
Noname manuscript No.
(will be inserted by the editor)

Optimized Group Formation for Solving Collaborative Tasks

Habibur Rahman · Senjuti Basu Roy · Saravanan Thirumuruganathan ·
Sihem Amer-Yahia · Gautam Das

Received: date / Accepted: date

Abstract Many popular applications, such as collabo-
rative document editing, sentence translation, or citizen
science resort to collaborative crowdsourcing, a special
form of human-based computing, where, crowd work-
ers with appropriate skills and expertise are required
to form groups to solve complex tasks. While there has
been extensive research on workers’ task assignment for
traditional microtask based crowdsourcing, they often
ignore the critical aspect of collaboration. Central to
any collaborative crowdsourcing process is the aspect
of solving collaborative tasks that requires successful
collaboration among the workers. Our formalism con-
siders two main collaboration-related factors - affinity
and upper critical mass - appropriately adapted from
organizational science and social theories. Our contri-
butions are three fold. First, we formalize the notion
of collaboration among crowd workers and propose a
comprehensive optimization model for task assignment
in a collaborative crowdsourcing environment. Next, we
study the hardness of the task assignment optimization
problem and propose a series of efficient exact and ap-

H. Rahman
UT Arlington
E-mail: habibur.rahman@mavs.uta.edu

S. Basu Roy
New Jersey Institute of Technology
E-mail: senjutib@njit.edu

S. Thirumuruganathan
QCRI, HBKU
E-mail: sthirumuruganathan@qf.org.qa

S. Amer-Yahia
CNRS, LIG
E-mail: sihem.amer-yahia@imag.fr

G. Das
UT Arlington
E-mail: gdas@uta.edu

proximation algorithms with provable theoretical guar-
antees. Finally, we present a detailed set of experimen-
tal results stemming from two real-world collaborative
crowdsourcing application using Amazon Mechanical
Turk.

1 Introduction

Crowdsourcing Complex Tasks: Micro task based
crowdsourcing has been applied successfully in a num-
ber of domains such as collecting labeled data, fact
checking, image recognition etc [12]. Here, the crowd
workers can operate independently because of the sim-
plicity of the tasks. However, such an individualistic
approach will not work for many complex knowledge in-
tensive tasks such as Citizen Science where crowdsourc-
ing is increasingly being used. Collaborative crowd-
sourcing is an emerging paradigm where a set of work-
ers with complementary skills form groups and collab-
orate to perform complex tasks.1 The synergistic effect
of collaboration in group based activities is widely ac-
cepted in socio-psychological research and traditional
team based activities [22,21,5]. A number of popular
applications such as collaborative document editing,
sentence translation, or citizen science could be mod-
elled as collaborative crowdsourcing tasks. Despite its
immense potential, the transformative effect of “col-
laboration” remains largely unexplored in crowdsourc-
ing [32].

Group Formation for Solving Collaborative
Tasks: The optimization goals for task assignment is

1 This work is the extension of our paper [46]. We extend
our previous work by providing i) an additional technique
for task assignment referred to as Cons-cost-K-ApprxGrp, ii)
detail proofs of our algorithms and iii) additional experiments
on both real and synthetic data

2 Habibur Rahman et al.

putatively similar between collaborative task and tra-
ditional micro-task - maximize the quality of the com-
pleted tasks while minimizing cost by assigning appro-
priate tasks to appropriate workers. Task assignment
has been extensively studied for microtask based crowd-
sourcing. However, none of those algorithms are appli-
cable for collaborative crowdsourcing as they ignore the
critical aspect of Collaboration. Instead of working in-
dividually, workers collaboratively work on tasks and
build on each others’ contributions.

This collaborative aspect requires that a task assign-
ment algorithm must take into account both the char-
acteristics of individual workers and that of the group.
Prior work has identified some key individual character-
istics of the worker, dubbed as human factors, such as
skill and wages. From prior work on socio-psychological
research[22,21], we have identified two key factors for
group characteristics that entails successful collabora-
tion. The first factor worker-worker affinity [53,33] rep-
resents the comfort-level between workers in a group
who work on the same task. It has been noted that suc-
cessful teams have members with high affinity with each
other. In contrast, teams with low affinity often suffer
from low productivity and take longer to complete the
tasks [34]. Social theories widely underscore the impor-
tance of upper critical mass [30] for group collaboration,
which is a constraint on the size of groups beyond which
the collaboration effectiveness diminishes [30,43].

Overview of Technical Approach: Despite the
importance of collaborative crowdsourcing, there has
been a dearth of work that formalizes the notion of
collaboration and the optimization objectives for task
assignment for collaborative crowdsourcing tasks. Ad-
ditionally, while key factors for successful collaboration
such as worker affinity and critical mass has been iden-
tified in psycho-social theories, there have been no prior
effort on formalizing these individual and group based
human factors in a principled manner to optimize the
outcome of a collaborative crowdsourcing environment.
Hence, our first significant contribution lies in appro-
priately incorporating the interplay of these variety of
complex human factors into a set of well-formulated
optimization problems.

Intuitively, the objective for task assignment is to
choose, for each task, a group of workers who collec-
tively hold skills required for the task, collectively cost
less than the task’s budget, and collaborate effectively.
Using the notions of affinity and upper critical mass,
we formalize the flat model of work coordination [29]
in collaborative crowdsourcing as a graph with nodes
representing workers and edges labeled with pair-wise
affinities. A group of workers is a clique in the graph
whose size does not surpass the critical mass imposed

by a task. A large clique (group) may further be par-
titioned into subgroups (each is a clique of smaller size
satisfying critical mass) to complete a task because of
the task’s magnitude. Each clique has an intra and an
inter-affinity to measure respectively the level of co-
hesion that the clique has internally and with other
cliques. A clique with high intra-affinity implies that
its members collaborate well with one another. Two
cliques with a high inter-affinity between them implies
that these two groups of workers work well together.
Our optimization problem reduces to finding a clique
that maximizes intra-affinity, satisfies the skill thresh-
old across multiple domains, satisfies the cost limit, and
maximizes inter-affinity when partitioned into smaller
cliques. We note that no existing work on team forma-
tion in social networks [4,37] or collaborative crowd-
sourcing [32,53,33] has attempted similar formulations.

We show that solving the complex optimization
problem explained above is prohibitively expensive and
incurs very high machine latency. Such high latency
is unacceptable for a real-time crowdsourcing platform.
Therefore, we propose an alternative strategy Grp&Splt

that decomposes the overall problem into two stages
and is a natural alternative to our original problem for-
mulation. Even though this staged formulation is also
computationally intractable in the worst case, it allows
us to design instance optimal exact algorithms that
work well in the average case, as well as efficient approx-
imation algorithms with provable bounds. In the first
stage (referred to as Grp), we first form a single group
of workers by maximizing intra-affinity, while satisfying
the skill and cost thresholds. In the second stage, (re-
ferred to as Splt), we decompose this large group into
smaller subgroups, such that each satisfies the group
size constraint (imposed by critical mass) and the inter-
affinity across sub-groups is maximized. Despite being
NP-hard [17], we propose an instance optimal exact al-
gorithm OptGrp and a novel 2-approximation algorithm
ApprxGrp for the stage-1 problem. Similarly, we prove
the NP-hardness and propose a 3-approximation algo-
rithm Min-Star-Partition for a variant of the stage-2
problem.

We conduct a comprehensive experimental study
with two different applications (sentence translation
and collaborative document editing) using real world
data from Amazon Mechanical Turk and present rig-
orous scalability and quality analyses using synthetic
data. Our experimental results demonstrate that our
formalism is effective in aptly modeling the behavior of
collaborative crowdsourcing and our proposed solutions
are scalable.

In summary, this work makes the following contri-
butions:

Optimized Group Formation for Solving Collaborative Tasks 3

1. Formalism: We investigate the optimization op-
portunites in collaborative crowdsourcing. In sec-
tion 4,we formally define our problem which incor-
porates a variety of human factors.

2. Solutions: We propose comprehensive theoretical
analysis of our problems and approaches. We ana-
lyze the computational complexity of our problems,
and propose a principled staged solution. We pro-
pose exact instance optimal algorithms as well as ef-
ficient approximation algorithms with provable ap-
proximation bounds.

3. Experiments: We present a comprehensive set of ex-
perimental results (two real applications as well as
synthetic experiments) that demonstrate the effec-
tiveness of our proposed solutions.

The paper is organized as follows. Sections 2, 3,
and 4 discuss a database application of collaborative
crowdsourcing, our data model, problem formalization,
and initial solutions. Sections 5 and 6 describe our the-
oretical analyses and proposed algorithmic solutions.
Experiments are described in 7, related work in Sec-
tion 8, and conclusion are presented in Section 9.

2 An Application of Collaborative Task

Sentence translation [9,53,33] is a frequently encoun-
tered application of collaborative task, where the objec-
tive is to use the workers to build a translation database
of sentences in different languages. Such databases later
on serve as the “training dataset” for supervised ma-
chine learning algorithms for automated sentence trans-
lation purposes.

As a running example for this paper, consider a
translation task t designed for translating an English
video clip to French. Typically, such translation tasks
follows a 3-step process [53,33]: English speakers first
translate the video in English, professional editors edit
the translation, and finally workers with proficiency in
both English and French translate English to French.
Consequently, such task requires skills in 3 different
domains: English comprehension (d1), English editing
(d2), and French Translation ability (d3).

In our optimization setting, each task t has a re-
quirement of minimum skill per domain and maximum
cost budget, and workers should collaborate with each
other (e.g., to correct each others’ mistakes [53]), and
the collaboration effectiveness is quantified as the affin-
ity of the group. Some aspects of our formulation has
similarities with team formation problems in social net-
works [4]. The notion of affinity has been identified in
the related work on sentence translation tasks [53,33],
as well as team formation problems [4].

u1 u2 u3 u4 u5 u6

d1 0.66 1.0 0.53 0.0 0.13 0.0
d2 0.0 0.0 0.66 0.73 0.66 0.13
d3 0.0 0.33 0.53 0.0 0.8 0.93
Wage 0.4 0.3 0.7 0.8 0.5 0.8

Table 1: Workers skill and wage table

u1 u2 u3 u4 u5 u6

u1 0.0 1.0 0.66 0.66 0.85 0.66
u2 1.0 0.0 0.66 0.85 0.66 0.85
u3 0.66 0.66 0.0 0.4 0.66 0.40
u4 0.66 0.85 0.4 0.0 0.4 0.0
u5 0.85 0.66 0.66 0.4 0.0 0.4
u6 0.66 0.85 0.4 0.0 0.4 0.0

Table 2: Workers Distance Matrix

Q1 Q2 Q3 C K
1.8 1.4 1.66 3.0 3

Table 3: Task Description

However, if the group is “too large”, the effective-
ness of collective actions diminishes [30,43] while un-
dertaking the translation task, as an unwieldy group
of workers fail to find effective assistance from their
peers [53,33]. Therefore, each task t is associated with
a corresponding upper critical mass constraint on the
size of an effective group, i.e., a large group may need to
be further decomposed into multiple subgroups in order
to satisfy that constraint. A study of the importance of
the upper critical mass constraint in the crowdsourcing
context, as well as how to set its (application-specific)
value, are important challenges that are best left to do-
main experts; however, we experimentally study this
issue for sentence translation.

