise
form, e.g., g1 = [female, Titanic]. Group labels express the
behavior and common demographics of group members. For
a group g, we use the notion |g| to denote the number of
members in that group.

We use G to refer to the set of all user groups forming a
group space. In UGA, we assume G is already pre-computed
using any group generation algorithm. G is often very large,
as itis exponential in the number of items and attribute values
(i.e., the information overload problem). We employ LCM
pattern mining algorithm for generating groups [18]. Given a
frequency threshold o, each mined frequent pattern of LCM
corresponds to a user group with at least o users. To feed
LCM, we convert attribute value pairs in group labels into
an item. For instance, (gender, male) and (gender, female)
become two independent items. Note that UGA is indepen-
dent from the group generation process and can virtually
leverage any other method, such as clustering, community
detection and team formation.

3 Hypothesis generation on user groups

Our first application of UGA is hypothesis generation. While
statistical validations using hypothesis testing are employed
to yield a p value representing the extremity of observa-
tions under a null hypothesis (e.g., detecting false discoveries
[19] and Simpson paradoxes [20]), hypothesis generation
seeks clues to elaborate the null hypothesis and enable

@ Springer

evidence-based decision making using user groups. Hypothe-
sis generation relies on the problem of discovering interesting
user group sets in UGA framework, referred to as GDIS-
COVER. In practice, there does not exist analytical tools that
enable the scalable, on-demand discovery of user groups. Our
aim is to generate all interesting group sets of users in order
to facilitate hypothesis generation on user data.

3.1 Desiderata of GDISCOVER

We define desiderata that user groups should satisfy (local
desiderata) and those that must be satisfied by the group set
(global desiderata). Local desiderata are as follows:

— Describability Each group should be easily understand-
able by the analyst. While this is often difficult to satisfy
through unsupervised clustering of users, it is easily
enforced in our approach since each group must conform
to Definition 1 (definition of user groups) and provide a
label.

— Size Returning groups that contain too few members is
not meaningful to the analyst. We hence need to impose
a minimum frequency constraint on groups.

Global desiderata are as follows:

— Coverage Together, returned groups should cover most
users in the user data. While ideally we would like each
and every user to belong to at least one group, that is not
always feasible due to other local and global desiderata
associated with the set of returned groups.

— Diversity Returned groups need to be different from each
other in order to provide complementary information on
users.

— Distribution The behavior of members in selected groups
should follow a requested distribution (e.g., being homo-
geneous or being polarized).

— Number of groups The number of returned groups in
group sets should not be too high in order to provide
the analyst with an at-a-glance understanding of the user
data.

The following example demonstrates how the desiderata
defined above enable hypothesis generation.

Example 3 (Online advertising) We consider the process of
finding the best target audience for an online advertisement.
Amber, an advertising agent, is tasked to find the best target
audience worldwide for a promotion on the new edition of
the book “Rumi’s Secret” by Brad Gooch. Based on previous
best-selling reports,> she hypothesizes that the best place to

3 Jane Ciabattari: Why is Rumi the best-selling poet in the US? http:/
www.bbc.com/culture/story/201404 14-americas-best-selling-poet.
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look for this target audience is inside the USA. To find a target
group, Amber goes to BOOKCROSSING website* and focuses
on the set of 3800 reviewers of the book. Amber observes
that 89% of those users are covered with a group set whose
groups are “young reviewers in New York City,” “middle-age
reviewers in Seattle,” and “old females in Denver.” Beyond
coverage, these three groups are also diverse, i.e., they do
not overlap because their reviewers belong to different age
categories. Amber finds the second group promising, as it
is a homogeneous group (i.e., most users vote their reviews
with a high score). Thus, it is a candidate group for audience
targeting.

3.2 Challenges of GDISCOVER and solution
overview

The principled challenge for GDISCOVER is to quickly iden-
tify a group set that satisfies local and global desiderata. That
is a hard problem because of two following reasons:

— Huge candidate set First the pool of candidate group sets
is very large. Any possible combination of attribute value
pairs and items can form a group, and any number of
groups can form a group set.

— Need for multi-objective optimization The second rea-
son of hardness is that our user-centered objectives
(i.e., coverage, diversity and distribution) are conflicting
objectives. That means optimizing one does not neces-
sarily lead the best values for others. Thus, the need for a
multi-objective optimization approach that will not com-
promise one objective over another. Such an approach
would return the set of all candidate group sets that are
not dominated by any other along all objectives.

To tackle aforementioned challenges, we propose «-
DISCOVER, an w«-approximation algorithm which satisfies
local and global desiderata and ensures to find group sets that
are o-far from optimal ones. Since «-DISCOVER relies on an
exhaustive search in the space of all groups, we also propose
h-DISCOVER, a heuristic that exploits the lattice formed by
user groups and makes maximal pruning in order to speed up
the GDISCOVER process.

3.3 Group quality dimensions
We now formalize our user-centered objectives. We extend

a tuple (u, i) with attributes of u and i (i.e., A, and A;,
respectively) and a numerical rating score s, hence the tuple

4 http://www.bookcrossing.com.

becomes (aj,az,a;3 ..., s).5 We are given a subset of users
U CUandagroupset G C G.

Coverage is a value between 0 and 1 and measures the
proportion of users in U who are present in groups in G.
Coverage guarantees the quality of completeness, i.e., how
much of the input users (i.e., U) match with G.

coverage(G,U) = |Ugeg (u € U, u € g)|/|U| (1)

For instance, in Fig. 3, coverage(G, U) = 0.8 where G =
{g1, g2} and U describes Toy Story watchers.
Diversity is a value between O and 1 that measures how
distinct groups in group set G are from each other. Diversity
penalizes (exponentially) group sets containing overlapping
groups.

diversity(G,U) = 1/(1 + Xg geglu € U,
ueghruegl

)

For instance, in Fig.3, diversity(G, U) = 0.5. By con-
vention, if |G| = 1, we consider ¢ = U in Eq.2 which
leads the lowest possible diversity value. Diversity is useful
to obtain different aspects of the input subset of users. Note
that among different ways of defining diversity (e.g., Jaccard,
Cosine and Shannon Entropy), we chose the one in Eq.2 to
penalize overlaps exponentially.

Rating diameter A group set G may be characterized by its
rating distribution. The rating distribution of a single group g
is a histogram with cardinalities of rating scores provided by
g’s members. There are different ways of quantifying a rating
distribution. In this work, we consider a simple-to-interpret
linear measure called “rating diameter” which computes the
difference between the highest and the lowest rating scores
in a group (Eq.3).

diameter(G) =avemgegec(maxueg(u.s) —minureg(u/.s))

3

InFig. 3, diameter(G) = 3. The rating diameter in a group
provides analysts with the ability to tune the quality of found
groups according to specific needs. Example 3 is a good case
for homogeneity: by reporting a low diameter for the group
of middle-age reviewers in Seattle, Amber understands that
most individuals in that group have monotonous views on the
Gooch’s book. Generally, a user group may exhibit different
rating distributions:

— Homogeneous A homogeneous rating distribution shows
that all users in G have approximately agreed on a unique

> Note that this is just the way we illustrate the concept and of course
we do not make this concatenation on the user data in the database.

@ Springer
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ID Movie Name Gender Age Occup. Rating
ur Toy Story ~ John M young teacher 4

uz Toy Story Jennifer old = teacher
us Toy Story ~ Mary old  teacher
us  Titanic ~ Carine

us Toy Story ~ Sara young student

Us Toy Story Martin

3

2

old other 4
3
young student 5!
1

< B B B

uz  Titanic Peter young student

K \
gi={<gender,female>}
ge={<occupation,student>, <age,young>}

Fig. 3 Illustration of group sets. The figure illustrates 7 users and 3
groups. For instance, g| represents 4 female reviewers, and g, contains
3 young students. Note that there exists one member in common between
the two mentioned user groups

score. We use this rating distribution when we are seek-
ing a consensus between group members and to provide
a representative unique score for the whole group set. An
example for this rating distribution is the movie The God-
father in IMDb, as 53.7% of ratings are for the highest
score.

— Balanced A balanced rating distribution shows that
the preference of group members is equally distributed
among scores. A user group with balanced rating distri-
bution counts as a “neutral group”: there is no preference
for any score. A neutral group can be used as a reference
to see how other groups are biased toward a score.

— Polarized A polarized rating distribution shows that
group members have the farthest possible preferences
from each other. A real example for this rating distribu-
tion is the movie Fifty Shades of Grey in IMDDb, as 28.8%
and 15.9% of ratings are for the lowest and highest scores,
respectively.’

Based on Definition 3, a small value of diameter(G) leads
ahomogeneous group set G and a high value leads a polarized
group set G.

3.4 Multi-objective optimization principles

We propose to use the quality dimensions defined in Sect. 3.3
as optimization objectives. When dealing with more than
one dimension to optimize, there may be many incomparable
group sets. For instance, for a subset of users U C U, we can
form two group sets, G| with coverage(G1,U) = 0.8 and
diversity(G1,U) = 0.4 and G, with coverage(G,,U) =
0.5 and diversity(G,, U) = 0.7. Each group set has its
own advantage: the former has higher coverage and the
latter has higher diversity. Another group set Gz with
coverage(G3, U) = 0.5 and diversity(G3, U) = 0.2 has no
advantage compared to G, hence it can be ignored. In other
words, G3 is dominated by G1. In this section, we borrow

6 http://www.imdb.com/title/tt0068646/ratings ref_=tt_ov_rt.
7 http://www.imdb.com/title/tt2322441/ratings ?ref_=tt_ov_rt.
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the terminology of multi-objective optimization and define
these concepts more formally.

Definition 2 (Plan) A plan p;, associated to a group set
G, for a subset of users U, is a tuple (|G;|, coverage
(Gi,U),diversity(G;, U), diameter(G;)).

Definition 3 (Sub-plan) A plan p; is the sub-plan of another
plan p; if their associated group sets satisfy G; € G ;.

Definition 4 (Dominance) Plan p; dominates p; if p; has
better or equivalent values than p; in every objective. The
term “better” is equivalent to “larger” for maximization
objectives (e.g., diversity, coverage and polarization), and
“lower” for minimization ones (e.g., homogeneity). Further-
more, plan p; strictly dominates p; if p; dominates p, and
the values of objectives for p; and p; are not equal.

Definition 5 (Pareto Plan) Plan p is Pareto if no other plan
strictly dominates p.

In the example above, plan p; that corresponds to G
dominates p3 (for G3)and plan p; (for G1) strictly dominates
p3. Furthermore, p and p, are Pareto plans. The set of all
Pareto plans is denoted as P.

3.5 GDISCOVER problem definition

We define the GDISCOVER problem as a constrained multi-
objective optimization problem: for a given subset of users
U and integer constants o (frequency threshold) and & (size
threshold), the problem is to identify all group sets, such that
each group set G satisfies:

coverage(G, U) is maximized;
diversity(G, U) is maximized;
— diameter(G) is optimized;
-Gl < k;

VeeG:|gl>o.

The last constraint states that a group g should contain
at least o users, an application-defined frequency threshold.
Note that while we always maximize coverage and diversity,
we may either minimize (e.g., in case of homogeneity) or
maximize (e.g., in case of polarization) the diameter objec-
tive based on the analyst’s needs. We stress the fact that we
optimize only one diameter objective at a time. We state the
complexity of our problem in “Appendix.”