When this task arrives, imagine that there are 6
workers u1, u2, . . . , u6 available in the crowdsourcing
platform. Each worker has a skill value on each of the
three skill domains described above, and a wage they
expect. Additionally, the workers’ cohesiveness or affin-
ity is also provided. These human factors of the work-
ers are summarized in Tables 1 and 2, and the task
requirements of t (including thresholds on aggregated
skill for each domain, total cost, and critical mass) are
presented in Table 3 and are further described in the
next section. The objective is to form a “highly cohe-
sive” group G of workers that satisfies the lower bound
of skill of the task and upper bound of cost require-
ments. Due to the upper critical mass constraint, G may
further be decomposed into multiple subgroups. After
that, each sub-group undertakes a subset of sentences
to translate. Once all the subgroups finish their respec-
tive efforts, their contributions are merged. Therefore,
both the overall group and its subgroups must be co-

4 Habibur Rahman et al.

hesive. Incorporation of upper critical mass makes our
problem significantly different from the body of prior
works [4], as we may have to create a group further
decomposed into mutiple subgroups, instead of a single
group.

3 Data Model

We introduce our data model and preliminaries that
will serve as a basis for our problem definition.

3.1 Preliminaries

Domains: We are given a set of domains D = {d1, d2,
. . . , dm} denoting knowledge topics. Using the running
example in Section 2, there are 3 different domains -
English comprehension (d1), English editing (d2), and
French Translation ability(d3).

Workers: We assume a set U = {u1, u2, . . . , un}
of n workers available in the crowdsourcing platform.
The example in Section 2 describes a crowdsourcing
platform with 6 workers.

Worker Group: A worker group G consists of a
subset of workers from U i.e. G ⊆ U .

Skills: A skill is the knowledge on a particular skill
domain in D, quantified in a continuous [0, 1] scale. It is
associated with workers and tasks. The skill of a worker
represents the worker’s expertise/ability on a topic. The
skill of a topic represents the minimum knowledge re-
quirement/quality for that task. A value of 0 for a skill
reflects no expertise of a worker for that skill. For a
task, 0 reflects no requirement for that skill.

How to learn the skill of the workers is an impor-
tant and independent research problem in its own merit.
Most related work has relied on learning skill of the
workers from “gold-standard” or benchmark datasets
using pre-qualification tests [13,23]. It is also possible
to use works such as [47] to learn the skill of workers
for team based tasks.

Collaborative Tasks: A collaborative task t has
the following characteristics :

– Skill Threshold: Each Qi ∈ R represents the min-
imum skill requirement that a task needs to achieve
for domain di. A task is deemed complete, if it at-
tains its skill requirement over all the domains.

– Cost Threshold: C ∈ R, the cost budget to hire
workers for a particular task. This gives an upper
bound on the aggregated cost of assigning the work-
ers.

– Critical Mass: K is a positive integer (greater than
0) which denotes the maximum group size for a
task. Tasks that require high skill threshold may

need many workers and may violate the critical mass
threshold. In that case, the workers should be split-
ted in subgroups (each satisfying the critical mass
constraint) such that the workers across all the sub-
groups satisfy the skill and cost threshold.

Specifically, t is characterized by a vector, 〈Q1, Q2,
. . . , Qm, C,K〉, of length m+2. For the example in Sec-
tion 2, there are 3 domains (m = 3) and their respective
skill requirements, its cost C, and critical mass K of the
task is described in Table 3. A task is considered com-
plete if it attains its skill requirement over all domains
and satisfies all the constraints.

3.2 Human Factors

A worker is described by a set of human factors. We
consider two types of factors - factors that describe in-
dividual worker’s characteristics and factors that char-
acterize an individual’s ability to work with fellow
workers. Our contribution is in appropriately adapting
these factors in collaborative crowdsourcing from multi-
disciplinary prior works such as team formation [4,37]
and psychology research [30,43].

3.2.1 Individual Human Factors: Skill and Wage

Individual workers in a crowdsourcing environment are
characterized by their skill and wage.

Skill: For each knowledge domain di, udi ∈ [0, 1]
is the expertise level of worker u in di. Skill expertise
reflects the quality that the worker’s contribution has
on a task accomplished by that worker.

Wage: wu ∈ [0, 1] is the minimum amount of com-
pensation for which a worker u is willing to complete a
task. We choose a simple model where a worker specifies
a single wage value independent of the task at-hand.

Table 1 presents the respective skill of the 6 workers
in 3 different domains and their individual wages for the
running example.

3.2.2 Group-based Human Factors: Affinities

Although related work in collaborative crowdsourcing
acknowledges the importance of workers’ affinity to en-
able effective collaboration [53,33], there is no attempt
to formalize the notion any further. A worker’s effec-
tiveness in collaborating with her fellow workers is mea-
sured as affinity. We adopt an affinity model similar
to group formation problems in social networks [38,
4], where the atomic unit of affinity is pairwise, i.e.,
a measure of cohesiveness between every pair of work-
ers. After that, we propose different ways to capture
intra-group and inter-group affinities.

Optimized Group Formation for Solving Collaborative Tasks 5

Pairwise affinity: The affinity between two work-
ers ui and uj , aff (ui, uj), can be calculated by captur-
ing the similarity between workers using simple socio-
demographic attributes, such as region, age, gender, as
done in previous work [53], as well as more complex
psychological characteristics [44]. For our purpose, we
normalize pairwise affinity values to fit in [0, 1] and use
a notion of worker-worker distance instead, i.e., where
dist(ui, uj) = 1 − aff (ui, uj). Thus a smaller distance
between workers ensures a better collaboration. Table 2
presents the pair-wise distance of all 6 workers for run-
ning example in Section 2. As will be clear later, the
notion of distance rathey than affinity enables the de-
sign of better algorithms for our purposes.

Intra-group affinity: For a group G, its intra-
group affinity measures the collaboration effectiveness
among the workers in G. Here again we use distance
and compute intra-group distance in one of two natu-
ral ways: computing the diameter of G as the largest
distance between any two workers in G, or aggregating
all-pair worker distances in G:

DiaDist(G) = Max∀ui,uj∈Gdist(ui, uj)

SumDist(G) = Σ∀ui,uj∈Gdist(ui, uj)

For both definitions, smaller value is better.

Inter-group affinity: When a group violates the
upper critical mass constraint [30], it needs to be de-
composed into multiple smaller ones. The resulting sub-
groups need to work together to achieve the task. Given
two subgroups G1, G2 split from a large group G, their
collaboration effectiveness is captured by computing
their inter-group affinities. Here again, we use distance
instead of affinity. More concretely, the inter-group dis-
tance is defined in one of two natural ways: either the
largest distance between any two workers across the
sub-groups, or the aggregation of all pair-wise workers
distances across subgroups:

DiaInterDist(G1, G2) = Max∀ui∈G1,uj∈G2
dist(ui, uj)

SumInterDist(G1, G2) = Σ∀ui∈G1,uj∈G2
dist(ui, uj)

This can be generalized to more than two subgroups:
if there are x subgroups, overall inter-group affinity is
the summation of inter-group affinity for all possible(
x
2

)
pairs.

4 Optimized Group Formation

Problem Settings: For each collaborative task, we
intend to form the most appropriate group of workers
from the available worker pool. A collaborative crowd-
sourcing task has skill requirements in multiple domains

and a cost budget, which is similar to the require-
ments of collaborative tasks in team formation prob-
lems [38]. Then, we adapt the “flat-coordination” mod-
els of worker interactions, which is considered impor-
tant in prior works in team formation [4] as the “co-
ordination cost”, or in collaborative crowdsourcing [53]
itself, as ‘the ‘turker-turker” affinity model. However,
unlike previous work, we attempt to fully explore the
potential of “group synergy” [51] and how it yields the
maximum qualitative effects in group based efforts by
maximizing affinity among the workers (or minimizing
distance). Finally, we intend to investigate the effect
of upper critical mass in the context of collaborative
crowdsourcing as a constraint on group size, beyond
which the group must be decomposed into multiple sub-
groups that are cohesive inside and across. Indeed, our
objective function is designed to form a group (or fur-
ther decomposed into a set of subgroups) to undertake a
specific task that achieves the highest qualitative effect,
while satisfying the cost constraint.

(1) Qualitative effect of a group: Intuitively, the
overall qualitative effect of a formed group to under-
take a specific task is a function of the skill of the
workers and their collaboration effectiveness. Learning
this function itself is challenging, as it requires access
to adequate training data and domain knowledge. In
our initial effort, we therefore make a reasonable sim-
plification, where we seek to maximize group affinity
and pose quality as a hard constraint2. Existing liter-
ature (indicatively [51]) informs us that aggregation is
a mechanism that turns private judgments (in our case
individual workers’ contributions) into a collective de-
cision (in our case the final translated sentences), and
is one of the four pillars for the wisdom of the crowds.
For complex tasks like sentence translation or document
editing, there is no widely accepted mathematical func-
tion of aggregation. We choose sum to aggregate the
skill of the workers that must satisfy the lower bound
of the quality of the task. This simplest and yet most
intuitive functions for transforming individual contribu-
tions into a collective result has been adopted in many
previous works [4,38,16]. Moreover, this simpler func-
tion allows us to design efficient algorithms. Exploring
other complex functions (e.g., multiplicative function)
or learning them is deferred to future work.

(2)Upper critical mass: Sociological theories widely
support the notion of “critical mass”[30,43] by reason-
ing that large groups are less likely to support collective
action. However, whether the effect of “critical mass”
should be imposed as a hard constraint, or it should
have more of a gradual “diminishing return” effect, is

2 Notice that posing affinity as a constraint does not fully
exploit the effect of “group synergy”.

6 Habibur Rahman et al.

itself a research question. For simplicity, we consider
upper critical mass as a hard constraint and evaluate
its effectiveness empirically for different values. Ex-
ploring more sophisticated function to capture critical
mass is deferred to future work.

Problem 1 AffAware-Crowd: Given a collaborative
task t, the objective is to form a worker group G, fur-
ther partitioned into a set of x subgroups G1, G2,Gx

(if needed) for the task t that minimizes the aggregated
intra-distance of the workers, as well as the aggregated
inter-distance across the subgroups of G, and G must
satisfy the skill and cost thresholds of t, where each sub-
group Gi must satisfy the upper critical mass constraint
of t. Of course, if the group G itself satisfies the critical
mass constraint, no further partitioning in G is needed,
giving rise to a single worker group. As explained above,
quality of a task is defined as an aggregation (sum) of
the skills of the workers [4,38]. Similarly, cost of the
task is the additive wage of all the workers in G.

4.1 Optimization Models

Given the definition of AffAware-Crowd above, we pro-
pose multiple optimization objective functions based on
different inter- and intra-distance measures defined in
Section 3.

For a group G, we calculate intra-distance in one of
the two possible ways: DiaDist ,SumDist . If G is fur-
ther partitioned to satisfy the upper critical mass con-
straint, then we also want to enable strong collabora-
tion across the subgroups by minimizing inter-distance.
For the latter, inter-distance is calculated using one of
DiaInterDist ,SumInterDist . Even though there may be
many complex formulations to combine these two fac-
tors, in our initial effort our overall objective function
is a simple sum of these two factors that we wish to
minimize. This gives rise to 4 possible optimization ob-
jectives.

– DiaDist ,DiaInterDist:

Minimize {DiaDist(G) +

Max{∀Gi, Gj ∈ G DiaInterDist(Gi, Gj)}}

– SumDist ,DiaInterDist:

Minimize {SumDist(G) +

Max{∀Gi, Gj ∈ G DiaInterDist(Gi, Gj)}}

– DiaDist ,SumInterDist:

Minimize {DiaDist(G) +
∑

Gi,Gj∈G
SumInterDist(Gi, Gj)}

– SumDist ,SumInterDist:

Minimize {SumDist(G) +
∑

Gi,Gj∈G
SumInterDist(Gi, Gj)}

where, each of these objective function has to satisfy
the following three constraints on skill, cost, and critical
mass respectively, as described below:

Σ∀ui∈Gudi ≥ Qi ∀di

Σ∀u∈Gwu ≤ C
|Gi| ≤ K ∀i ∈ {1, 2, . . . , x}

The rest of our discussion only considers DiaDist on
intra-distance and SumInterDist on inter-distance. We
refer to this variant of the problem as AffAware-Crowd.
We note that our proposed optimal solution in Section 4
could be easily extended to other combinations as well.

Theorem 1 Problem AffAware-Crowd is NP-
hard [17].

Proof Given a collaborative task t and a set of users U
and a real number value X, the decision version of the
problem is, whether there is a group G (further parti-
tioned into multiple subgroups) of users (G ⊆ U), such
that the aggregated inter and intra distance value of G
is X and skill, cost, and critical mass constraints of t
are satisfied. The membership verification of the deci-
sion version of AffAware-Crowd is clearly polynomial.

To prove NP-hardness, we consider a variant of com-
pact location [14] problem which is known to be NP-
Complete. Given a complete graph G with N nodes,
an integer n ≤ N and a real number X ′, the decision
version of the problem is whether there is a complete
sub-graph g′ of size n′ ∈ N , such that the maximum
distance between between any pair of nodes in g′ is X ′.
This variant of the compact location problem is known
as Min-DIA in [14].

Our NP-hardness proof uses an instance of Min-DIA
and reduces that to an instance of AffAware-Crowd

problem in polynomial time. The reduction works as
follows: each node in graph G represents a worker u,
and the distance between any two nodes in G is the
distance between a pair of workers for our problem.
We assume that the number of skill domain is 1, i.e.,
m = 1. Additionally, we consider that each workers u
has same skill value of 1 on that domain, i.e., ud = 1,∀u
and their cost is 0, i.e., wu = 0,∀u. Next, we describe
the settings of the task t. For our problem, the task
also has the quality requirement in only one domain,

Optimized Group Formation for Solving Collaborative Tasks 7

which is, Q1. The skill, cost, and critical mass of t are,
〈Q1 = n′, C = 0,K = ∞〉. This exactly creates an
instance of our problem in polynomial time. Now, the
objective is to form a group G for task t such that all
the constraints are satisfied and the objective function
value of AffAware-Crowd is X ′, such that there exists
a solution to the Min-DIA problem, if and only if, a
solution to our instance of AffAware-Crowd exists.

4.2 Algorithms for AffAware-Crowd

Our optimization problem attempts to appropriately
capture the complex interplay among various im-
portant factors. The proof of Theorem 1 shows that
the simplest variant of the optimization problem is
NP-hard. Despite the computational hardness, we at-
tempt to stay as principled as possible in our technical
contributions and algorithms design. Towards this end,
we propose two alternative directions:

(I) ILP: We propose a Integer Linear Program-
ming (ILP) [50] formulation to optimally solve our
original overarching optimization problem. We note
that even translating the problem to an ILP is
non-trivial, because the subgroups inside the large
group are unknown and are determined by the solution.

(II) Staged Approach: We propose an alternate
strategy due to the fact that ILP is prohibitively
expensive. We refer it as Grp&Splt. As the name
suggests, it decomposes the original problem into two
phases-

a) Grp: In this phase, a single group is formed that sat-
isfies the skill and cost threshold but ignores the upper
critical mass constraint. We briefly summarize the al-
gorithms for Grp stage below:

– ApprxGrp: This is an approximation algorithm with
approximation factor of 2. It invokes a subroutine,
which uses branch and bound method, to find a
group of workers who satisfy skill and cost con-
straint for the task. For efficiency, we rely on buck-
eting the cost values. We refer to this variant as
Cons-k-Cost-ApprxGrp.

– OptGrp: This is an instance optimal algorithm that
also uses branch and bound method. However, it it-
erates over all the valid solutions to find the optimal
one.

b) Splt: In this phase, we partition the worker
group (returned from the Grp phase) into smaller
collaborative subgroups. First, we attempt to find the
optimal number of subgroups and then find the as-
signment of workers into these subgroups. We propose

Min-Star-Parition, an approximation algorithm for
this problem.

Of course, this staged solution may not have any the-
oretical guarantees for our original problem formula-
tion. However, our experimental results demonstrate
that this formulation is efficient, as well as adequately
effective.

4.2.1 ILP for AffAware-Crowd

We discuss the ILP next as shown in Equation 1. Let
e(i,i′) denote a boolean decision variable of whether a
user pair ui and u′i would belong to same sub-group in
group G or not. Also, imagine that a total of x groups
(G1, G2, . . . , Gx) would be formed for task t, where
1 ≤ x ≤ n (i.e., at least the subgroup is G itself, or
at most n singleton subgroups could be formed). Then,
which subgroup the worker pair should be assigned
must also be determined, where the number of sub-
groups is unknown in the first place. Note that trans-
lating the problem to an ILP is non-trivial and challeng-
ing, as the formulation deliberately makes the problem
linear by translating each worker-pair as an atomic de-
cision variable (as opposed to a single worker) in the
formulation, and it also returns the subgroup where
each pair should belong to. Once the ILP is formalized,
we use a general-purpose solver to solve it. Although
the Max operator in the objective function (expresses
DiaDist) must be translated appropriately further in
the actual ILP implementation, in our formalism be-
low, we preserve that abstraction for simplicity.

minimize D = Max{ei,i′ × dist(ui, ui′)} +∑
∀Gi,Gj∈G

∑
∀ui∈Gi,uj∈Gj

ei,jdist(ui, uj)

subject to
n∑

i=1

x∑
j=1

u(i,Gj) × u
i
dl
≥ Ql ∀l ∈ [1,m]

n∑
i=1

x∑
j=1

u(i,Gj) × w
i
u ≤ C

n∑
i=1

u(i,Gj) ≤ K ∀j ∈ [1, x]

x∑
j=1

u(i,Gj) ≤ 1 ∀i ∈ [1, n]

ei,i′ =

{
1 ∃j ∈ [1, x] & u(i,Gj) = 1 & u(i′,Gj) = 1

0 otherwise

x ∈ {0, 1, . . . , n}
u(i,Gj) ∈ {0, 1} ∀i ∈ [1, n],∀j ∈ [1, x]

8 Habibur Rahman et al.

(1)

The objective function returns a group
of subgroups that minimizes DiaDist(G) +
Σ∀Gi,Gj

SumInterDist(Gi, Gj). The first three con-
straints ensure the skill, cost and upper critical mass
thresholds, whereas the last four constraints ensure
the disjointedness of the group and the integrality
constraints on different Boolean decision variables.

When run on the example in Section 2, the ILP
generates the optimal solution and creates group
G = {u1, u2, u3, u4, u6} with two subgroups, G1 =
{u1, u2, u4}, and G2 = {u3, u6}. The distance value
of the optimization objective is 4.23, which equals to
DiaDist(G) + InterDist(G1, G2).

4.2.2 Grp&Splt : A Staged Approach

Our proposed alternative strategy Grp&Splt works as
follows: in the Grp stage, we attempt to form a single
worker group that minimizes DiaDist(G), while satisfy-
ing the skill and cost constraints (and ignoring the up-
per critical mass constraint). Note that this may result
in a large group, violating the upper critical mass con-
straints. Therefore, in the Splt phase, we partition this
big group into multiple smaller sub-groups, each satis-
fying the upper critical mass constraint in such a way
that the aggregated inter-distance between all pair of
groups Σ∀Gi,Gj

SumInterDist(Gi, Gj) is minimized. As
mentioned earlier, there are three primary reasons for
taking this alternative route: (a) In many cases we may
not even need to execute Splt, because the solo group
formed in Grp phase abides by the upper critical mass
constraint leading to the solution of the original prob-
lem. (b) The original complex ILP is prohibitively ex-
pensive. Our experimental results demonstrate that the
original ILP does not converge in hours for more than
20 workers. (c) Most importantly, Grp&Splt allows us to
design efficient approximation algorithms with constant
approximation factors as well as instance optimal exact
algorithms that work well in practice, as long as the
distance between the workers satisfies the metric prop-
erty (triangle inequality in particular) [15,48]. We un-
derscore that the triangle inequality assumption is not
an overstretch, rather many natural distance measures
(Euclidean distance, Jaccard Distance) are metric and
several other similarity measures, such as Cosine Sim-
ilarity, Pearson and Spearman Correlations could be
transformed to metric distance [52]. Furthermore, this
assumption has been extensively used in distance com-
putation in the related literature [3,4]. Without metric
property assumptions, the problems remain largely in-
approximable [48].

5 Enforcing Skill & Cost : GRP

In this section, we first formalize our proposed approach
in Grp phase, discuss hardness results, and propose al-
gorithms with theoretical guarantees. Recall that our
objective is to form a single group G of workers that
are cohesive (the diameter of that group is minimized),
while satisfying the skill and the cost constraint.