3.6 GDISCOVER algorithms

The main challenge in designing an algorithm for our
problem is the multi-objective nature of the problem. A multi-
objective problem can be easily solved in two following
cases.
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Algorithm 1: ¢-DISCOVER algorithm

Algorithm 2: 4#-DISCOVER algorithm

Input: k, o > 1, U
1 Py <
2 for all user groups g (already materialized for U) do
3 Dpg < construct_plan(g);
4 if pg is not a-dominated by any other plan in P, then
Py.add(pg)
end
for n € [2, k] do
for group sets G of size n do
pG < construct_plan(G);
if pc is not a-dominated by other plans in P, then
Po.add(pg)
10 end
11 end
2 return P,

e ® 9w

—

— Scalarization if it is possible to combine all objec-
tive dimensions into a single dimension and use typical
single-objective optimization algorithms (e.g., Random-
ized Hill Climbing Exploration);

— Consistent objectives if optimizing one dimension leads
an optimized value for other dimensions.

First, it is not possible in GDISCOVER problem to combine
all objective dimensions into a single dimension [21]. We
provide an intuition of the reason as follows. Let us consider
the sum aggregation function to combine coverage and diver-
sity values of a plan into a single score. Let p; and p; be two
plans corresponding to two group sets G| and G», respec-
tively, and coverage(G1, U) = 0.5, diversity(G1, U) = 0.8,
coverage(Ga, U) = 0.6 and diversity(G,, U) = 0.1. In this
case, the score of pj is 1.3 and the score of p> is 0.7. Hence,
we would prune p;, while it has a higher value for coverage.

Second, our objectives are conflicting, i.e., optimizing one
does not necessarily lead to optimizing others. We denote a
group set that optimizes all quality dimensions at a same
time, as zenith group set. Achieving the zenith group set is
infeasible in almost all problems. For instance, a group set
containing g1 = [female, young] and g» =[student, young] has
a high coverage for the American Beauty reviewers. How-
ever, its diversity is not high, because many young users are
also students.

In this paper, we discuss 3 different algorithms for our
problem: exhaustive, approximation and heuristic.

3.6.1 Exhaustive and approximation algorithms

The exhaustive algorithm starts by calculating Pareto plans
for single groups. Then it iteratively calculates plans for
group sets containing more than one group by combining sin-
gle groups. At each iteration, dominated plans are discarded.
The algorithm combines sub-plans to obtain new plans and
exploits the optimality principle (POO) for pruning [22]. This

Input: 0, k, o, U, n (number of iterations)
1P, <0
2 N < Set of intervals on diversity values
3 for n times do
4 Gy < random_groupsets(k, o, U)
5 G¥ < SHC(Gy, U)
6 interval < get_interval (G?)
7 Nlintervall.add (G7)
8 end
9 for interval € N' do
10 \ Keep non-dominated plans in interval and add them to P,
11 end
12 Pj, < optimize_diameter(Py,)
13 return Py,

approach makes an exhaustive search over all combinations
of groups to find Pareto plans, i.e., both time- and space-
consuming [21].

We propose to improve the complexity of the exhaustive
algorithm with our approximation-based algorithm which
makes less enumerations and guarantees the quality of
results. Another way of improvement is heuristic-based
which will be discussed in Sect. 3.6.2. For our approximation
algorithm, we exploit the near-optimality principle (PONO)
[22]. For simplicity, we use f(G) to denote the value of an
objective function f for a group set G.

Definition 6 (PONO) Given an objective f and o > 1 («
is a precision value), derive G’ from G by replacing G| by
G and G2 by G,. Then f(G)) = f(G1) x @ and f(G}) >
f(G2) x a together imply f(G’) > f(G) x a.

We formally prove that all our objectives (coverage, diver-
sity and rating diameter) satisfy PONO [23]. As PONO
overrides POO, a new notion of dominance is introduced
in Definition 7 to be in line with PONO.

Definition 7 (Approximated Dominance) Let ¢ > 1, a
plan p; a-dominates p» if for every objective f, f(G1) >
f(G2) x a where f € {diversity, coverage, polarization}
and f(G1) < f(Gp) x o where f is homogeneity.

Definition 8 (Approximated Pareto Plan) For a precision
value «, plan p is an «-approximated Pareto plan if no other
plan «¢-dominates p.

Itis shownin [22] that generating less plans makes a multi-
objective optimization algorithm run faster. This is because
the execution time heavily depends on the number of gener-
ated plans. Thus, a pruning strategy dictated by PONO is at
the core of an approximation algorithm for multi-objective
optimization.

We adapt the a-approximation algorithm proposed in [22]
to the context of our problem and propose «-DISCOVER
(Algorithm 1). The main idea is to exploit a bottom-up
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Algorithm 3: Shotgun hill climbing (SHC)

Input: Group set G, U

G* <0

while true do

C<~0

for g € G and each lattice-based parent g’ of g do
G' <~ G—{g}+1{gf

C.add(G’, coverage(G’, U))

end

let (G),, coverage(G
coverage

9 if coverage(G),,, U) < coverage(G, U) then
10 G* <G

11 return G*

12 end

13 | G<«G),

14 end

1
2
3
4
5
6
7
8

/

> U)) be the pair with maximum

dynamic programming approach. The algorithm begins by
constructing a plan for each single-user group (lines 2-5). We
keep all non-a-dominated plans of single groups in a buffer.
Then it builds group sets of size 2 up to size k using plans
in the buffer (lines 7—11). After each iteration, we remove
a-dominated plans from the buffer. At the end, we return the
buffer content. This approach creates a tree between group
sets, which we simply call group set tree. For instance in a
group set tree, two group sets {g1, g2} and {g3, g4} are chil-
dren of the parent group set {g1, g2, g3, g4}.

The crucial part of Algorithm 1 is its pruning mechanism
using the precision value «. In the special case of ¢ = 1,
the algorithm operates exhaustively. If &« > 1, the algorithm
prunes more and hence is faster. In the latter case, a new
plan is only compared with all plans that generate the same
result. But a new plan is only inserted into the buffer if no
other plan approximately dominates it. This means that o-
DISCOVER tends to insert fewer plans than the exhaustive
algorithm. The exhaustive algorithm inserts new plans if they
do not fall within the dominated area, but «-DISCOVER inserts
new plans if they fall neither into the dominated nor into the
approximately dominated area.

3.6.2 Heuristic algorithm

A heuristic algorithm has obviously its own advantages and
disadvantages. Although a heuristic algorithm does not pro-
vide any approximation guarantee, it eventually returns a
subset of Pareto set. Nevertheless, the fact that it generates a
subset of the Pareto makes it faster.

Algorithm 2 illustrates our heuristic algorithm
h-DISCOVER. The algorithm starts by making n different
iterations on finding optimal points to avoid local optima
(lines 3-8). Note that n is a user-defined parameter which
defines the number of efforts to reach the global optima.
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At each iteration, the algorithm begins with a random
group set of size k called G (line 4). Then a Shotgun
Hill Climbing local search approach [24] (SHC) is executed
(Algorithm 3) to find the group set with optimal value start-
ing from G, (line 5). SHC maximizes coverage. Diversity
is already divided into intervals A/ for each of which a
buffer is associated. N is also user-defined and relates to
the number of results in the output. The resulting group set
of SHC is placed in the buffer whose interval matches the
diversity value of the group set (line 7). SHC operates on
a generalization/specialization lattice whose navigation in a
downward fashion satisfies a monotonicity property for cov-
erage described in the following theorem.

Theorem 1 Given any two groups g and g’ where g is the
parent of g', the coverage of g is no smaller than the coverage

of g

Proof Given any two user groups g and g’ where g is the
parent of g’, let [, denotes g’s label. For g’ to be the child
of g, its label should necessarily contain at least one more
attribute—value pair. Thus, [, should be I, U {{a;, vi] )}, where
(ai, vl.j ) is the attribute—value pair which holds for all users
in g’ but not g. Thus, g covers all users which are covered
by g’ plus users U for whom {a;, vi]) does not hold. Thus, g
COVers as many users as g’ COvers or more. O

Finally, n different plans are distributed in different inter-
val buffers. The algorithm then iterates over interval buffers
to prune dominated plans (lines 9—11). Based on Definition 4,
a plan is pruned and removed from its buffer if it is domi-
nated by other plans. Finally, for each interval, we report one
unique plan that has the best value for the requested diame-
ter objective (line 12). The best value for homogeneity is the
lowest, while for polarization, it is the highest. If the rating
diameter is not specified or the rating score does not exist in
the user dataset, all plans in the buffer will be returned.

3.7 Group set retrieval

Hypothesis generation in GDISCOVER is performed via a
search platform. Once interesting group sets are fully mate-
rialized (by using either o-DISCOVER or /-DISCOVER), they
should be easily and efficiently accessible for search. Given a
set of search terms S, a naive approach is to scan each group
label in each group set and return the most relevant ones.
However, this brute-force approach is expensive: all group
sets and their internal groups should be compared with the
search terms. N

To overcome this challenge, we build a bit signature G for
each group set G which represents the presence (with 1s) and
absence (with Os) of attributes and items in the group label.
For a group set G, 6)[Titanic]= 1 iff the item Titanic exists
in at least one of labels of G’s groups. We build a hash index
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Algorithm 4: Group set retrieval algorithm

Input: Search terms S, hash structure H
1 min_distance < o0

2 g_S‘) <« bit_signatuare(S)
G < H[S).next()

3
4 while H’s end is not met do
5 distance <— hamming_distance( G, S)
6 if distance < min_distance then
7 min_distance < distance
—
8 Gour < G
9 end
—
10 G <« H[S].next()
11 end

—

2 return G,

on bit signatures and sort group sets based on their signature
values in chronological order. We denote this hash structure
as H. Algorithm 4 operates on H for fast verification of group
sets against search terms.

Algorithm 4 starts by forming a bit signature for search
terms S, to be comparable with group sets. Then the algo-
rithm iterates on group sets in H[S] and compares their bit
signature with §’s using “hamming distance” function. This
is a string metric function for measuring the edit distance of
Os and 1s to transform 8 into S [25]. All comparisons are
done using bitwise operations, hence is extremely fast.

4 Exploratory analysis on user groups

Unlike hypothesis generation (i.e., GDISCOVER in Sect.3)
and most common clustering methods [26], group sets in
exploratory analysis are not materialized in advance, but will
be generated on-the-fly based on the analyst’s preferences. In
the former context, the analyst has an explicit hypothesis in
mind to describe in form of search terms. In the latter, the ana-
lyst has a partial understanding of the task. To address that,
we introduce GNAVIGATE, an interactive user group analy-
sis approach which enables human-in-the-loop inspection of
user groups. The framework allows analysts to incrementally
discover interesting subsets of user data by exploring rele-
vant groups until landing on target groups. More specifically,
analysts are able to employ GNAVIGATE in two different sce-
narios: single-user target, i.e., finding a specific user in a
group (as in Example 2 where Tiffany is looking for a spe-
cific person) and multi-user target, i.e., explore group sets and
gather several users who may be scattered in different groups
of interest. Those scenarios cannot be performed with GDIS-

COVER, as there is no way to declaratively define the analyst’s
request which is iterative in nature. GNAVIGATE is built upon
three following key principles:

— P1I: The analyst must be able to navigate different groups
but not be overwhelmed with many options. We break the
navigation process of GNAVIGATE into successive steps
during which an analyst chooses a seed group, examines
the users it contains, manipulates group members (by
adding/removing users), and continues with the naviga-
tion process. This principle is in line with “enumeration”
and “insights” principles discussed in [27] for guided
interaction.

— P2: Groups offered to the analyst must be of high qual-
ity. Group sets in GNAVIGATE are not optimized in
advance against interestingness measures. Hence, group
sets offered at each step should be optimized on-the-fly.
In step i of the navigation process, the group set should
be relevant to the analyst’s choice in step i — 1, and also
be as diverse and covered as possible.

— P3: The train of thought of the analyst must not be lost.
Each interactive group navigation step must be fast. This
is in line with “responsiveness” principle discussed in
[27].