Definition 1 Grp: Given a task t, form a single group
G of workers that minimizes DiaDist(G), while satis-
fying the skill and cost constraints, i.e., Σ∀u∈Gudi

≥
Qi,∀di , & Σ∀u∈Gwu ≤ C.

Theorem 2 Problem Grp is NP-hard.

Proof Given a collaborative task t with critical mass
constraint and a set of users U and a real number X,
the decision version of the problem is, whether there is
a group G of users (G ⊆ U), such that the diameter is
X, and skill and cost constraints of t are satisfied.The
membership verification of this decision version of Grp
is clearly polynomial.

To prove NP-hardness, the follow the similar strat-
egy as above. We use an instance of Min-DIA [14] and
reduce that to an instance of Grp, as follows: each node
in graph G of Min-DIA represents a worker u, and the
distance between any two nodes in G is the distance
between a pair of workers for our problem. We assume
that the number of skill domain is 1, i.e., m = 1. Addi-
tionally, we consider that each workers u has the same
skill value of 1 on that domain, i.e., ud = 1,∀u and
their cost is 0, i.e., wu = 0,∀u. Task t has quality re-
quirement on only one domain, which is, Q1. The skill
requirement of t is 〈Q1 = n′ and cost C = 0〉. Now, the
objective is to form a group G for task t such that the
skill and cost constraints are satisfied with the diam-
eter of Grp as X ′, such that there exists a solution to
the Min-DIA problem, if and only if, a solution to our
instance of Grp exists.

Proposed Algorithms for Grp: We discuss two al-
gorithms at length - a) OptGrp is an instance optimal al-
gorithm. b) ApprxGrp algorithm has a 2-approximation
factor, as long as the distance satisfies the triangle in-
equality property. Of course, an additional optimal al-
gorithm is the ILP formulation itself (referred to as
ILPGrp in experiments), which could be easily adapted
from Section 4. Both OptGrp and ApprxGrp invoke a
subroutine inside, referred to as GrpCandidateSet. We
describe a general framework for this subroutine next.

5.1 Subroutine GrpCandidateSet

Input to this subroutine is a set of n workers and a
task t (in particular the skill and the cost constraints

Optimized Group Formation for Solving Collaborative Tasks 9

of t) and the output is a worker group that satisfies the
skill and cost constraints. Notice that, if done naively,
this computation takes 2n time. However, Subroutine
GrpCandidateSet uses effective pruning strategy to
avoid unnecessary computations that is likely to ter-
minate much faster. It computes a binary tree repre-
senting the possible search space considering the nodes
in an arbitrary order, each node in the tree is a worker
u and has two possible edges (1/0, respectively stands
for whether u is included in the group or not). A root-
to-leaf path in that tree represents a worker group.

At a given node u, it makes two estimated bound
computation : a) it computes the lower bound of cost
(LBC) of that path (from the root upto that node),
b) it computes the upper bound of skill of that path
(UBdi

) for each domain. It compares LBC with C and
compares UBdi

with Qi,∀di. If LBC > C or UBdi
< Qi

for any of the domains, that branch is fully pruned out.
Otherwise, it continues the computation. Figure 1 has
further details.

u6#

u4#

u3#

u5#

u1#

u2#

1#

0#

1#
0#

0#

0#

0#

0#1#

1#

0#

0#

0#
1#

1#

1#

1# 1#0#

1#

u1#

u2#u2#
u2#

u2# u2#

u1#

u5#

u1#

u2# u2#

1#

1#

1#

0#

0#

0# 0#1#

1#

1# 1#0# 0#

0#

u3#

u4#

LBC=#3.2#
UBd1#=#2.32#

Fig. 1: A partially constructed tree of GrpCandidateSet
using the example in Section 2. At node u1 = 1, LBC =

wu6
+ wu4

+ wu3
+ wu5

+ wu1
= 3.2 and

UBd1
= u6

d1
+ u4

d1
+ u3

d1
+ u5

d1
+ u1

d1
+ u2

d1
= 2.32. The

entire subtree is pruned, since LBC(3.2) > C.

ApprxGrp uses this subroutine to find the first valid
answer, whereas, Algorithm OptGrp uses it to return all
valid answers.

5.2 Further Search Space Optimization

When the skill and cost of the workers are ar-
bitrary, a keen reader may notice that Subroutine
GrpCandidateSet may still have to explore 2n poten-
tial groups in the worst case. Instead, if we have only a
constant number of costs and arbitrary skills, or a con-
stant number of skill values and any arbitrary number
of costs, interestingly, the search space becomes poly-
nomial. Of course, the search space is polynomial when
both are constants.

We describe the constant cost idea further. Instead
of any arbitrary wage of the workers, we now can dis-
cretize workers wage apriori and create a constant num-
ber of k different buckets of wages (a worker belongs to
one of these buckets) and build the search tree based on
that. When there are m knowledge domains, this gives
rise to a total of mk buckets. For our running example
in Section 2, for simplicity if we consider only one skill
(d1), this would mean that we discretize all 6 different
wages in k (let us assume k = 2) buckets. Of course,
depending on the granularity of the buckets this would
introduce some approximation in the algorithm as now
the workers actual wage would be replaced by a num-
ber which may be lesser or greater than the actual one.
However, such a discretization is realistic, since many
crowdsourcing platforms, such as AMT, allow only one
cost per task.

For our running example, let us assume, bucket 1
represents wage 0.5 and below, bucket 2 represents wage
between 0.5 and 0.8. Therefore, now workers u3, u4, u6
will be part of bucket 2 and the three remaining work-
ers will be part of bucket 1. After this, one may notice
that the tree will neither be balanced nor exponential.
Now, for a given bucket, the possible ways of worker se-
lection is polynomial (they will always be selected from
most skilled ones to the least skilled ones), making the
overall search space polynomial for a constant number
of buckets. In fact, as opposed to 26 possible branches,
this modified tree can only have (3+1)×(3+1) possible
branches. Figure 2 describes the idea further.

Once this tree is constructed, our previous pruning
algorithm GrpCandidateSet could be applied to enable
further efficiency.

u2#

u1#

u5#

u3#

u4#

u6#

1#

0#

1#

0#

1#

1#

1#

1#

0#

0#

0#

0#

u3#

u4#

u6#

1#

1#

1#

0#

0#

u3#

u4#

u6#

1#

1# 0#

0#

u3#

u4#

u6#

1#

1# 0#

0#

0#

0#0#

Fig. 2: Possible search space using the example in
Section 2, after the cost of the workers are discretized into
k = 2 buckets, considering only one skill d1. The tree is

constructed in descending order of skill of the workers per
bucket. For bucket 1, if the most skilled worker u2 is not
selected, the other two workers (u1, u5) will never be

selected.

10 Habibur Rahman et al.

5.3 Approximation Algorithm ApprxGrp

A popular variant of facility dispersion problem [15,48]
attempts to discover a set of nodes (that host the facili-
ties) that are as far as possible, whereas, compact loca-
tion problems [14] attempt to minimize the diameter.
For us, the workers are the nodes, and Grp attempts
to find a worker group that minimizes the diameter,
while satisfying the multiple skills and a single cost con-
straint. We propose a 2-approximation algorithm for
Grp, that is not studied before.

Algorithm ApprxGrp works as follows: The main al-
gorithm considers a sorted (ascending) list L of distance
values (this list represents all unique distances between
the available worker pairs in the platform) and performs
a binary search over that list. First, it calls a subrou-
tine (GrpDia) with a distance value α that can run at
the most n times. Inside the subroutine, it considers
worker ui in the i-th iteration to retrieve a star graph3

centered around ui that satisfies the distance α. The
nodes of the star are the workers and the edges are the
distances between each worker pair, such that no edge
in that retrieved graph has an edge > α. One such star
graph is shown in Figure 3.

Next, given a star graph with a set of workers
U ′, GrpDia invokes GrpCandidateSet(U ′, t) to select a
subset of workers (if there is one) from U ′, who together
satisfy the skill and cost thresholds. GrpCandidateSet
constructs the tree in the best-first-search manner and
terminates when the first valid solution is found, or no
further search is possible. If the cost values are further
discretized, then the tree is constructed accordingly, as
described in Section 5.2. This variant of ApproxGrp is
referred to as Cons-k-Cost-ApproxGrp.

Upon returning a non-empty subset U ′′ of U ′,
GrpCandidateSet terminates. Then, ApprxGrp stores
that α and associated U ′′ and continues its binary
search over L for a different α. Once the binary search
ends, it returns that U ′′ which has the smallest α asso-
ciated as the solution with the diameter upper-bounded
by 2α, as long as the distance between the workers
satisfy the triangle inequality4. In case GrpDia returns
an empty worker set to the main function, the binary
search continues, until there is no more option in L. If
there is no such U ′′ that is returned by GrpDia, then
obviously the attempt to find a worker group for the
task t remains unsuccessful.

The pseudo-code of the algorithm ApprxGrp is
presented in Algorithm 1. For the given task t us-
ing the example in Section 2, L is ordered as fol-

3 Star graph is a tree on v nodes with one node having
degree v − 1 and other v − 1 nodes with degree 1.
4 Without triangle inequality assumption, no theoretical

guarantee could be ensured [48].

Algorithm 1 Approximation Algorithm ApprxGrp

Require: U , human factors for U and task t
1: List L contains all unique distance values in increasing

order
2: repeat
3: Perform binary search over L
4: For a given distance α, U ′ = GrpDia(α, {Qi, ∀di}, C)
5: if U ′ 6= ∅ then
6: Store worker group U ′ with diameter d ≤ 2α.
7: end if
8: until the search is complete
9: return U ′ with the smallest d

lows: 0, 0.4, 0.66, 0.85, 1.0. The binary search process
in the first iteration considers α = 0.66 and calls
GrpDia(α, {Qi,∀di}, C). In the first iteration, GrpDia
attempts to find a star graph (referred to Figure 3)
with u1 as the center of the star. This returned graph
is taken as the input along with the skill threshold
of t inside GrpCandidateSetnext. For our running ex-
ample, subroutine GrpDia(0.66, 1.8 , 1.66, 1.4, 2.5) re-
turns u1, u3, u4, u6. Now notice, these 4 workers do
not satisfy the skill threshold of task t (which are re-
spectively 1.8, 1.66, 1.4 for the 3 domains.). Therefore,
GrpCandidateSet(U , t) returns false and GrpDia con-
tinues to check whether a star graph centered around
u2 satisfies the distance threshold 0.66. When run on
the example in Section 2, ApprxGrp returns workers
u1, u2, u3, u5, u6 as the results with objective function
value upper bounded by ≤ 2× 0.66.

u1#

u3# u4#

u6#

0.66$
0.66$

0.66$

Fig. 3: An instantiation of GrpDia(0.66) using the
example in Section 2. A star graph centered u1 is

formed.