4.1 Group navigation primitives

Our navigation primitives, i.e., explore() and exploit() con-
stitute building blocks for navigating in user groups. We first
define explore() that is designed to navigate in the group
space in an outward way: starting from a set of users, it dis-
covers groups containing new users. Given a subset of users
U C U and a relevance threshold u, explore(U, G, i) finds
all groups in G whose overlap with U are at least u (Eq.4).

explore(U, G, 1) = {(g, overlap(U. 8))|g € G

“)
Ng # U Noverlap(U, g) > n}

In Eq.4, overlap(U, g) = lggil (i.e., Jaccard similarity

coefficient). The overlap condition provides a progressive
exploration of the space, which helps the analyst build an
incremental understanding of the underlying data.

When an interesting group is found, another operation is
exploit(), i.e., delving into the most interesting subgroups
contained in an input group (akin to “drill-down” operator
in OLAP for cubes [28]). Given a subset of users U < U,
exploit(U, G) finds all groups in G that are contained in U
(Eq.9).

exploit(U, G) = {g € §|g € U} %)
4.2 GNAVIGATE problem definition
The navigation of user groups relies on the two primitives,

explore() and exploit() (Egs.4 and 5, respectively), that are
applied to an input group. In order to comply with principles
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Fig.4 Incorporating coverage into diversity

P1 and P2, the number of groups returned to the analyst at
each step must be limited, and output groups must exhibit
diversity. Hence, we define the GNAVIGATE problem as fol-
lows: given a subset of users U C U, a relevance threshold
W, return k groups in G, referred to as Gy and is expressed
either as an exploration (i.e., opExplore) or an exploitation
(i.e., opExploit) problem depending on analyst’s needs.

For exploration, we define opExplore(U, G, u, k) that
must satisfy the following conditions:

- Gu C explore(U, G, )

- Gul =k

— diversity(Gy) is maximized, where diversity(Gy) is
defined in Eq. 6.

diversity(Gu) = Z(g,.0:)<Gy g1, (1 — overlap(gi, g2)).
(6)

For exploitation, we define opExploit(U, G, k) that must
satisfy the following conditions:

— Gy C exploit(U, G)

- Gul =k

— divCoverage(Gy) is maximized, where divCoverage
(Gu) is defined in Eq.7.

divCoverage(Gy) = diversity(Gy) x | | U gl/igry
g€y

In opExploit, the aim is to find k& groups that maxi-
mize coverage of the seed set U. Choosing k groups that
have the highest coverage may potentially cause high over-
lap between those groups. Figure 4, left, illustrates that,
with k = 2 and two highly overlapping groups g and g>.
Therefore, in opExploit’s case, we revisit the definition of
diversity in a way that it prioritizes k diverse groups which
cover as many users as possible in U. As there does not
exist a unique optimal solution for both diversity and cov-
erage (see Sect.3 and also [29]), the diversity formula is
modified by adding (| UgEcU gl/1U)) (see Eq. 7). For exam-
ple, in Fig.4, diversity({g1, g3}) = diversity({g1, ga}) =
1.0. Thus, for opExplore, both g3 and g4 can be chosen
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Table 1 GNAVIGATE actions

Action Description

keep(U, U") Keeps users U’ in U

add(U, ) Augments [y with [

remove(U, [) Removes /[ from [y

actUndo() Back-tracks to their previous step

with g1. However, for opExploit, g4 is preferred because
divCoverage({g1, ga}) > divCoverage({g1, g3}).

In addition to opExplore and opExploit, the analyst is
provided with a set of actions that could be performed on
a chosen group to transform it according to her needs. The
analyst examines the set of k groups at each step and chooses a
new input group on which one of the following actions could
be performed: keep(U, U’), add(U, ), remove(U, [) and
actUndo() to undo the previous step. Table 1 describes each
action.

Algorithm 5: GNAVIGATE algorithm

Input: g € G, op, u, k, timelimit
Gy < topk(L®)
Zour < get_next(L8)
while (timelimit not exceeded A overlap(g, gour) > 1) do
for g;, € G, do
if better_diversity(Gg, our &in» op) then
gg A replace(gg, gour,gin)
break
end
end
10 Gour < get_next(LY)
11 end
2 return G,

[T I - N7 S OV SR

-

4.3 GNAVIGATE algorithm

GNAVIGATE requires an efficient algorithm for dynamically
finding and comparing user groups. In “Appendix,” we show
that our problem is NP-complete by reductions from the
MAXIMUM EDGE SUBGRAPH problem for opExplore and
from the MAXIMUM COVERAGE problem for opExploit.
Prior to GNAVIGATE, we pre-compute an inverted index
for each user group g € G (as is commonly done in Web
search) in an offline step in order to speedup computing
group relevance. Each index L& stores all other groups in G
in decreasing order of their overlap with g. Thanks to the rel-
evance threshold p, we only partially materialize the indices.
In order to comply with principle P3, GNAVIGATE intro-
duces a time limit parameter, i.e., each step of GNAVIGATE
solves the group navigation problem (introduced in Sect. 4.2)
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and returns the best possible k groups within a given time
limit.

Algorithm 5 summarizes a single greedy procedure for
GNAVIGATE, be it opExplore or opExploit. The algorithm is
called at each step of GNAVIGATE. The algorithm admits as
input a user group g, an operation op (opExplore or opEx-
ploit), a relevance threshold 1, a size threshold &, and a time
limit timelimit, and returns the best k groups denoted Go.
Line 1 selects the most overlapping groups with g by simply
retrieving the k highest ranking groups in £8 in O(1). Func-
tion get_next(L8) (line 2) returns the next group g;, in £8 in
sequential order. Lines 3—11 iterate over the inverted indices
to determine if other groups should be considered to increase
diversity while staying within the time limit and not violating
the overlap threshold with the selected group. Since groups
in £8 are sorted on decreasing overlap with g, the algorithm
can safely stop as soon as the overlap condition is violated
(or if the time limit is exceeded.)

The algorithm then looks for a candidate group gou: € G,
to replace in order to increase diversity. The boolean function
better_diversity() (line 5) checks if by replacing g,,; by gin in
Gy , the overall diversity of the new Gy increases. Obviously,
the diversity of a group set G depends on the operation op.

The number of diversity improvement loops (lines 3—11)
is |£#] in the worst case. For each group g;, € G, we ver-
ify if the diversity score is improved by better_ diversity(),
hence O(k?). The time complexity of the algorithm is then
Ok .maxgeg|L8)).

5 Experiments

To evaluate the efficiency and effectiveness of our UGA
framework, we made an extensive set of quantitative and
qualitative experiments. All experiments are performed using
our prototype built on JDK 1.8.0 and conducted on an
2.4 GHz Intel Core i5 with 8 GB of memory on OS X 10.13.2
operating system. First, we introduce the datasets used in
our experiments (Sect.5.1). Then we discuss our qualitative
experiment in form of a user study for measuring the use-
fulness of our interestingness measures (Sect.5.2). Last, we
discuss quantitative experiments in Sect.5.3.

5.1 Datasets

The data model that we introduced in Sect.2 can be used
to model many different user datasets. Table 2 provides a
summary of statistics for the datasets used in our experiments.
MOVIELENS dataset contains records (u, i) representing that
user u votes formovie i. A score s is associated to each voting
action (based on a 5-star Likert scale). The dataset contains
1,000,209 anonymous votes of 6040 users on 3952 movies.
MOVIELENS provides four user attributes: gender, age, occu-

Table 2 Statistics on datasets

# users # items # attribs.
MOVIELENS 6040 3900 8
DM- AUTHORS 4907 11,890 4

pation and zipcode. We convert the numeric age into four
categorical attribute values, namely “teenager” (under 18),
“young” (18-35), “middle age” (35-55) and “old” (over 55).
We also convert zip-codes to states in the USA (or “foreign,”
if not in the USA) by using the USPS zip code lookup.?
This generates the location attribute which takes 52 distinct
values.

DM- AUTHORS contains 4907 researchers who have at least
3 publications in one of the following top data management
conferences’: WWW, KDD, SIGMOD, CIKM, ICWSM,
EDBT, ICDM, ICDE, RecSys, SIGIR and VLDB. We
crawled authors in October 2014 from DBLP!? for the period
of 2000-2014. A record (u,i) in this dataset means that
researcher u has contributed to item i where i can be a con-
ference, journal or a keyword (e.g., “data integration). The
main advantage of this dataset is that each user is known and
verifiable (unlike anonymous voters in other datasets). Thus,
we can check if resulted groups on this dataset are mean-
ingful. For each researcher, we collect following attributes:
seniority, number of publications, publication rate, venues,
topics and gender. More details on attributes are provided in
[30]. The number of all attribute values in DM- AUTHORS
dataset reaches 11,890. We provide public access to DM-
AUTHORS dataset.'!

5.2 Qualitative experiments

Most principled questions regarding the UGA framework
are as follows: “does group-based analytics provide more
insights than individualistic analytics?”, “if groups are pre-
ferred to individual users, are diversity and coverage ‘good’
measures to capture high quality groups?” The usefulness of
our UGA framework depends on these questions. To find an
answer, we performed a user study in Amazon Mechanical
Turk'2 (AMT) with 50 participants (i.e., workers in AMT)
and asked them to perform a few tasks on UGA. Some statis-
tics about these participants are mentioned in Table 3. We rely
on the state-of-the-art in Information Retrieval and Databases
where an agreement was established on the way user studies

8 http://zip4.usps.com.
9 Based on Google Scholar: https://goo.gl/r4FaLh.
10 http://dblp.uni-trier.de/db/ .

' DM-Authors dataset: http://dx.doi.org/10.18709/PERSCIDO.2016.
10.DS32.

12 https://www.mturk.com/.
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Table 3 Distribution of participants in user study

Age Between 19 and 50 (med. 32)
48% males and 51% females
53% USA, 33% India
33% applied sciences

Gender distribution
Location distribution

Occupation

are deployed [31]. To remove “bias” from our study, we pick
a task at random at each iteration of the user study [32]. As
tasks are independent from each other, participants can rest
between tasks to avoid the effect of “fatigue.”

Summary of results Our user study shows that groups pro-
vide more actionable insights when compared to individual
users. Analysts need a shorter time-to-insight to derive intu-
itions from groups (less than a minute in most cases). We
also observe that groups enable a tighter decision-making
loop by providing compact and aggregated pieces of infor-
mation about users. We also compare diversity and coverage
with other common interestingness measures in the litera-
ture and show that they are the preferred measures for group
analytics. We also show that diversity highly correlates with
informativeness (maximizing diversity leads less redundancy
in results which enables more informative facets to appear),
and coverage corresponds to representativeness (larger cov-
erage leads a higher probability that almost all facets of the
input users are represented.)

5.2.1 Group-based versus user-based analytics

In the first part of our user study, participants were given
two pieces of information, side by side. The first piece is an
exhaustive list of researchers (containing information about
each researcher) and the second piece is the exhaustive list
of groups (containing group labels). Participants were asked
to mark at least “ten prolific young female researchers” (on
DM-Authors dataset) in both lists. All groups contain at least
3 and at most 10 members for a fairer comparison with the
user list. Participants can either scroll or perform a text search
to reach users and groups of interest. Note that the task is
not straightforward as being “prolific” is not defined in the
dataset (see [30]), hence participants should check users and
groups and decide if they satisfy the requested researchers.
We measure time-to-insight as one of the main key per-
formance indicators in any data analytics solution. It is
defined as the amount of time that participants need to find
requested researchers in lists. Figure 5 illustrates the results.
On average, participants needed 3.40 min on the group list
and 6.37min on the user list. We segment time-to-insight
values into more understandable intervals in Data Science
applications: 1min is the safe time limit to keep track of
the analyst’s train of thoughts, while an analysis session of
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Fig.5 Analysis of time-to-insight

10+ min indicates a serious interruption and unnecessary
complication in the process [33]. We observe that the group-
based task often terminates either in less than a minute or in
2-3min. Conversely, the user-based task is mostly done in
5-10min. We also note that absolutely no participant termi-
nated a user-based task in less than a minute and only 4%
performed in less than 2min. Also note that the number of
participants with a time-to-insight of 10+ min is one order
of magnitude higher for the user-based case.

While we can easily conclude that group-based analytics
means faster access to relevant user data, we also need to ver-
ify the amount of participants’ mistakes for each approach
(group-based vs user-based). In other words, we are inter-
ested to find out which approach is more useful by enabling
participants to commit fewer errors in the analysis task. We
associate an error rate between 0 and 100 to each partici-
pant which is proportional to the number of his/her missed
and wrongly detected groups and users (according to the
requested researchers). We observe that the average error
rate (i.e., the lower the better) for the group-based case is
8.5 and for user-based is 20.7. A two-sample ¢ test confirmed
that the difference in error rates is significant. We conclude
that group-based analytics is more advantageous with shorter
time-to-insight.

We also ask participants to describe their experience of
employing group and user lists in a free text. Some partici-
pants mentioned that they performed an easier and simpler
“search” on groups rather than users, mainly thanks to a bet-
ter organization and aggregation of user data in groups. They
also noted that “group labels” enable early decision making.
They also mentioned the following comments.

It is frustrating that each and every user in the user
list should be verified, as there is no means to skip
some. User list inspection would have been faster
without the unrelated information. The presence of
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many (potentially uninteresting) attributes for each
researcher complicates the decision-making process
and makes the search action quite tricky.

The aforementioned comments highlight the importance
of a group-based vision for user data analytics.

5.2.2 Interestingness measures

Among various interestingness measures discussed in the lit-
erature [10,34], we consider diversity and coverage as our
global measures to obtain high-quality group sets both in
GDISCOVER and GNAVIGATE. We passed two phases to val-
idate our choice. First we performed a pilot study prior to
our AMT study to compare various interestingness measures
together. Once we obtained the majority of votes for diversity
and coverage, we asked participants in AMT about their pref-
erence on groups generated with and without diversity and
coverage. Note that in this experiment, we generate results
with GDISCOVER. This is because we investigate on group
sets in isolation (i.e., in connection with no other group set).
Navigational aspects of UGA (i.e., GNAVIGATE) is discussed
in Sects.5.3.4 and 5.3.5 .

Pilot study In our pilot study, we recruited 35 local col-
leagues of our research laboratory, in person. We compare
GDISCOVER group sets with the competitors generated using
other interestingness measures. We ask participants to choose
the most useful group set and justify their selection. Justifi-
cations can be Ji: understand who does what, J>: discover
new users and J3: understand the whole data. The use-
fulness is judged based on the expressivity of group sets
for the requested researchers. We consider four following
interestingness measures as competitors (following the most
common measures discussed in [10] and the most common
employed in Data Science applications [35]):

— Frequency Optimizing frequency results in the largest
groups possible (i.e., containing many group members).

— Reliability To be reliable, groups should confirm each
other. Optimizing reliability results in most overlapping
groups.

— Novelty Groups convey novel information if they don’t
repeat themselves. Optimizing novelty results in least
overlapping groups.

— Conciseness Based on Occam’s razor principle [36], the
best choice is the one described with less information. A
most concise group set has very short group labels.

Figure 6 illustrates the results. The left chart shows the
average percentages of responses for each method and the
right chart shows the justifications. GDISCOVER dominance
on other competitors is apparent by acquiring 40% of prefer-
ences. The second winner is conciseness with 25% of votes.

0|
60 - .|

Preference (%)

Preference (%)

s
T
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GDISCOVER Frequency Reliability ~ Novelty Conciseness A T2 Js

Fig.6 Preference results for the pilot study on interestingness measures
(left) and justifications (right)

It reveals as a side note that beyond diversity and coverage,
shorter descriptions influence better understanding of user
data as well. We also observe that “too many overlaps” are
annoying as most frequent groups are voted as the least use-
ful. Also, our participants highly justified their choices as
being “helpful to understand who does what,” which certi-
fies that optimizing diversity and coverage provides shortcuts
for user behavioral analytics.

AMT User Study Our pilot study confirms our choice of
interestingness measures. But one question is still unan-
swered: “are coverage and diversity useful for user group
analytics?” For this study, we consider four baselines of
GDISCOVER each of which generates a group set: DIVERSITY-
ONLY which maximizes diversity but not coverage,
COVERAGE- ONLY which maximizes coverage but not diver-
sity, BOTH which maximizes both diversity and coverage
(i.e., full functionality of GDISCOVER), and RANDOM which
optimizes nothing and returns a random set of groups. For
each group set generated by one the above baselines, we ask
participants to provide a preference score (between 0 and 5)
for two following measures which quantify the usefulness of
the group set.

— Representativeness It reflects the extent to which the
group set reflects the content of the input subset of users.
The score 0 denotes the lowest representativeness and 5,
the highest.

— Informativeness It reflects the extent to which the group
set provides useful insights into the input subset of users.
The score 0 means that no information is conveyed, 5
means being fully informative.

To better understand the difference between representa-
tiveness and informativeness, we consider an example subset
of users described as “students of Computer Science in
France.” The following group set with two groups is highly
representative: [student, studying Computer Science], [stu-
dent, living in France, studying engineering]. However, it
is not informative enough, as it contains redundant infor-
mation and does not convey adequate novelty. On the other
hand, the following group set is highly informative: [male,
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Fig. 7 Independent user study by reporting informativeness (I) and
representativeness (R) for DIVERSITY- ONLY (right), COVERAGE- ONLY
(middle) and BOTH (right)

teacher assistant student on Data Mining, studying in Uni-
versity of Paris-Sud], [female, student, living in south of
France, studying Computer Science]. However, this group
set is not representative enough as it is not descriptive for
many computer science students in France. The following
group set constitutes a good compromise between represen-
tativeness and informativeness: [student, living in France,
studying Computer Engineering], [student, studying Com-
puter Science]. Although there are still missing members of
the input users who are not described with neither of the
above groups, but a majority is captured.

The evaluation of our baselines consists of an indepen-
dent study where each baseline is evaluated separately, and a
comparative study where results of competitive methods are
evaluated together.

Figure 7 illustrates the results for the independent study.
The aim of the independent study is to check the quality of
each baseline by itself. For each baseline, we show in per-
centage the score of representativeness and informativeness.
While there is no significant difference between the scores
in the case of BOTH (4.12 for informativeness and 3.92 for
representativeness), there is a supremacy toward represen-
tativeness for COVERAGE- ONLY (scoring 3.7 vs 2.9) and
toward informativeness for DIVERSITY- ONLY (scoring 4.2
vs 3.2). Diversity alone raises the score of informativeness
by illustrating various aspects of the input users. However,
it fails to fully represent the users, as the resulting group set
may not express all of them. Also coverage raises the score of
representativeness as its results hold for most users, but they
may not be necessarily informative due to too many overlaps.

Our independent study resulted in many false positive and
false negative results which we eventually removed. They
were mainly due to participant’s confusion between data
attributes and the semantics of our measures. For instance,
few participants thought that a group set with more under-
represented attribute values (e.g., females) becomes more
representative. Few others thought that having longer group
labels make a group set more informative. Some others
thought that when they don’t see an attribute in a group set
(e.g., gender), it is not representative. To remove all these
wrong assumptions, we attached explicit descriptions to the
AMT task with illustrative examples.
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Fig. 8 Number of pairwise preferences for each baseline in the com-
parative study for informativeness (top) and representativeness (bottom)

In the comparative study, we show a pair of baselines at a
time side by side, and ask the participants which one is more
informative and representative. We then count the number of
times each baseline is preferred to its competitor. Figure 8
illustrates the results. Numbers on the slices of pie charts
show the absolute number of times (out of 50, i.e., the number
of participants) that the method is preferred to its competi-
tor. For instance, COVERAGE- ONLY is preferred 35 times
to DIVERSITY- ONLY for representativeness. We observe fol-
lowing insights into our comparative study.

— Obviously, RANDOM has the lowest preference. The
extreme case for informativeness is DIVERSITY- ONLY
vs. RANDOM where the former wins in 86% of cases. Also
in representativeness, COVERAGE- ONLY wins RANDOM
in 94% of cases. Note that although RANDOM has chunky
slices on the pie charts, but the numbers on them are low.

— For informativeness, the results are consistent with the
independent study, where there is a bias in preference
toward diversity. This finding is statistically significant as
F =457 > Fcritical where Fcritical = 2.71 in ANOVA
settings. DIVERSITY- ONLY wins COVERAGE- ONLY in
68% of cases. However, the most successful baseline for
informativeness is BOTH which has the highest number
against both DIVERSITY- ONLY and COVERAGE- ONLY
with 62% and 68% of wins, respectively.

— For representativeness, the results are also consistent
with the independent study, where there is a bias in
preference toward coverage. This finding is statistically
significant as F' = 3.13 > Fpiricar in ANOVA settings.
In this case, DIVERSITY- ONLY solutions are beaten in
70% of cases against COVERAGE- ONLY. Still the winner
is BOTH which bestows preferences of 78% and 48% to
DIVERSITY- ONLY and COVERAGE- ONLY, respectively.

Figure 9 represents a summary of our comparative study
where all preference counts for each baseline is summed up
(illustrated in percentage). We observe that a good majority of



User group analytics: hypothesis generation and exploratory analysis of user data

E D1vERSITY-ONLY
O CovERAGE-ONLY
O Boru

O RanDoM

Fig.9 Sum of preferences per baseline for informativeness (left) and
representativeness (right)

preferences goes to DIVERSITY- ONLY in case of informative-
ness, and to COVERAGE- ONLY in case of representativeness.
We conclude that “coverage” and ‘“diversity” alone can
capture a good amount of representativeness and informa-
tiveness, respectively. However, when combined, they absorb
more preferences as both usefulness aspects are satisfied.
BOTH generates group sets which represent the input users
(by maximizing coverage) and convey maximal informa-
tion (by maximizing diversity). This is why it owns at least
one-third of preference votes for both informativeness and
representativeness.

One interesting observation in our comparative study is
that participants find COVERAGE- ONLY more compensative
than DIVERSITY- ONLY. Because in case of representative-
ness, COVERAGE- ONLY is preferred as much as BOTH (i.e.,
36%) and in case of informativeness, it can still gain 21% of
preferences. When we analyzed free texts, we realized that
for most participants “being representative” has a higher pri-
ority than “being informative.” In other words, they prefer
to first make sure they have everything they need for their
analysis task, and then think of informativeness. However,
a combined approach proposed in UGA framework satisfies
both priorities at the same time.

5.3 Quantitative experiments

In this section, we evaluate the quantitative aspects of our
UGA framework. Albeit we discussed the usability of our
approach in Sect. 5.2, we still need to analyze the efficiency
of the UGA framework. Particularly, we are interested to
address following concerns in UGA.

— C1. In both GDISCOVER and GNAVIGATE, there exists a
parameter k which denotes the size of the output group
set. What is a good value for k and how can an analyst
tune k based on her analysis needs? How does k affect
UGA’s overall performance?

— C2.In GDISCOVER, why is it necessary to optimize objec-
tives simultaneously (i.e., multi-objective optimization)?

— C3. Which one of the #-DISCOVER and o-DISCOVER algo-
rithms are faster? What are the influencing factors?