Theorem 3 Algorithm ApprxGrp has a 2-
approximation factor, as long as the distance satisfies
triangle inequality.

Proof Algorithm ApprxGrp overall works as follows: it
sorts the distance values in ascending fashion to cre-
ate a list L and performs a binary search over it. For a
given distance value α, it makes a call to GrpDia(α).
Recall Figure 3 that forms a star graph centered on
u1 with GrpDia(0.66) using the example in Section 2.
Consider Figure 4 and notice that for a given distance
value =α, the complete graph induced by the star graph

Optimized Group Formation for Solving Collaborative Tasks 11

Algorithm 2 Subroutine GrpDia

Require: Distance matrix of the worker set U , distance α,
task t.

1: repeat
2: for each worker u
3: form a star graph centered at u, such that for each edge

u, uj , dist(u,uj) ≤ α. Let U ′ be the set of workers in
the star graph.

4: U ′′ = GrpCandidateSet(U ′, t)
5: if U ′′ 6= ∅ then
6: return U ′′

7: end if
8: until all n workers have been fully exhausted
9: return U ′′ = ∅

α=0.66&

α=0.66&

α=0.66&

u1&

u3&u4&

u6&

<=&2α& <=&2α&

<=&2α&

Fig. 4: An instantiation of GrpDia(0.66) using the example
in Section 2. The clique involving u1, u3, u4, u6 can not have

an edge with distance > 2× 0.66, due to the triangle
inequality property.

can not have any edge that is larger than 2 × α, as
long as the distance satisfies the triangle inequality
property. Therefore, when GrpDia(α) returns a non-
empty worker set (that only happens when the skill and
cost thresholds are satisfied), then, those workers sat-
isfies the skill and cost threshold with the optimization
objective value of ≤ 2α. Next, notice that algorithm
ApprxGrp overall attempts to return the smallest dis-
tance α’ for which GrpDia(α’) returns a non-empty
set, as it performs a binary search over the sorted list
of distance values (where distance is sorted in smallest
to largest). Therefore, any group of workers returned by
ApprxGrp satisfies the skill and cost threshold value and
DiaDist(G) is at most 2-times worse than the optimal.
Hence the approximation factor holds.

Lemma 1 Cons-k-Cost-ApproxGrp is polynomial.

Proof Under a constant number of k-costs, subroutine
GrpCandidateSet will accept a polynomial computa-
tion time of O(p + 1)mk at the worst case, where p is
the maximum number of workers in one of the k buck-
ets (p = O(n)). Subroutine GrpDia runs for all n work-
ers at the worst case, and there is a maximum num-
ber of log2|L| calls to GrpDia from the main function

(|L| = O(n2)). Therefore, the asymptotic complexity of
Cons-k-ApproxGrp is O(n× log2|L|× (p+1)mk), which
is polynomial.

5.4 Optimal Algorithm OptGrp

Subroutine GrpCandidateSet leaves enough intu-
ition behind to design an instance optimal algo-
rithm that works well in practice. It calls subroutine
GrpCandidateSet with the actual worker set U and the
task t. For OptGrp, the tree is constructed in depth-first-
fashion inside GrpCandidateSet and all valid solutions
from the subroutine are returned to the main function.
The output of OptGrp is that candidate set of workers
returned by GrpCandidateSet which has the smallest
largest edge. When run on the example in Section 2,
this OptGrp returns G = {u1, u2, u3, u5, u6} with objec-
tive function value 1.0.

Furthermore, when workers wages are discretized
into k buckets, OptGrp could be modified as described in
Section 5.2 and is referred to as Cons-k-Cost-OptGrp.

Theorem 4 Algorithm OptGrp returns optimal an-
swer.

Proof Algorithm OptGrp invokes the subroutine
GrpCandidateSet. Notice that GrpCandidateSet

operates in the spirit of the branch-and-bound tech-
nique [40] to efficiently explore the search space and
avoid unnecessary computations. GrpCandidateSet

exploits the upper bound of cost and lower bound of
skill to prune out all unnecessary branches of the search
tree, as shown in Figure 1 and Figure 2. However, this
subroutine returns all valid worker groups to OptGrp,
and then, the main function selects the group with the
smallest longest edge (i.e., smallest diameter value),
and minimizes the objective function. Therefore,
OptGrp is instance optimal, i.e., it returns the group
of workers with the smallest diameter distance, while
satisfying the skill and cost threshold. Therefore,
OptGrp returns optimal answer.

Lemma 2 Cons-k-Cost-OptGrp is polynomial.

Proof Under a constant number of k-costs, subrou-
tine GrpCandidateSet will accept a polynomial com-
putation time of O(n + 1)mk at the worst case.
Once the subroutine returns all valid answers, the
main function will select the one that has the small-
est diameter. Therefore, the computation time of
Cons-k-Cost-OptGrp is dominated by the computation
time of the subroutine GrpCandidateSet. Therefore,
Algorithm Cons-k-OptGrp runs in polynomial time of
O((p+ 1)mk.

12 Habibur Rahman et al.

6 Enforcing Upper Critical Mass : SPLT

When Grp results in a large unwieldy group G that may
struggle with collaboration, it needs to be partitioned
further into a set of sub-groups in the Splt phase to sat-
isfy the upper critical mass (K) constraint. At the same
time, if needed, the workers across the subgroups should
still be able to effectively collaborate. Precisely, these
intuitions are further formalized in the Splt phase.

Definition 2 Splt: Given a group G, decompose it
into a disjoint set of subgroups (G1, G2, . . . , Gx)
such that ∀i|Gi| ≤ K,

∑
i |Gi| = |G| and

the aggregated all pair inter group distance
Σ∀Gi,Gj∈GSumInterDist(Gi, Gj) is minimized.

Theorem 5 Problem Splt is NP-hard.

Proof Given a group G, an upper critical mass con-
straint K, and a real number X, the decision version
of the Splt is whether G can be decomposed to a set
of subgroups such that the aggregated distances across
the subgroups is X and the size of each subgroup is
≤ K. The membership verification of Splt is clearly
polynomial.

To prove NP-hardness, we reduce the Minimum

Bisection [28] which is known to be NP-hard to an
instance of Splt problem.

Given a graph G(V,E) with non-negative edge
weights the goal of Minimum Bisection problem is to
create 2 non-overlapping partitions of equal size, such
that the total weight of cut is minimized. The hard-
ness of the problem remains, even when the graph is
complete [28].

Given a complete graph with n′ nodes, the decision
version of the Minimum Bisection problem is to see
whether there exists a 2 partitions of equal size, such
that the total weight of the cut is X ′. We reduce an in-
stance of Minimum Bisection to an instance of Splt as
follows: the complete graph represents the set of work-
ers with non-negative edges as their distance and we
wish to decompose this group to two sub-groups, where
the upper critical mass is set to be K = n′/2. Now, the
objective is to form the sub-groups with the aggregated
inter-distance of X ′, such that there exists a solution to
the Minimum Bisection problem, if and only if, a so-
lution to our instance of Splt exists.

Proposed Algorithm for Splt: Since the ILP for
Splt can be very expensive, our primary effort remains
in designing an alternative strategy that is more effi-
cient, that allows provable bounds on the result qual-
ity. We take the following overall direction: imagine that
the output of Grp gives rise to a large group G with n′

workers, where n′ > K. First, we determine the num-
ber of subgroups x and the number of workers in each

2α#

2α#

α#
2α#

2α#

####################α#

a#

b#

c#

d#

e#
####################α#

α#
f#

2α#

###α# α#
α#

####################α#####################α#

######2α#

2α#

2α#

α#
2α#

2α#

####################α#

a#

c#

d#

e#
####################α#

α#
f#

2α#

###α# α#
α#

####################α#####################α#

######2α#

Fig. 5: Balanced Partitioning in SpltBOpt when the
distance satisfies triangle inequality for a graph with 6

modes. The left hand side figure has two
partitions({a, b, c}, {d, e, f}) with 3-nodes in each (red nodes

create one partition and blue nodes create another). The
intra-partion edges are drawn solid, whereas, inter-partition
edges are drawn as dashed. Assuming K = 4, in the right

hand side figure, node d is moved with a, b, c. This increases
the overall inter-partition weights, but is bounded by a

factor of 2.

subgroup Gi. Then, we attempt to find optimal parti-
tioning of the n′ workers across these x subgroups that
minimizes the objective function. We refer to this as
SpltBOpt which is the optimal balanced partitioning of
G. For the running example in Section 2, this would
mean creating 2 subgroups, G1 and G2, with 3 workers
in one and the remaining 2 in the second subgroup using
the workers u1, u2, u3, u5, u6, returned by ApprxGrp.

For the remainder of the section, we investigate how
to find SpltBOpt. There are intuitive as well as logical
reasons behind taking this direction. Intuitively, lower
number of subgroups gives rise to overall smaller objec-
tive function value (note that the objective function is
in fact 0 when x = 1). More importantly, as Lemma 3
suggests, under certain conditions, SpltBOpt gives rise
to provable theoretical results for the Splt problem.
Finding the approximation ratio of SpltBOpt for arbi-
trary number of partitions is deferred to future work.

Lemma 3 SpltBOpt has 2-approximation for the Splt

problem, if the distance satisfies triangle inequality,
when x = dn

′

K e = 2.

Proof Sketch: For the purpose of illustration, imagine
that a graph with n′ nodes is decomposed into two par-
titions. Without loss of generality, imagine partition-
1 has n1 nodes and partition-2 has n2 nodes, where
n1 + n2 = n′ with total weight of w′. Let K be the up-
per critical mass and assume that K > n1,K > n2. For
such a scenario, SpltBOpt will move one or more nodes
from the lighter partition to the heavier one, until the
latter has exactly K nodes (if both partitions have same
number of nodes then it will choose the one which gives
rise to overall lower weight). Notice, the worst case hap-
pens, when some of the intra-edges with higher weights
now become inter edges due to this balancing act. Of

Optimized Group Formation for Solving Collaborative Tasks 13

course, some inter-edges also gets knocked off and be-
comes intra-edges. It is easy to notice that the num-
ber of inter-edges that gets knocked off is always larger
than that of the number of inter-edges added (because
the move is always from the lighter partition to the
heaver one). The next argument we make relies heavily
on the triangle inequality property. At the worst case,
every edge that gets added due to balancing, could at
most be twice the weight of an edge that gets knocked
off. Therefore, an optimal solution of SpltBOpt has 2-
approximation factor for the Splt problem.

An example scenario of such a balancing has been
illustrated in Figure 5, where n1 = n2 = 3,K = 4.
Notice that after this balancing, three inter-edges get
deleted (ad,bd,cd), each of weight α and two inter-edges
get added, where each edge is of weight 2α. However,
the approximation factor of 2 holds, due to the triangle
inequality property.

Even though the number of subgroups (aka parti-
tions) is dn

′

K e with K workers in all but last subgroup,
finding an optimal assignment of the n′ workers across
those subgroups that minimizes the objective function
is NP-hard. The proof uses an easy reduction from [20].
We start by showing how the solution to SpltBOpt

problem could be bounded by the solution of a slightly
different problem variant, known as Min-Star prob-
lem [20].

Definition 3 Min-Star Problem: Given a group G
with n′ workers, out of which each of x workers
(u1, u2, . . . , ux), represents a center of a star sub-graph
(each sub-graph stands for a subgroup), the objec-
tive is to partition the remaining n′ − x workers into
one of these x subgroups G1, G2, . . . , Gx such that∑x

i=1 kidist(ui,∪j 6=iGj) +
∑

i<j kikjdist(ui, uj) is min-
imized, where ki is the total number of workers in sub-
group Gi.

Intuitively, Min-Star problem seeks to decompose
the worker set into x subgroups, such that ui is the
center of a star graph for subgroup Gi, and for a fixed
set of such workers {u1, u2, . . . , ux}, the contribution of
ui to the objective function is proportional to the sum
of distances of a star subgraph rooted at ui.
Solving Min-Star:Algorithm Min-Star-Partition:
The pseudocode is listed in Algorithm 3 and additional
details can be found in [20]. The key insight behind
this algorithm is the fact that for a fixed set of work-
ers {u1, u2, . . . , ux}, the second term of the objective
function

∑
i<j kikjdist(ui, uj) is a constant. Further-

more, this expression could only take
(
n′

x

)
distinct val-

ues corresponding to all possible combination of how
the workers {u1, u2, . . . , ux} are chosen from the group
G with n′ workers. Hence for a fixed set of workers,

Algorithm 3 Algorithm Min-Star-Partition

Require: Group G with n′ workers and upper critical mass
K

1: x = dn
′

K
e

2: for all subset {u1, . . . , ux} ⊂ G do
3: Find optimal subgroups {G1, . . . , Gx} for {u1, . . . , ux}

by formulating it as transportation problem
4: Evaluate objective function for {G1, . . . , Gx}
5: end for
6: return subgroups {G1, . . . , Gx} with least objective

function

the objective now reduces to finding an optimal sub-
groups G1, . . . , Gx that minimizes the first expression.
Interestingly, this expression corresponds exactly to a
special case of the popular transportation problem [18]
that could be solved optimally with time complexity
O(n′) [20]. We refer to [20] for further details.

Finally, the objective function of the SpltBOpt is
computed on the optimal partition of each instance
of the transportation problem, and the one with the
least value is returned as output. When run using
G = {u1, u2, u3, u5, u6} from ApprxGrp, this algorithm
forms subgroups G1 = {u1, u2, u5} and G2 = {u3, u6}
with objective function value 3.89.

Theorem 6 Algorithm for Min-Star-Partition has
a 3-approximation for SpltBOpt problem.

Proof sketch: This result is a direct derivation of the
previous work [20]. Previous work [20] shows that
Min-Star-Partition obtains a 3-approximation factor
for the Minimum k-cut problem. Recall that SpltBOpt
is derived from Minimum k-cut by setting each parti-
tion size (possibly except the last one) to be equal with
K nodes, giving rise to a total number of dn

′

K e parti-
tions. After that, the result from [20] directly holds.

Lemma 4 Min-Star-Partition is polynomial.

Proof It can be shown that Min-Star-Partition takes
O(n′x+1) time, as there are O(n′x) distinct transporta-
tion problem instances (corresponding to each one of(
n′

x

)
combinations), and each instance can be solved in

O(n′) [20] time. Since, x is a constant, therefore, the
overall running time is polynomial.

7 Experiments

We describe our real and synthetic data experi-
ments to evaluate our algorithms next. The real-data
experiments are conducted on Amazon Mechanical
Turk(AMT). The synthetic-data experiments are con-
ducted using a parametrizable crowd simulator.

14 Habibur Rahman et al.

7.1 Real Data Experiments

Two different collaborative crowdsourcing applications
are evaluated using AMT: i) Collaborative Sentence
Translation (CST), ii) Collaborative Document Writ-
ing (CDW).

Workers: A pool of 120 workers participate in the
sentence translation study, whereas, a different pool of
135 workers participate in the second one. Hired work-
ers are directed to our website where the actual tasks
are undertaken.

Pair-wise Affinity Calculation: Designing com-
plex personality test [44] to compute affinity is be-
yond the scope of this work. We instead choose some
simple factors to compute affinity that have been ac-
knowledged to be indicative factors in prior works [53].
We calculate affinity in two ways - 1) Affinity-Age:
age based calculation discretizes workers into differ-
ent age buckets and assigns a value of 1 to a worker-
pair, if they fall under the same bucket, 0 otherwise.
2) Affinity-Region: assigns a value of 1, when two
workers are from the same country and 0 otherwise.

Evaluation Criteria: - The overall study is de-
signed to evaluate: (1) Effectiveness of the proposed
optimization model, (2) Effectiveness of affinity calcula-
tion techniques, and (3) Effect of different upper critical
mass values.

Algorithms: We compare our proposed solu-
tion with other baselines: (1) To evaluate the
first criteria, we use the ILP described in Sec-
tion 4 against an alternative Aff-Unaware Algo-
rithm [49]. The latter assigns workers to the tasks
considering skill and cost but ignoring affinity.
Since, ILP outputs optimal task assignment, we re-
fer to this as Optimal(2) Optimal-Affinity-Age

and Optimal-Affinity-Region are two variants of
Optimal that use two different affinity calculation
methods (Affinity-Age and Affinity-Region respec-
tively) and are compared against each other to evalu-
ate the second criteria. (3) CrtMass-Optimal-K assigns
workers to tasks based on the optimization objective
and varies different upper critical mass values K, which
are also compared against each other for different K.

Overall user-study design: The overall study is
conducted in 3-stages : (1) Worker Profiling: in stage-
1, we hire workers and use pre-qualification tests using
“gold-data” to learn their skills. We also learn other
human factors as described next.(2) Worker-to-task As-
signment: in stage-2, a subset of these hired workers are
re-invited to participate, where the actual collabora-
tive tasks are undertaken by them.(3) Task Evaluation:
in stage-3, completed tasks are crowdsourced again to
evaluate their quality.

Summary of Results: There are several key take-
aways of our user study results. First and foremost,
effective collaboration is central to ensuring high qual-
ity results for collaborative complex tasks. We evalu-
ated 2 different affinity computation models and the
results show that the people from same region collabo-
rate more effectively than people in same age group. In-
terestingly, upper critical mass also has a significance in
collaboration effectiveness, consequently, in the quality
of the completed tasks. Quality increases from K = 5
to K = 7, but it decreases with statistical significance
when K = 10 for CrtMass-Optimal-10.

7.1.1 Stage 1 - Worker Profiling

We hire two different sets of workers for sentence trans-
lation and document writing. The workers are informed
that a subset of them will be invited (through email)
to participate in the second stage of the study.

Skill learning for Sentence Translation: We
hire 60 workers and present each worker with a 20 sec-
ond English video clip, for which we have the ground
truth translation in 4 different languages: English,
French, Tamil, Bengali. We then ask them to create a
translation in one of the languages (from the last three)
that they are most proficient in. We measure each work-
ers individual skill using Word Error Rate(WER) [35].
Skill learning for Document Writing: For the sec-
ond study CDW , we hire a different set of 75 work-
ers. We design a “gold-data” set that has 8 multiple
choice questions per task, for which the answers are
known (e.g. for the MOOCs topic in table 4 - one ques-
tion was, “Who founded Coursera?”). The skill of each
worker is then calculated as the percentage of her cor-
rect answers. For simplicity, we consider only one skill
domain for both applications.
Wage Expectation of the worker: We explicitly ask
a question to each worker on their expected monetary
incentive, by giving them a high level description of
the tasks that are conducted in the second stage of the
study. Those inputs are recorded and used in the ex-
periments.
Affinity of the workers: Hired workers are directed
to our website, where they are asked to provide 4 sim-
ple socio-demographic information: gender, age, region,
and highest education. Workers anonymity is fully pre-
served. From there, affinity between the worker is cal-
culated using, Affinity-Age or Affinity-Region.

Figure 6 and Figure 7 contain detailed workers pro-
file distribution information.

Optimized Group Formation for Solving Collaborative Tasks 15

0

10

20

30

0.2 0.6 0.7 0.8 0.9 0.95 1

P
e

rc
e

n
ta

g
e

Workers' Skill

(a) Worker Skill distribution

0

20

40

60

0.25 0.5 0.75 1

P
e

rc
e

n
ta

g
e

Workers' Cost

(b) Worker wage distribution

0

20

40

60

0 1

P
e

rc
e

n
ta

g
e

Workers' Distance

Region Based Age Based

(c) Worker distance distribu-
tion

0

0.2

0.4

0.6
0.8

1
1.2

0.2 0.6 0.7 0.8 0.9 0.95 1

M
e

a
n

 C
o

st

Workers' Skill

(d) Correlation between
Worker skill and wage

Fig. 6: Worker profile distributions for the Sentence Translation Tasks in Section 7.1

0

5

10

15

20

25

0.25 0.375 0.5 0.625 0.75 0.875 1

P
e

rc
e

n
ta

g
e

Workers' Skill

(a) Worker Skill distribution

0

10

20

30

40

0.15 0.3 0.5 0.7

P
e

rc
e

n
ta

g
e

Workers' Cost

(b) Worker wage distribution

0

20

40

60

80

0 1
P

e
rc

e
n

ta
g

e

Workers' Distance

(c) Worker distance distribu-
tion

0

0.2

0.4

0.6

0.8

0.25 0.375 0.5 0.625 0.75

M
e

an
 C

o
st

Workers' Skill

(d) Strong positive correlation
between worker skill and wage

Fig. 7: Worker profile distributions for the Collaborative Document Writing in Section 7.1

Task Name Skill Cost Critical Mass
CST1- Destroyer 3.0 $5.0 5,7,10
CST2- German Weapons 4.0 $5.0 5,7,10
CST3 - British Aircraft 3 $4.5 5,7,10
CDW1- MOOCs 5 $3 5,7,10
CDW2- Smartphone 5 $3 5,7,10
CDW3- top-10 place 5 $3 5,7,10

Table 4: Description of different tasks; the default upper
critical mass value is 5. Default affinity calculation is region

based.