— C4. In GNAVIGATE, what does a “good” navigation on
user groups mean? What factors do impact the fruitful-
ness of a navigation?

— CS. Does there exist a principled methodology to eval-
uate the need for an interactive multi-step user group
navigation approach?

In the following sections, we discuss the aforementioned
concerns in details. In C1 to C3, we focus on MOVIELENS,
because “user behavior” (i.e., voting) can be quantified with a
rating score. As our experiments on other quantified behavior
datasets (e.g., BOOKCROSSING) led to nearly identical results
[23], here we only report MOVIELENS in the interest of space.
For our quality-based experiments C4 and C5, we employ
DM- AUTHORS to analyze user behaviors in more details.

Summary of results Through our extensive set of quantita-
tive experiments, we show that groups with minimum size
of 10 and group sets with size [3—5] are the best fit for ana-
lyst consumption. We also observe that the multi-objective
nature of GDISCOVER provides outstanding group sets where
no quality dimension is sacrificed for others. We show that
the approximation variant of GDISCOVER generates high-
quality group sets, while the heuristic variant generates a
subset in a more reasonable time. We also show that GNAV-
IGATE provides an effective navigation means which leads a
knowledgeable analyst to successfully construct a program
committee in 8 steps.

5.3.1 C1: group set size

It is shown in previous research [37] that offering at most 7
choices to an analyst matches perfectly her perception capac-
ity. In this experiment, we vary k (number of groups in an
output group set) between 2 and 10 and verify its influence
on UGA. A smaller k means that the analyst receives smaller
group sets in iterations of GNAVIGATE and in search results
of GDISCOVER. We employ four different subsets of users
on MOVIELENS: users voting for a movie with many ratings
(i.e., American Beauty), few ratings (i.e., Celtic Pride), high
rating scores (i.e., Kazaam) and low rating scores (i.e., San-
juro). We want to verify if there is any correlation between
the indicating factors of the user subsets and the parameter k.

Figure 10 illustrates the results. In the left chart, we plot
the execution time of GDISCOVER to generate the exhaustive
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—o—  Sanjuro =S —o—  Sanjuro
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Fig. 10 Effect of k on execution time (left) and number of group sets
(right)
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set of all group sets. In the right chart, we show the percentage
of materialized group sets comparing to all possible group
sets. Note that we employ GDISCOVER in this experiment
to evaluate the exhaustive behavior of UGA. GNAVIGATE’s
execution time subsumes GDISCOVER’s. For all subsets of
users, increasing k leads decreasing the size of the result
space. Indeed, a bigger k means having larger group sets and
less results. Nevertheless, for cases with less than 1000 users,
the decrease is negligible. Also the execution time grows
linearly with k. We often set k to values between 3 and 5 as
they provide a good compromise between time (less that 10's
on average) and number of results (between 40 and 70% of
all group sets).

5.3.2 C2: need for multi-objective optimization in
GDISCOVER

In GDISCOVER, we return group sets which have optimized
values on coverage, diversity and diameter. But the princi-
pled question is “what is the added value of multi-objective
optimization?” We first compare GDISCOVER with a single-
objective optimization method and then discuss the relations
between our objectives.

In the same context, one returned group set by GDIs-
COVER is the following: Ggpiscover = {84, &5, 86} Where
g4 = [female, young], g5 = [young, living in Wash-
ington DC] and g = [male, teenager]. The objective
values for Ggpiscover are as follows: coverage(G gpiscover, U)
= 0.79, diversity(Ggpiscover» U) = 0.33 and
diameter(Ggpijscover,» U) = 0.11. This group set has opti-
mized values on all objectives. Specifically, it has a high
diversity as only 2 female users are both young and residents
of Washington DC. It also shows that min_c in MRI is a hard
constraint and can easily miss a promising result which has
a very high coverage but does not meet the threshold.

Consistency of objectives We already discussed that consis-
tency of objectives transforms the multi-objective optimiza-
tion problem into a simple single-objective optimization one
which is trivial to solve (Sect.3.6). In this experiment, we
verify if our objectives (diversity, coverage and rating diam-
eter) are consistent. We maximize coverage and observe how
values of diversity and diameter evolve. To maximize cover-
age, we use Algorithm 3 discussed in Sect.3.6.2. Figure 11
illustrates the results of four different input subset of users in
MOoVIELENS. Each point illustrates the objective values for
each of 20 runs. We observe that in general, no correlation
exists between the optimized value of coverage and other
objectives, hence the need for simultaneous optimization of
all quality dimensions.
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Fig. 11 Conflicting objectives in MOVIELENS. Movie title initials
(American Beauty, Celtic Pride, Sanjuro and Kazaam) are illustrated
on points

5.3.3 C3: comparison of GDISCOVER algorithms

The heuristic and approximation variants of GDISCOVER
cover separate scopes of applications. o-DISCOVER can be
employed in an archival context to produce an exhaustive set
of user group sets with a precision defined by « for fur-
ther analysis. On the other hand, in a streaming context,
h-DISCOVER is beneficial thanks to its immediate genera-
tion of a representative subset of results. In this experiment,
however, we compare these algorithms in terms of efficiency
and quality of results. To conform with the state-of-the-
art on evaluating multi-objective optimization approaches
[38,39], we consider three different aspects for evaluating
our two algorithms, c-DISCOVER and /#-DISCOVER: “cardi-
nality,” “diversity” and “coverage.”

Cardinality-based quality We employ ONVG'? measure
[38] to verify the number of solutions returned by o-
DISCOVER and ~-DISCOVER. We consider 3 different instances
for each algorithm: for «-DISCOVER, we consider instances
witha = 2 (A),« = 1.5 (B) and @ = 1.15 (C), and for
h-DISCOVER, we consider instances with 5 (D), 10 (E) and
40 (F) diversity intervals. We run this experiment only with
4 largest subsets of users, as small subsets exhibit a simi-
lar predictable behavior [40]. As there is a direct correlation
between the number of solutions and the execution time [22],
we also report the performance of our algorithms.

Figure 12 illustrates the results of the ONVG study. As
expected, in general the number of group sets generated by -
DISCOVER is one order of magnitude less than o-DISCOVER.
In both algorithms, the number of users plays an important
role and increases the number of solutions. Also a data-
centric observation in Fig. 12 reveals that more users lead
more groups, hence worse performance (which is the case
for the movie American Beauty).

Diversity-based quality We examine the distribution and the
extent of spread among the solutions of the Pareto front. We
report A-metric [41] as the most accepted diversity-based

13 Overall Non-dominated Vector Generation.
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Fig. 13 Distribution and the extent of spread among group sets in
diversity intervals

evaluation measure in the literature [38]. Figure 13 illus-
trates the results for different intervals and different input
user subsets. The left chart illustrates the standard deviation
for the number of group sets in intervals. If for an input subset
of users, all intervals contain the same number of solutions
(hence uniform), then the standard deviation is equal to zero,
hence a better spread. Also, the right chart illustrates number
of intervals with absolutely no solution, i.e., empty inter-
vals. We observe a high heterogeneity when n < 10 for all
input subsets of users. This means that by considering less
than 10 intervals, we will potentially miss many Pareto plans.
On the other hand, increasing the number of intervals leads
to increasing the number of empty intervals which has the
same consequence, i.e., missing Pareto plans. We then fix
n to 10 as it exhibits the best tradeoff between heterogene-
ity and emptiness. This value of n increases the chance of
discovering more Pareto plans in ~-DISCOVER, but as some
amount of heterogeneity still remains even for n larger than
10, we cannot consider #-DISCOVER as a safe replacement
for ar-DISCOVER.

Coverage-based quality Beyond cardinality and distribu-
tion of results, we also verify the coverage of the objective
space using the Pareto compliant S-metric (aka, hypervol-
ume) [42]. For each algorithm, we report the area covered
between its generated solutions and a reference point, using
normalized Lebesgue measure. The reference point is often
picked as the least interesting point in the objective space,
i.e., where all objectives (i.e., diversity, coverage and rat-
ing diameter) are equal to zero (assuming polarization is
requested, hence maximizing diameter). Note that S-metric
is only usable when all the objectives are convex. This is the

case for our three objectives as all of them have a nonnegative
second-order derivative (see Egs. 1,2 and 3 ).

We employ the same subsets of users and same instances
of algorithms that we used for cardinality-based evaluation,
i.e., o values of 1.15, 1.5 and 2 for «-DISCOVER, and 5, 10
and 40 diversity intervals for #-DISCOVER. In general, we
observe that the heuristic algorithm generates areas which
are on average 22% smaller than the ones for the approxima-
tion algorithm. The largest area is obtained when o = 1.15
for @-DISCOVER (considering a normalized Lebesgue value
of 1.0) and n = 40 for h-DISCOVER (having a normalized
Lebesgue value of 0.73). Also for each separate algorithm,
there is a linear growth in area by increasing the approxi-
mation area (i.e., decreasing «) and increasing number of
diversity intervals. It obviously shows that there is a direct
correlation between the coverage area and the number of
solutions. At the same time, the results of the heuristic algo-
rithm exhibit a good compromise, as the shrinkage of its area
is not drastic comparing to «-DISCOVER.

Overall quality We report C-metric [42] to perform an over-
all comparison between our two algorithms, ¢-DISCOVER and
h-DISCOVER. This comparison depicts the collective behav-
ior of the methods regarding cardinality, distribution and
coverage. For two multi-objective optimization algorithms
X and Y, C(X, Y) measures the number of times that X’s
solutions are dominated by at least one solution of Y.

For our algorithms, we count the number of times each one
dominates the other in pairwise comparison of their group
sets. We consider @ = 1.15 for a-DISCOVER and n = 40
for h-DISCOVER. We denote the set of «-DISCOVER gener-
ated group sets as P, and the set of #7-DISCOVER generated
group sets as P,. We observe that for all input subset of
users in MOVIELENS (introduced in Sect.5.3.1), at least 62%
of group sets in P, are dominated by P,’s. This is because
a-DISCOVER generates the complete set of a-approximated
Pareto plans, while 4#-DISCOVER materializes a subset. For
instance, for the movie American Beauty, «-DISCOVER gen-
erates 16 times more solutions than the heuristic algorithm.

Evidently the solutions in P, are either as good as P,,’s or
worse. Concerning the huge difference in the size of solution
sets, potentially a fairer comparison is to consider objective
values to neutralize the influence of size. We observe that
h-DISCOVER can achieve a supremacy over o-DISCOVER in
39.4% of cases. This is a promising result for #-DISCOVER
which is in line with our findings regarding the dominance
comparison.

5.3.4 C4: navigation quality
For GNAVIGATE, we are interested to measure usability and

find out what kind of navigational approach constitutes a
“good” navigation. Then we validate whether GNAVIGATE
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Fig. 14 Number of steps in GNAVIGATE for PC construction. The figure
illustrates the results for the 2014 edition of the conferences. For VLDB,
we only considered “review board” members. Also for CIKM, we only
considered the “knowledge management” track

performs a fruitful navigation on user groups. In other words,
we want to verify whether the sequence of group sets offered
by GNAVIGATE appeals interesting to analysts. For this aim,
we first evaluate the overall process of navigation and then
delve into influencing human factors.

Number of steps to reach target We verify the utility of our
navigation component using a realistic example: building the
program committee (PC) of major conferences/workshops in
data management using DM- AUTHORS dataset. For a given
PC, we start from 5% of its members and use GNAVIGATE
to find the remaining ones. Target PC members should be
found in user group sets proposed in different interactive
steps of GNAVIGATE. Figure 14 reports the number of steps
to discover 50% and 80% of PC members as the average of
50 runs of GNAVIGATE for each PC.