7.1.2 Stage 2 - Worker-to-Task Assignment

Once the hired workers are profiled, we conduct the sec-
ond and most important stage of this study, where the
actual tasks are conducted collaboratively.
Collaborative Sentence Translation(CST): We carefully
choose three English documentaries of suitable com-
plexity and length of about 1 minute for creating
subtitle in three different languages - French, Tamil,
and Bengali. These videos are chosen from YouTube
with titles: (1) Destroyer, (2) German Small Weapons,
(3)British Aircraft TSR2.

Collaborative Document Writing (CDW): Three dif-
ferent topics are chosen for this application: 1) MOOCs
and its evolution, 2) Smart Phone and its evolution, 3)
Top-10 places to visit in the world.

The skill and cost requirements of each tasks are
described in the Table 4. These values are set by in-
volving domain experts and discussing the complexity
of the tasks with them.

Collaborative Task Assignment for CST: We set
up 2 different worker groups per task and compare
two algorithms Optimal-CST and Aff-Unaware-CST

to evaluate the effectiveness of proposed optimization
model. We set up additional 2 different worker groups
for each task to compare Optimal-Affinity-Region

with Optimal-Affinity-Age. Finally, we set up 3
additional groups per task to compare the effective-
ness of critical mass and compare CrtMass-Optimal-5,
CrtMass-Optimal-7, CrtMass-Optimal-10. This way,
a total of 15 groups are created. We instruct the work-
ers to work incrementally using other group members
contribution and also leave comment as they finish the
work. These sets of tasks are kept active for 3 days.

Collaborative Task Assignment for CDW: An sim-
ilar strategy is adopted to collaboratively edit a doc-
ument within 300 words, using the quality, cost, and
critical mass values of the document editing tasks, de-
scribed in Table 4.

7.1.3 Stage 3 - Task Evaluation

Collaborative tasks, such as knowledge synthesis, are
often subjective. An appropriate technique to evaluate
their quality is to leverage the wisdom of the crowds.
This way a diverse and large enough group of individu-
als can accurately evaluate information to nullify indi-
vidual biases and the herding effect. Therefore, in this
stage we crowdsource the task evaluation for both of
our applications.

16 Habibur Rahman et al.

For the first study of Sentence Translation (CST),
we have taken 15 final outcomes of the translation tasks
as well as the original video clips and then set up as
3 different HITs in AMT. The first HIT is designed
to evaluate the optimization model, the second one to
evaluate two different affinity computation models, and
the final one to evaluate the effectiveness of upper criti-
cal mass. We assign 20 workers in each HIT, totaling 60
new workers. We evaluate the completed tasks in two
quality dimensions, as identified by prior work [53] -
1. correctness of translation. 2.completeness of transla-
tion. The workers are asked to rate the quality in a scale
of 1−5 (higher is better) without knowing the underly-
ing task production algorithm. Then, we average these
ratings which is similar to obtaining the viewpoint of an
average reader. The CST results of different evaluation
dimensions are presented in Figure 8.

A similar strategy is undertaken for the CDW ap-
plication, but the quality is assessed using 5 key differ-
ent quality aspects, as proposed in prior work [8]. The
results are summarized in Table 5. Both these results
indicate that, indeed, our proposed model successfully
incorporates different elements that are essential to en-
sure high quality in collaborative crowdsourcing tasks.

7.2 Synthetic Data Experiments

The purpose of this experiments is to show that our pro-
posed algorithms perform well both qualitatively and
efficiently. Besides evaluating the algorithms for our
staged solution Grp&Splt, we also evaluate the algo-
rithms for the grp stage. This will help us illustrate the
fact that our algorithms for Grp create effective collabo-
rative groups. This is also essential for the performance
of Splt stage.

We conduct our synthetic data experiments on an
Intel core I5 with 6 GB RAM. We use IBM CPLEX
12.5.1 for the ILP. A crowd simulator is implemented
in Java to generate the crowdsourcing environment. All
numbers are presented as the average of three runs.
Simulator Parameterization: The simulator param-
eters presented below are chosen akin to their respective
distributions, observed in our real AMT populations.
1. Simulation Period - We simulate the system for a
time period of 10 days, i.e. 14400 simulation units, with
each simulation unit corresponding to 1 minutes. With
one task arriving in every 10 minutes, our default set-
ting runs 1 day and has 144 tasks.
2. # of Workers - default is 100, but we vary |U| upto
5000 workers.
3. Workers skill and wage - The variable udi

in skill
di receives a random value from a normal distribution
with the mean set to 0.8 and a variance 0.15. Worker’s
wages are also set using the same normal distribution.

4. Task profile - The task quality Qi, as well as cost C is
generated using normal distribution with specific mean
15 and variance 1 as default. Unless otherwise stated,
each task has a skill.
5. Distance - Unless otherwise stated, we consider dis-
tance to be metric and generated using Euclidean dis-
tance.
6. Critical Mass - the default value is 7.
7. Worker Arrival, Task Arrival - By default, both
workers and tasks arrive following a Poisson process,
with an arrival rate of µ = 5/minute 1/10 minute, re-
spectively.

Implemented Algorithms: Here we first describe the
algorithms for Grp stage.
1. ApprxGrp: We implement the algorithm ApprxGrp,
described in Section 5.3.
2. Cons-k-AG: This is a variant of the algorithm
ApprxGrp referred to as Cons-k-cost-ApprxGrp, de-
scribed in Section 5.3. We set the number of cost buck-
ets k to 15.
3. GrpILP: An ILP designed for Grp stage only.
3. OptGrp: This is an optimal algorithm that is simi-
lar to GrpILP both in terms of quality and efficiency.
Hence, we decided to omit the results for OptGrp.
5. RandGrp: We also design an affinity unaware algo-
rithm that finds a set of workers who satisfy skill and
cost threshold, but does not optimize affinity.

Here are the list of algorithms for Grp&Splt
1. Overall-ILP: An ILP, as described in Section 4.
2. Grp&Splt: Uses Cons-k- AG for Grp and
Min-Star-Partition for Splt.
3. RandGrp&GrdSplt: An alternative implementation.
In phase-1, we use RandGrp. In phase-2, we partition
users greedily into most similar subgroups satisfying
critical mass constraint.

6. No implementation of existing related work:
Due to critical mass constraint, we intend to form
a group, further partitioned into a set of subgroups,
whereas, no prior work has studied the problem of
forming a group along with subgroups, thereby making
our problem and solution unique.

Summary of Results: Our synthetic experiments
also exhibit many interesting insights. First and fore-
most, Grp&Splt is a reasonable alternative formula-
tion to solve AffAware-Crowd, both qualitatively and
efficiency-wise, as Overall-ILP is not scalable and does
not converge for more than 20 workers. Second, our pro-
posed approximation algorithms for Grp&Splt are both
efficient as well as effective, and they significantly out-
perform other competitors. Finally, our proposed for-
mulation AffAware-Crowd is an effective way to op-
timize complex collaborative crowdsourcing tasks in a

Optimized Group Formation for Solving Collaborative Tasks 17

Average Rating
Task Algorithm Completeness Grammar Neutrality Clarity Timeliness Added-value

MOOCs
Optimal-CDW 4.6 4.5 4.3 4.3 4.3 3.7
Aff-Unaware-CDW 4.1 4.2 4.2 3.9 3.9 3.0
CrtMass-Optimal-10 4.0 4.1 4.2 3.9 3.9 3.5

Smartphone
Optimal 4.8 4.6 4.7 4.1 4.2 4.2
Aff-Unaware 4.1 4.1 4.2 4.2 3.9 3.3
CrtMass-Optimal-10 4.0 3.9 3.8 4.1 3.9 3.3

Top-10 places
Optimal 4.4 4.2 4.3 4.2 4.3 4.3
Aff-Unaware 3.9 3.8 3.7 3.6 3.3 2.9
CrtMass-Optimal-10 3.9 4.0 4.1 4.0 3.9 3.9

Table 5: Stage 3 results of document writing application in Section 7.1: Quality assessment on the completed tasks
of Stage-2 is performed by a new set of 60 AMT workers on a scale of 1− 5. For all three tasks, the results clearly

demonstrate that effective collaboration leads to better task quality. Even though all three groups (assigned to the same
task) surpass the skill threhsold and satisfy the wage limit, however, our proposed formalism Optimal enables better team

collaboration, resulting in higher quality of articles.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

Correctness Completeness

A
v
e

ra
g

e
 R

a
ti

n
g

Optimal-CST Aff-Unaware-CST

(a) Optimization Model

3.4
3.5
3.6
3.7
3.8
3.9

4
4.1
4.2

Correctness Completeness

A
ve

ra
g

e
 R

a
ti

n
g

Optimal-Affinity-Region

Optimal-AffinityAge

(b) Affinity Calculation

3.2

3.4

3.6

3.8

4

4.2

4.4

Correctness Completeness

A
v
e

ra
g

e
 R

a
ti

n
g

CrtMass-5 CrtMass-7 CrtMass-10

(c) Upper Critical Mass

Transla'on) Language)

The)destroyers)are)among)the)fastest)and)most)deadly)worships)
ever)built.)Moun'ng)a)powerful)?)of)offensive)and)defensive)
weapons,)they)can)serve)equally)well)as)escorts)for)other)vessels)
more)in)form)of)a)?)in)their)own)right.))

English)

Les)destroyers)sont)parmi)les)plus)rapides)et)les)plus)meurtrières)
jamais)construits.)Montage)d'un)?)puissant)offensives)et)
défensives,)ils)peuvent)tout)aussi)bien)servir)d'escortes)pour)les)
autres)navires.)Au)début,)les)navires)étais)conçus)exclusivement)
pour)détruire)les)bateaux)?.))

French)

Les)destructeurs)sont)parmi)les)plus)rapides)et)les)plus)meurtriers)
jamais)construits.)Montage)d'un)puissant)arsenal)d'armes)
défensives)et)offensives,)ils)peuvent)tout)aussi)bien)servir)
d'escorte)aux)autres)navires,)plus)sous)forme)de)(formidable)
navire)d'aJaque?))dans)leur)propre)droit.)Au)début,)les)navires)
étaient)conçus)exclusivement)pour)détruire)les)bateaux)Paxon.))

French)

(d) A French Translation Sam-
ple

Fig. 8: Stage 3 results of sentence translation: Collected data with statistical significance (standard error) is presented.
These results clearly corraborate that our affinity-aware optimization model Optimal-CST outperforms its affinity-unaware

counterpart [43] with statistical significance across both quality dimensions.Optimal-Affinity-Region apperas to outeprform
Optimal-Affinity-Age in “correctness”. The results of CrtMass-Optimal-10 clearly appers to be less effective than the other

two, showing some anecdotal evidence that group size is important in collaborative crowdsourcing applications.