We can observe that any PC selection can be done in 12.04
steps on average. CIKM’s PC is the hardest to discover and
WebDB’s the easiest. Our conjecture is that two key fac-
tors influence that: PC “size” and PC “diversity.” Indeed, the
PCs of VLDB, CIKM and SIGMOD contain over 100 mem-
bers, while WebDB is smaller. This is why the former require
a higher number of steps to cover 50% of their members
(6.7, 6.5 and 5.9 steps respectively). In addition, the average
pairwise Jaccard similarity (computed based on the profile

(A)

(8)

of researchers) between PC members of CIKM is 7.35. This
high diversity results in more steps to reach 80% of their
PCs (8.3 and 8.1 steps, respectively). SIGMOD has the least
heterogeneous PC which leads to 4.8 steps to reach 80% of
its PC. We also consider “disconnectedness,”’ i.e., the aver-
age number of PC member pairs that have no attribute in
common. We observe that there exist a direct relationship
between diversity and disconnectedness, i.e., CIKM confer-
ence has also the highest disconnectedness score, i.e., 5.72
versus 0.48 for WebDB for instance.

Human factors in navigation We characterize different PC
selection scenarios based on two human factors: expertise
and a priori knowledge. To measure the effect of expertise,
we consider two cases: a “knowledgeable” versus a “novice”
PC chair. For the factor of a priori knowledge, we consider
different starting points for the chair to build the PC: “a subset
of the final PC,” “a subset of the previous year’s PC,” and a
set of “arbitrary researchers outside the PC.” We observe
in general that GNAVIGATE can reach the target in 8 steps
in case of a knowledgeable analyst. We also observe that
a non-expert is more biased toward opExplore to discover
the unknown space, while a knowledgeable chair uses both
opExplore and opExploit. In the interest of space, we only
review few scenarios.

In the KNOWIN scenario (Fig. 15), a knowledgeable ana-
lyst starts with a subset of the final PC, i.e., George Fletcher,
Martin Theobald, Sebastian Michel, and Xiaokui Xiao, and
selects the last two as a seed group (because they are pro-
lific young researchers with a high number of publications.)
Exploring this group results in 3 groups out of which the one
labeled with “SIGMOD?” (the conference that hosts WEBDB)
contains 4 researchers of interest (Lucian Popa, An-Hai
Doan, Michael Benedikt and Sihem Amer-Yahia). The ana-
lyst then uses remove and then add actions to replace the
predicate “high publications” with “data integration” (i.e.,
the WEBDB main theme in 2014) and decides to exploit the
resulting group. In step D, the analyst keeps only Piero Fra-
ternali and Felix Naumann among 12 group members using
keep action. This action makes it easier to reach groups con-

keep
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Fig. 15 Scenarios KNOWIN (top) and KNOWOUT (bottom) (k = 3)
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taining items like “SIGMOD” (Piero Fraternali and Felix
Naumann have 9 and 6 SIGMOD publications, respectively)
and “ICDE” (e.g., Felix Naumann has 14 ICDE publications).
Up to step E, the analyst is able to find 14 out of 15 PC mem-
bers. The missing PC member is Jian Li. To understand why
GNAVIGATE missed this member, we compare Li’s activities
with all other WEBDB 2014 PC members’, and find that Li’s
research areas differ significantly from other PC members.
This is a limitation of our approach where the consideration
of relevance makes it hard to find users who are different
from others.

In the KNOWOUT scenario, the knowledgeable analyst
starts with Jure Leskovec and Arno Siebes, two researchers
outside the final WEBDB PC. The opExplore operation first
finds k-related groups that expand possible candidates. In
step H, the analyst encounters the same group as in step A
of scenario KNOWIN. This shows that in this case, a knowl-
edgeable analyst only needs 2 more steps to reach relevant
groups from a random departure point.

In scenarios with a junior PC chair (i.e., lack of expertise),
we observe that the analysis is mostly done by opExplore.
We also observe a tendency to manipulate group labels rather
than group membership (specific researchers in groups). In
case the junior chair starts with researchers outside the final
PC, she repeatedly abandons a path and starts again with
different groups.

5.3.5 C5: GNAVIGATE evaluation

Beyond the “collective” aspects of GNAVIGATE, we evaluate
our navigation system for reaching a single target goal. For
this experiment, we use a synthetic dataset which is generated
to scale up MOVIELENS. It is a matrix M with 3 x 107 cells,
where random squares with at least 10 users (i.e., 0 = 10)
filled with 1, represent user groups. Then, we randomly mark
50 groups as targets denoted as Gyqrger-

We propose a measure called “Average Target Arrival”
(ATA), i.e., the average number of iterations to reach a target
group starting from a non-target group. We compare GNAVI-
GATE with three classes of baselines, namely UNSUPERVISED,
OPTIMAL and NAVIGATIONAL. Briefly, if m| and m, are two
different methods and ATA(m) < ATA(m»), then m is con-
sidered faster and conceived a better option for navigation.
Note that the concept of ATA differs significantly from find-
ing the shortest path. For the latter, we assume the starting
and target points are known, while this is not the case in a
navigation process.

Algorithm 6 illustrates how ATA is computed. We designed
200 different sessions each of which has a different synthetic
dataset and is repeated 100 times for each method. Hence, we
compute 20,000 ATA values for each one of the baselines. For
arandom group g4, kK groups are returned using method, and
a random choice between opExplore and opExploit (how-

Algorithm 6: ATACompute algorithm

Input: G, Guurger, k. 11, g, len, method, maxlen
Output: length of navigation path
1 if ¢ € Giurger then return len if len > maxlen then return -/
//lost path Gy <— choose(opExplore(g, G, i, k, method),
opExploit(g, G, k, method))
2 foreach g € G do
3 ‘ ATACompute(G, Guarger, k. 1, &, len + 1, method, maxlen)
4 end

Time (s)

100 L I L L L I I I I I
0 10 20 30 40 20 40 60 80 100

k k

Fig.16 Comparison of GNAVIGATE and UNSUPERVISED (left) and time
for maximal diversity in GNAVIGATE (right)

ever, the algorithm starts always with an opExplore). Each
of the k groups becomes the new seed. This depth-first recur-
sive call terminates either when one group in Gy, is found
or when a path of length 50 has been built (the default value
for maxlength). These recursive calls form paths inside the
group space. A path is called valid if its last group belongs
t0 Gyarger- The ATA is computed as the average of valid path
lengths for each method.

Comparison with UNSUPERVISED baseline. We compare
GNAVIGATE with a variant of k-MEANS (as a representative of
clustering approaches) with “Jaccard” as the distance mea-
sure. At each step, both GNAVIGATE and k-MEANS return
k groups while respecting the time limit. Any number of
iterations is allowed for k-MEANS within timelimit. We then
report ATA for both methods. For k-MEANS, we randomly
add/remove attributes at each step i so that a new set of k
clusters is obtained in step i + 1. The presence or absence of
an attribute changes the clusters’ membership, as the Jaccard
distance between users varies. For instance, adding a specific
value of the age attribute reduces the distance between two
users having the same age.

Figure 16, left, illustrates ATAs for GNAVIGATE and k-
MEANS in log scale. We vary k from 2 to 40 and observe how
ATA for both algorithms evolves. While k-MEANS performs
better for very small values of k, GNAVIGATE outperforms it
by two orders of magnitude for higher values of k. When k
is very small, clusters are huge. Thus, most of the time, there
exists a cluster that contains all users of a target group. For
larger values of k, more clusters with smaller size are gener-
ated and more steps are needed to finally reach the target. We
can conclude that the superiority of GNAVIGATE over unsu-
pervised methods comes from the use of diversity at each
step in order to cover as many users as possible.
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Table 4 Comparison with OPTIMAL baselines

EXHAUSTIVE ILP GNAVIGATE
ATA 9.90 9.91 10.13
Time (s) 862.47 213.12 3.35

Comparison with OPTIMAL baselines We now compare
GNAVIGATE with two optimal methods: EXHAUSTIVE and
ILP. In each step of the navigation, EXHAUSTIVE generates
all possible k among n groups in G, i.e., C (':) and chooses
the one with the highest diversity. ILP returns k groups with
maximal diversity using an integer linear programming for-
mulation (using CHOCO 3.0 solver'#). Optimal results are
considered as the “gold standard” for ATA, as they function
on the optimized value of diversity with no consideration of a
time limit which leads the lowest possible ATA. Table 4 illus-
trates ATA and execution times for GNAVIGATE and optimal
methods. Since both EXHAUSTIVE and ILP generate optimal
paths, their ATA value is similar. However, their execution
times differ. This experiment shows that GNAVIGATE is faster
than optimal competitors (i.e., 3.49 min faster than ILP) while
maintaining a comparable ATA.

Acknowledging the limitation of GNAVIGATE to obtain
an optimal solution, we want to discover the amount of time
needed to optimize diversity in GNAVIGATE regardless of the
time limit parameter. Figure 16, right, illustrates the results.
We observe that maximal diversity is achievable in less than
105 even for large values of k. Note that main functionality
of our timelimit parameter is to guarantee “continuity pre-
serving latency” (~ 0.1 s) for navigation of user groups [43],
i.e., the limit for the analyst to follow her train of thoughts
instantaneously. If this tight guarantee is not required in an
analysis task, GNAVIGATE can have an optimal functionality
while still respecting “attention preserving latency” (~ 10 ).

Comparison with NAVIGATIONAL baselines We consider
two navigational baselines, DIVRAND and PURERAND, which
do not function on an optimized solution. At each step in the
navigation, DIVRAND randomly generates as many sets of
k groups as possible within timelimit and returns the one
with the highest diversity. PURERAND, on the other hand,
makes a pure random navigation regardless of the time limit.
Figure 17, left, illustrates ATA results for NAVIGATIONAL
baselines, by varying k from 2 to 40 (top), and varying num-
ber of groups from 50,000 to 1,000,000 (bottom). In general,
we observe that GNAVIGATE has much lower ATA fork < 16
and k > 30. This simply shows that considering relevance
and diversity at each step reduces ATA by an average of 15.91
steps.

For k € [16, 30], DIVRAND and GNAVIGATE have close
results. This shows that although the relevance component

14 http://choco-solver.org/?2qg=Choco3.
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Fig. 177 Comparison with NAVIGATIONAL baselines

(i.e., the difference between DIVRAND and GNAVIGATE) is
shown to be very useful in general, it is less effective for large
values of k. In [44,45], it is shown that in a context with too
many options and no hint for further navigation, “long jumps”
are preferred to “short jumps.” In our case, relevance tends
to favor short directed jumps in the space of groups while
DIVRAND does not. This is why when few options are avail-
able, GNAVIGATE performs better and DIVRAND performs as
well as GNAVIGATE for larger values of k. We also observe
that increasing the number of groups has a huge effect on
D1vRAND. When the number of groups increases, the target
groups are more likely to be diverse. Thus, precision (ratio of
valid paths over all navigated paths) decreases for all meth-
ods, while thanks to relevance, the decrease is negligible for
GNAVIGATE.

Figure 17, right, illustrates the percentage of lost paths for
NAVIGATIONAL baselines, by varying k from 2 to 40 (top),
and varying number of groups from 50,000 to 1,000,000 (bot-
tom). As in line 1 of Algorithm 6, any navigation with more
than 50 steps counts as a lost path. Our first observation is
that GNAVIGATE generates very few lost paths comparing to
its competitors. As k grows, more paths are generated and the
number of lost paths grows accordingly. Our second obser-
vation is that the number of groups does affect the number
of lost paths for GNAVIGATE. This is because of the fact that
GNAVIGATE generates almost no lost path for lower values
of k. Hence, with a low k, no lost path will be generated
whatever the number of groups is.

6 Related work

We presented our UGA framework, a group-based analyti-
cal framework to understand user data. To the best of our
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knowledge, the contributions that we presented for UGA
framework have never been addressed in the literature. How-
ever, each contribution does relate to a number of others in
its concept and functionality.

6.1 Hypothesis generation

We proposed GDISCOVER to materialize the exhaustive list
of interesting user group sets by optimizing multiple objec-
tives. Related work is considered on the aspects of “group
discovery” and “multi-objective optimization.”

Group discovery There is a recent trend in developing and
reporting statistics about pre-defined groups.!> Group sets
obtained by GDISCOVER are not static and can handle as
many input user subsets as possible. Other dynamic discovery
methods can be categorized to “attribute-based” and “action-
based.”

Attribute-based discovery Such discovery methods exploit
user attributes (such as gender, age, occupation) and rela-
tions (such as friendship, affinity) for discovering groups of
users. Social discovery is a body of work which employs
user relations to form communities [46-50]. This means
that the user data is divided into communities, such that
users within the same community tend to be connected by
links, while those within different communities tend not to
be connected. Many networks are heterogeneous, consisting
not of an undifferentiated mass of vertices, but of distinct
groups. Our user group discovery problem differs in nature
with community detection, because we do not consider any
explicit relation between users in our data model. Represen-
tative discovery aims to mine groups that best represent a
subset of users [51]. For instance in [52], an LSTM-based
discovery method!® is proposed to discover patients’ sub-
cohorts and facilitate therapeutic intervention. While most
representative discovery approaches optimize a single objec-
tive at a time, GDISCOVER aims to discover representative
user groups with optimized values on multiple conflicting
objectives.

Action-based discovery The process of mining groups based
on their common actions is called action-based discovery
[53]. The most common objective in this category is fre-
quency, which reports highly frequent regions in user data
as groups [54]. More application-based objectives such as
maximizing the return on investments are also proposed
[55]. In UGA, we focus on multiple objectives tailored
for user data. We build upon frequency and return high-
quality groups with optimized values on coverage, diversity
and rating diameter. On the other hand, most action-based

15 http://blog.testmunk.com/how-teens-really-use-apps/.

16 T ong short-term memory networks.

methods discover non-overlapping clusters which is far from
reality.

Team formation [56] and jury selection [57] are also new
emerging action-based discovery methods. The main idea is
to find a group of experts to collectively complete a project.
The focus is therefore on putting individual workers (users)
together to optimize a quality objective, i.e., minimizing the
overall cost while maintaining an acceptable overall exper-
tise. The output of such algorithms is one single optimized
group. Team formation requires the definition of “quality”
and “cost” values for each worker. This is a subjective and
challenging task which requires the full knowledge of users’
profiles in advance. On the other hand, the focus in our work
is to generate a group set (not a single group) whose groups
collectively optimize several objectives. In the case of team
formation, the idea is to obtain only a single optimized group.

Multi-objective Optimization There exists different appro-
aches to solve a problem with a multi-objective nature.
The prevailing approaches for solving multi-objective opti-
mization problems in the state-of-the-art are evolutionary
algorithms [58]. Instead of genetic-based mutations of evo-
lutionary algorithms, we employ the dynamic programming
approach in GDISCOVER. This allows us to benefit from
nice mathematical properties of our objectives to prune the
search space and reach real Pareto plans faster. Theorem 1 in
Sect. 3.6.2 shows such property for coverage. In other words,
we investigate on the special case of user data and a limited set
of specific objectives which best describe group sets. We pro-
vide formal definitions of our objectives (coverage, diversity
and rating diameter) and exploit their semantics to improve
the efficiency of our algorithms.

There exist other approaches which simplify the multi-
objective optimization problem for finding near-Pareto solu-
tions. We already discussed that Scalarization does not work
in our case (Sect.3.6). Another popular method is the e-
constraints method [59] where we optimize one objective
and consider others as constraints. The approach in [51] can
be seen as a relaxed e-constraints version of our problem.
Another approach is multi-level optimization [60] which
needs a meaningful hierarchy between objectives. In our
case, all objectives are independent and conflicting with each
other, hence using this mechanism is not feasible.

For GDISCOVER, we adapt the dynamic programming
approach in [22] and propose a multi-objective optimiza-
tion algorithm for user group set discovery. The same idea
is also proposed in [61] where Pareto plans are discovered
entirely. However, an exhaustive approach to multi-objective
optimization is very time-consuming. Thus, we propose an
approximation algorithm, o-DISCOVER, which is faster than
exhaustive and provides bounds on the quality of results. We
also propose a heuristic algorithm which returns a subset of
a-DISCOVER solutions in a reasonable time.

@ Springer
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6.2 Exploratory analysis

We proposed an interactive navigation approach for explor-
atory analysis of user groups. In an exploration scenario, the
analyst only has a partial understanding of her needs and
seeks to refine them in iterative interactions. This awareness
of analysts can be captured in different forms, such as queries,
distributions, facets and examples. An interactive exploration
system should employ the feedback received from the ana-
lyst to provide better results in consecutive steps. However,
in most information navigation approaches in the literature,
a lot remains to be done by the analyst, which puts burden on
her. According to different ways of capturing the analyst’s
needs, we recognize the four following exploration types:
by-query, by-analytics, by-facet and by-example. We briefly
describe these exploration types and discuss why GNAVI-
GATE is implemented as a by-example exploration approach.

By-Query Interactions are formed using predicates on attri-
butes and items which form a query. In each iteration of
the analysis session, the analyst formulates a query and the
exploration system returns groups which satisfy the query
predicates [62—64]. Query formulation requires a knowledge
of the dataset and the query language, which is not always
the case.

By-Analytics Analysts explore the space of user groups using
a desired distribution of members’ actions. The exploration
system returns groups whose distribution is similar to the
input. For instance in [1], a desired histogram of rating scores
is given and k groups with similar rating score distributions
are returned. By-analytics exploration requires a knowledge
of the user data and its underlying distributions.

By-Facet Another type of interaction is via attribute—value
pairs (i.e., facets). The exploration system returns groups
whose members satisfy requested facets [65,66]. Compar-
ing to by-query exploration, by-facet exploration reduces
the burden on the analyst specifically on datasets with many
attributes. However, the analyst needs to know possible facets
in user data.

By-Example Interactions can also be made using examples.
The analyst provides examples of what she needs to get and
the system explores other groups similar to those provided
examples. Example-based exploration is beneficial where the
analyst is not able to express her needs otherwise [67]. We
formulate GNAVIGATE as a by-example approach to provide
the most intuitive way of exploring the space of user groups.
In GNAVIGATE, we adopt an approach based on opExplore
or opExploit operations and let the analyst choose which
operation to apply at each step. However, the ability to “per-
sonalize” the navigation as in [44] is an interesting direction
for future work.

@ Springer

7 Conclusion and perspectives

In this paper, we discuss group-based analysis of user data.
We introduce UGA framework which puts together the com-
ponents of user group analytics. Our framework serves two
different use cases of user data analysis. First, our framework
generates “interesting” group sets for hypothesis genera-
tion. Second, interesting group sets are populated on-the-go
for exploratory analysis. We show that generating interest-
ing group sets is an NP-Complete problem and propose an
approximation and a heuristic algorithm for it. We also intro-
duce GNAVIGATE, a group navigation method based on two
navigational operations, opExplore and opExploit, which are
both described as NP-Complete problems. We describe a
greedy algorithm for GNAVIGATE which enables analysts to
navigate in the space of groups and reach their interest. In an
extensive set of experiments, we show the quality of gener-
ated user groups with our framework as well as it efficiency
against competitors.

Our immediate direction for future work is to enable visual
exploration of user groups on the basis of the “visual infor-
mation seeking mantra” [68]. The results of GDISCOVER and
GNAVIGATE are not necessarily comprehensible and readable
by analysts, unless a visualization layer enables sensemak-
ing of user groups using visual variables. The combination
of UGA’s discovery and navigation with visualization, leads
to visual analytics suits where analysts can interact with
groups and perform their “what-if”” scenarios in a human-
understandable form. We plan to build upon our preliminary
work [9] to achieve a full fledge automated pipeline of
discover-navigate-visualize loop for user groups.

Appendix: NP-hardness proofs

Theorem 2 The decision version of GDISCOVER problem is
NP-Complete.

Proof 1t is shown in [51] that a single-objective optimiza-
tion problem for user group set discovery is NP-Complete
by a reduction from the Exact 3-Set Cover problem (EC3).
There, homogeneity is maximized and a threshold on cover-
age is satisfied. In our case, two new conflicting dimensions
(diversity and coverage) are added. This means that the prob-
lem in [51] is a special case of ours, hence our problem is
obviously harder. O

For our proofs of hardness, we consider an infinite time
limit in GNAVIGATE since that does not affect the complexity
of our problem.

Theorem 3 The exploration operation of GNAVIGATE, i.e.,
opExplore, is NP-complete.
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Proof The decision version of the problem is as follows:
For a given group g, a set of groups G and a positive inte-
ger k, an overlap threshold p, is there a subset of groups
G C explore(g,G, ) such that (i) g € G AN g #
g N overlap(g,g) > w and (ii) X(g ¢r)eG/|g1#0 (1 —
overlap(g;, g2)) is maximized. A verifier v which returns
true if both conditions (7) and (i7) are satisfied runs in poly-
nomial time in the length of its input.

To verify NP-completeness, we reduce the MAXIMUM
EDGE SUBGRAPH (MES) [69] (also known as DENSE K-
SUBGRAPH) to the decision version of our problem. The
problem of MES is defined as follows. Given an instance
I consisting of a graph G = (V, E), a weight function
w : E — N, and a positive integer k, find a subset V' C V,
|V’ = k such that the total weight of the edges induced
by V', ie., T, vyw(vi,v;) (where (v, vj) € V' x V') is
maximized. This is an NP-complete problem [69] (originally
reduced from the Cligue problem).

Given /, we create an instance J of our problem as fol-
lows. J consists of a graph G = (V, E) where the set of
vertices V = explore(g, G, u) are groups that satisfy (i).
Every pair of groups (g1, g2) € V x V is also connected
with a labeled edge, i.e., w(gi, g2) = 1 — overlap(g;, g2).
The subset V' C V (]V’| = k) is then a subset of groups
where the sum of the weights between each pair of groups
in V/ is maximized, i.e., |[E(V")| = ©4=D The set v/ is
the most diverse subset of G that satisfies the overlap condi-
tion (Vg' € G, overlap(g, g') > ). Therefore, a set V' is a
solution in instance I of MES iff it is a solution in instance
J of our problem. Hence, the exploration problem is NP-
complete. O

Theorem 4 The exploitation operation of GNAVIGATE, i.e.,
opExploit, is NP-complete.

Proof Similar to opExplore, a verifier v for exploitation
runs in polynomial time in the length of its input. To ver-
ify NP-completeness, we reduce the MAXIMUM COVERAGE
PROBLEM [70] to the decision version of our problem. The
problem of MAXIMUM COVERAGE PROBLEM (MCP) is
defined as follows. Given an instance / consisting of m sets
S={S1...5,} where S; € Sy (Sy being a reference set),
and a positive integer k, find a subset S C S, such that
|| = k and the number of covered elements in Sy, i.e.,
|Us;es7 Sil/|Spm | is maximized. This is an NP-complete prob-
lem [70]. Given I, we can create an instance J of our problem
which consists of m sets S = exploit(g, G, 1) and a refer-
ence group, i.e., Sy = gi,. In opExploit, we are interested to
have k groups S’ C S that cover maximum number of users
in Sy, ie., | Us;es Sil/ISm| is maximized. Therefore, a set
S’ is a solution in instance I of MCP jff it is a solution in
instance J of opExploit. Hence opExploit is NP-complete.

O

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Amer-Yahia, S., Kleisarchaki, S., Kolloju, N.K., Lakshmanan,
L.V.S., Zamar, R.H.: Exploring rated datasets with rating maps.
In: WWW (2017)

Amer-Yahia, S., Omidvar Tehrani, B., Roy, S.B., Shabib, N.: Group
recommendation with temporal affinities. In: EDBT (2015)
Omidvar-Tehrani, B., Amer-Yahia, S., Termier, A.: Interactive user
group analysis. In: CIKM (2015)

Cao, L.: Behavior informatics to discover behavior insight for
active and tailored client management. In: SIGKDD (2017)
Wikipedia. Behavioral Analytics. https://en.wikipedia.org/wiki/
behavioral_analytics (2014). Accessed 15 Mar 2018

Abiteboul, S., Bonchi, F, Oliver, N., Yu, B.: Toward personal
knowledge bases. In: DSAA (2015)

Gramazio, C.C., Schloss, K.B., Laidlaw, D.H.: The relation
between visualization size, grouping, and user performance. TVCG
20, 1953 (2014)

Doodson, J., Gavin, J., Joiner, R.: Information seeking, acquainted
with groups and individuals: information seeking, social uncer-
tainty and social network sites. In: ICWSM (2013)

Amer-Yahia, S., Omidvar-Tehrani, B., Comba, J., Moreira, V.,
Zegarra, F.C.: Exploration of user groups invexus. In: ICDE demo
(2018)

Geng, L., Hamilton, H.J.: Interestingness measures for data mining:
a survey. ACM Comput. Surv. (CSUR) 38(3), 1-32 (2006)
Vreeken, J., Van Leeuwen, M., Siebes, A.: Krimp: mining itemsets
that compress. Data Min. Knowl. Discov. 23(1), 169-214 (2011)
Sidana, S., Mishra, S., Amer-Yahia, S., Clausel, M., Amini, M.-R.:
Health monitoring on social media over time. In: SIGIR (2016)
Amer-Yahia, S., Rousset, M.-C.: Toppi: an efficient algorithm for
item-centric mining. In: DaWaK (2016)

Harper, EM., Konstan, J.A.: The movielens datasets: history and
context. ACM Trans. Interact. Intell. Syst. (TiiS) §, 19 (2016)
Bertin-Mahieux, T., Ellis, D.P.W., Whitman, B., Lamere, P.: The
million song dataset. In: ISMIR (2011)

Monroe, M., Lan, R., Lee, H., Plaisant, C., Shneiderman, B.: Tem-
poral event sequence simplification. TVCG 9, 2227 (2013)
Ziegler, C.-N., McNee, S.M., Konstan, J.A., Lausen, G.: Improv-
ing recommendation lists through topic diversification. In: WWW
(2005)

Uno, T., Asai, T., Uchida, Y., Arimura, H.: Lcm: an efficient algo-
rithm for enumerating frequent closed item sets. In: Proceedings
of Workshop on Frequent itemset Mining Implementations FIMIO3
(2003)

Zhao, Z., De Stefani, L., Zgraggen, E., Binnig, C., Upfal, E.,
Kraska, T.: Controlling false discoveries during interactive data
exploration. In: Proceedings of the 2017 ACM International Con-
ference on Management of Data, pp. 527-540. ACM (2017)

Xu, C., Brown, S., Grant, C., Weaver, C.: Interactive visual analyt-
ics for Simpsons paradox detection. In: HILDA (2018)

Ganguly, S., Hasan, W., Krishnamurthy, R.: Query Optimization
for Parallel Execution. ACM, New York (1992)

Trummer, I., Koch, C.: Approximation schemes for many-objective
query optimization. In: SIGMOD. ACM (2014)
Omidvar-Tehrani, B., Amer-Yahia, S., Dutot, P.-F., Trystram, D.:
Multi-objective group discovery on the social web. Research
Report RR-LIG-052, LIG, Grenoble, France (2016)

Russell, S.J., Norvig, P.: Probabilistic reasoning. In: Artificial Intel-
ligence: A Modern Approach. Pearson Education Ltd (2003)
Robinson, D.J.S.: An Introduction to Abstract Algebra. Walter de
Gruyter, Berlin (2003)

Liu, A.-A., Yu-Ting, S., Wei-Zhi, N., Kankanhalli, M.: Hierarchical
clustering multi-task learning for joint human action grouping and

@ Springer



B. Omidvar-Tehrani et al.

27.
28.

29.

30.

31.

32.

. Nah, EE.-H.: A study on tolerable waiting time: how long are web

34.

35.

36.

37.
38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(1), 102—
114 (2017)

Nandi, A.,Jagadish, H.V.: Guided interaction: rethinking the query-
result paradigm. In: Proceedings of the VLDB Endowment (2011)
Sarawagi, S., Sathe, G.: i3: intelligent, interactive investigation of
OLAP data cubes. In: SIGMOD, vol. 29, p. 589. ACM (2000)
Indyk, P, Mahabadi, S., Mahdian, M., Mirrokni, V.S.: Composable
core-sets for diversity and coverage maximization. In: SIGART
(2014)

Omidvar-Tehrani, B., Amer-Yabhia, S., Termier, A.: Interactive user
group analysis. Research Report RR-LIG-048, LIG, Grenoble,
France (2015)

Kittur, A., Chi, H., Suh, B.: Crowdsourcing user studies with
mechanical turk. In: SIGCHI (2008)

Eickhoff, C.: Cognitive biases in crowdsourcing. In: WSDM (2018)

users willing to wait? Behav. Inf. Technol. 23(3), 153-163 (2004)
Kirchgessner, M., Leroy, V., Amer-Yahia, S., Mishra, S.: Testing
interestingness measures in practice: a large-scale analysis of buy-
ing patterns. In: DSAA (2016)

Mishra, S., Leroy, V., Amer-Yahia, S.: Colloquial region discovery
for retail products: discovery and application. Int. J. Data Sci. Anal.
4,17 (2017)

Encyclopadia Britannica. Ockhams razor. Encyclopadia Britan-
nica Online. Encyclop@dia Britannica Inc, Chicago, IL (2009).
Accessed 21 June 2009

Miller, G.: Human memory and the storage of information. IRE
Trans. Inf. Theory 2, 129 (1956)

Riquelme, N., Von Liicken, C., Baran, B.: Performance metrics in
multi-objective optimization. In: CLEI. IEEE (2015)

Ke, L., Deb, K., Yao, X.: R-metric: evaluating the performance of
preference-based evolutionary multi-objective optimization using
reference points. IEEE Trans. Evol. Comput. (2017)
Omidvar-Tehrani, B., Amer-Yahia, S., Dutot, P.-F., Trystram,
D.: Multi-objective group discovery on the social web. In:
ECML/PKDD, pp. 296-312. Springer (2016)

Deb, K.: Multi-objective Optimization Using Evolutionary Algo-
rithms, vol. 16. Wiley, New York (2001)

Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a
comparative case study and the strength Pareto approach. IEEE
Trans. Evol. Comput. 3(4), 257-271 (1999)

Fekete, J.-D., Primet, R.: Progressive analytics: a computation
paradigm for exploratory data analysis (2016). arXiv preprint
arXiv:1607.05162

Boley, M., Kang, B., Tokmakov, P., Mampaey, M., Wrobel, S.: One
click mining: interactive local pattern discovery through implicit
preference and performance learning. IDEAS (ACM SIGKDD
Workshop) (2013)

West, R., Leskovec, J.: Automatic versus human navigation in
information networks. In: ICWSM (2012)

Mampaey, M., Tatti, N., Vreeken, J.: Tell me what i need to know:
succinctly summarizing data with itemsets. In: Proceedings of the
17th ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pp. 573-581. ACM (2011)

Newman, M.E.J.: Detecting community structure in networks. Eur.
Phys. J. B Condens. Matter Complex Syst. 38(2), 321-330 (2004)
Yang, J., Leskovec, J.: Overlapping communities explain core—
periphery organization of networks. In: Proceedings of the IEEE
(2014)

Leskovec, J., Lang, K.J., Mahoney, M.: Empirical comparison of
algorithms for network community detection. In: WWW (2010)

@ Springer

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Cai, H., Zheng, V.W., Zhu, F., Chang, K.C.-C., Huang, Z.: From
community detection to community profiling. In: Proceedings of
the VLDB Endowment (2017)

Das, M., Amer-Yahia, S., Das, Gautam, M., Yu, C.: Meaningful
interpretations of collaborative ratings. In: VLDB (2011)

Baytas, .M., Xiao, C., Zhang, X., Wang, F., Jain, A.K., Zhou, J.:
Patient subtyping via time-aware LSTM networks. In: SIGKDD,
pp. 65-74. ACM (2017)

Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic
subspace clustering of high dimensional data for data mining appli-
cations, vol. 27. ACM (1998)

Srikant, R., Agrawal, R.: Mining generalized association rules.
ACM (1995)

Pandey, S., Aly, M., Bagherjeiran, A., Hatch, A., Ciccolo, P., Rat-
naparkhi, A., Zinkevich, M.: Learning to target: what works for
behavioral targeting. In: CIKM (2011)

Kargar, M., An, A., Zihayat, M.: Efficient bi-objective team for-
mation in social networks. In: Machine Learning and Knowledge
Discovery in Databases. Springer Berlin, Heidelberg (2012)

Cao, C.C., She, J., Tong, Y., Chen, L.: Whom to ask? Jury selection
for decision making tasks on micro-blog services. VLDB §, 1495
(2012)

Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolu-
tionary Algorithms for Solving Multi-objective Problems, vol. 5.
Springer, Berlin (2007)

Papadimitriou, C.H., Yannakakis, M.: On the approximability of
trade-offs and optimal access of web sources. In: FOCS (2000)
Migdalas, A., Pardalos, P.M., Virbrand, P.: Multilevel Optimiza-
tion: Algorithms and Applications. Springer, Berlin (1997)
Soulet, A., Raissi, C., Plantevit, M., Cremilleux, B.: Mining dom-
inant patterns in the sky. In: ICDM. IEEE (2011)

Bonchi, F., Giannotti, F., Lucchese, C., Orlando, S., Perego, R.,
Trasarti, R.: Conquest: a constraint-based querying system for
exploratory pattern discovery. In: ICDE. IEEE (2006)

Bonchi, E., Giannotti, F., Mazzanti, A., Pedreschi, D.: Exante: antic-
ipated data reduction in constrained pattern mining. In: PKDD, vol.
2838, pp. 59-70. Springer (2003)

Kifer, D., Bucila, C., Gehrke, J., White, W.: Dualminer: a dual-
pruning algorithm for itemsets with constraints. In: SIGKDD
(2002)

Yan, N., Li, C., Roy, S.B., Ramegowda, R., Das, G.: Facetedpedia:
enabling query-dependent faceted search for wikipedia. In: CIKM
(2010)

Khan, A.R., Garcia-Molina, H.: Crowddqgs: dynamic question
selection in crowdsourcing systems. In: Proceedings of the 2017
ACM International Conference on Management of Data. ACM
(2017)

Mottin, D., Lissandrini, M., Velegrakis, Y., Palpanas, T.: New
trends on exploratory methods for data analytics. Proc. VLDB
Endow. 10(12), 1977-1980 (2017)

Shneiderman, B.: The eyes have it: a task by data type taxonomy
for information visualizations. In: The Craft of Information Visu-
alization, pp. 364-371. Elsevier (2003)

Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem.
Algorithmica 29(3), 410-421 (2001)

Johnson, D.S.: Approximation algorithms for combinatorial prob-
lems. In: Proceedings of the 5th Annual ACM Symposium on
Theory of Computing (1973)