0.01

0.1

1

10

100

20 30 500 1000 2000 5000

M
e

a
n

 O
b

je
ct

iv
e

F

u
n

ct
io

n

Number of Workers

Grp&Splt

RandGrp&GrdSplt

Overall-ILP

Fig. 9: Grp&Splt : Objective
Function varying Number of

Workers

0.1

1

10

100

10 12 15 20 25

M
e

a
n

 O
b

je
ct

iv
e

F

u
n

ct
io

n

Task Mean Skill

Grp&Splt

RandGrp&GrdSplt

Fig. 10: Grp&Splt :
Objective Function varying

Task Mean Skill

0

5

10

15

20

25

3 5 7 9 11

M
e

a
n

 O
b

je
c
ti

v
e

F

u
n

c
ti

o
n

Critical Mass

Grp&Splt

RandGrp&GrdSplt

Fig. 11: Grp&Splt: Objective
Function varying Critical

Mass

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

M
e

a
n

 O
b

je
ct

iv
e

F

u
n

ct
io

n

Simulation Days

Grp&Splt
RandGrp&GrdSplt

Fig. 12: Grp&Splt:Objective
function over Simulation Days

real world settings. We first present the overall quality
and scalability of the combined Grp&Splt, followed by
that of Grp individually.

7.2.1 Quality Evaluation

We present the quality evaluations next.

Grp&Splt Quality: The average of overall objective
function value, which is the sum of DiaDist(G) and ag-
gregated all pair SumInterDist() across the subgroups,
is evaluated and presented as mean objective function

value for 144 tasks. Overall-ILP does not converge be-
yond 20 workers.
Varying # of Workers: Figure 9 has the results,
with mean skill=15 and variance=1, demonstrates that
Grp&Splt outperforms RandGrp&GrdSplt in all the
cases, while being very comparable with Overall-ILP.
Varying Tasks Mean Skill: With varying mean skill
(cost is proportional to skill), Figure 10 demonstrates
that the objective function gets higher (hence worse) for
both the algorithms, as skill/cost requirement increases,
while Grp&Splt outperforms RandGrp&GrdSplt. This

18 Habibur Rahman et al.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 2 3 4 5

M
e

a
n

 D
ia

m
e

te
r

Task Mean Skill

RandGrp

ApprxGrp

GrpILP

Cons-k-AG

Fig. 13: Grp : Mean
Diameter varying Mean Skill

0.001

0.01

0.1

1

1 2 3 4 5 6 7 8 9 10

M
e

a
n

 D
ia

m
e

te
r

Simulation Days

RandGrp

ApprxGrp

GrpILP

Cons-k-AG

Fig. 14: Grp :Mean Diamter
varying Simulation Days

1

10

100

1000

10000

100000

1000000

10000000

20 30 500 1000 2000 5000

M
e

a
n

 C
o

m
p

le
ti

o
n

T

Im
e

(l
o

g
sc

a
le

,m
s)

Number of Workers

Grp&Splt
RandGrp&GrdSplt
Overall-ILP

Fig. 15: Grp&Splt : Mean
Completion Time varying

Number of Workers

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10M
e

a
n

 C
o

m
p

le
ti

o
n

 T
im

e

(l
o

g
 s

c
a

le
,

m
s)

Simulation Days

Grp&Splt
RandGrp&GrdSplt

Fig. 16: Grp&Splt : Mean
Completion Time varying

Simulation Days

intuitively is meaningful, as with increasing skill re-
quirement, the generated group is large, which de-
creases the workers cohesiveness further.
Varying Critical Mass: As Figure 11 shows, with
increasing critical mass, quality of both solutions in-
creases, because the aggregated inter-distance across
the partition gets smaller due to less number of edges
across.
Varying Simulation Period: In Figure 12 simulation
period is varied, where both workers and tasks arrive
based on Poisson process. Grp&Splt convincingly out-
performs
RandGrp&GrdSplt in this experiment.

Grp Phase Quality: The objective function is the aver-
age DiaDist() value.
Varying Task Mean Skill: Figure 13 demonstrates
that, although ApprxGrp and Cons-k-AG is 2-times
worse than optimal theoretically, but in practice, it is
as good as optimal. GrpILP.
Varying Simulation Period: Figure 14 demon-
strates, that, as more workers are active in the sys-
tem GrpILP cannot converge. Hence, we can not get
the results for GrpILP beyond day-2. But, ApprxGrp

and Cons-k-AG works fine and achieves almost optimal
result.

7.2.2 Efficiency Evaluation

In this section, we demonstrate the scalability aspects of
our proposed algorithms and compare them with other
competitive methods by measuring the average com-
pletion time of a task. Like above, we first present the
overall time for Grp&Splt phase, then followed by Grp

phase.

Grp&Splt Efficiency: Varying # Workers: Fig-
ure 15 demonstrates that our solution Grp&Splt is
highly scalable, whereas, Overall-ILP fails to converge
beyond 20 workers. RandGrp&GrdSplt is also scalable
(because of the simple algorithm in it), but clearly does
not ensure high quality.

1

10

100

1000

10000

100000

5 10 15 20 25M
e

a
n

 C
o

m
p

le
ti

o
n

 T
im

e

(l
o

g
 s

ca
le

,
m

s)

Task Mean Skill

RandGrp ApprxGrp

GrpILP Cons-k-AG

Fig. 17: Grp : Mean
Completion Time varying

Mean Skill

1
10

100
1000

10000
100000

1000000
10000000

1 2 3 4 5 6 7 8 9 10M
e

a
n

 C
o

m
p

le
ti

o
n

 T
im

e

(l
o

g
 s

ca
le

,
m

s)

Simulation Days

RandGrp
ApprxGrp
GrpILP
Cons-k-AG

Fig. 18: Grp :Mean
Completion Time varying

Simulation Days

Varying Task Mean Skill: Akin to previous re-
sult, Grp&Splt and RandGrp&GrdSplt are both scal-
able,Grp&Splt achieves higher quality. We omit the
chart for brevity.
Varying Critical Mass: As before, increasing critical
mass leads to better efficiency for the algorithms. We
omit the chart for brevity.
Varying Simulation Period: Figure 16 demon-
strates that Grp&Splt is highly scalable in a real crowd-
sourcing environment, where more and more workers
are entering into the system. The results show that
RandGrp&GrdSplit is also scalable (but significantly
worse in quality). But as number of worker increases,
efficiency decreases, for both, as expected.

Grp Phase Efficiency: We evaluate the efficiency of
ApprxGrp by returning mean completion time for 144
tasks.
Varying Task Mean Skill: As Figure 17 demon-
strates, ApprxGrp outperforms GrpILP significantly. As
expected, Cons-k-AG is more efficient than ApprxGrp

since it bucketize the cost values. With higher skill
threshold, the difference between RandGrp and our al-
gorithms becomes even more noticeable.
Varying Simulation Period: Figure 18 shows the
average task completion time in each day for ApprxGrp,
Cons-k-AG,GrpILP, RandGrp. Clearly, GrpILP is im-
practical to use as more workers arrive in the system.

Optimized Group Formation for Solving Collaborative Tasks 19

8 Related Work

We discuss how our work is different from a few exist-
ing works that discuss the challenges in crowdsourcing
complex tasks, as well as traditional team formation
problems.

Crowdsourcing Complex Tasks: This type of
human based computation [32,31,2] handles tasks re-
lated to knowledge production, such as article writ-
ing, sentence translation, citizen science, product de-
sign, etc. These tasks are conducted in groups, are less
decomposable compared to micro-tasks (such as image
tagging) [19,24], and the quality is measured in a con-
tinuous, rather than binary scale.

A number of crowdsourcing tools are designed to
solve application specific complex tasks. Soylent uses
crowdsourcing inside a word processor to improve the
quality of a written article [6]. Legion, a real time user
interface, enables integration of multiple crowd work-
ers input at the same time [39]. Turkit provides an in-
terface to programmer to use human computation in-
side their programming model [41] and avoids redun-
dancy by using a crash and return model which uses
earlier results from the assigned tasks. Jabberwocky is
another platform which leverages social network infor-
mation to assign tasks to workers and provide an easy
to use interface for the programmers [1]. CrowdForge di-
vides complex task into smaller sub-tasks akin to map-
reduce fashion [33]. Turkomatic introduces a framework
in which workers aid requresters to break down the
workflow of a complex task and thereby aiding to solve
it using systematic steps [36].

The common aspects of these works is that they
study the problem of decomposing a complex task
into simpler tasks, which can be solved by indepen-
dent workers. On the contrary, we focus on optimiza-
tion based task assignment for complex task which may
not indivisible. A preliminary work discusses modular
team structures for complex crowdsourcing tasks, de-
tailing however more on the application cases, and not
on the computational challenges[11]. One prior work in-
vestigates how to assign workers to the task for knowl-
edge intensive crowdsourcing [49] and its computa-
tional challenges. However, this former work does not
investigate the necessity nor the benefit of collabora-
tion. Consequently, the problem formulation and the
proposed solutions are substantially different from the
one studied here. We initiate the study of task as-
signment optimization in collaborative tasks in [46].
Crowd4u, an academic crowdsourcing paltform, ef-
fectively integrate our previous work in their frame-
work citeikeda2016collaborative. Effectiveness of col-
laborative teams drawn from the online labor market-
places for solving innovative tasks is studied in [7]. Es-

timation of human factors (such as skill or expertise) in
complex tasks is studied in [47,45]. These works justify
our modeling for considering social interaction variable
such as affinity and individual human factors. s

Automated Team Formation: Although tangen-
tially related with crowdsourcing, automated team for-
mation is widely studied in computer assisted coop-
erative systems. [38] forms a team of experts in so-
cial networks with the focus of minimizing coordina-
tion cost among team members. Although their coor-
dination cost is akin to our affinity, but unlike us, the
former does not consider multiple skills. Team forma-
tion to balance workload with multiple skills is studied
later on in [3] and multi-objective optimization on coor-
dination cost and balancing workload is also proposed
[4,42], where coordination cost is posed as a constraint.
Density based coordination is introduced in [16], where
multiple workers with similar skill are required in a
team, such as ours. Formation of team with a leader
(moderator) is studied in [25]. Minimizing both com-
munication cost and budget while forming a team is
first considered in [26,27]. The concept of pareto opti-
mal groups related to the skyline research is studied in
[26].

While several elements of our optimization model
are actually adapted from these related work, there are
many stark differences that precludes any easy adapta-
tion of the team formation research to our problem. Un-
like us, none of these works considers upper critical mass
as a group size constraint, that forms a group multiple
subgroups, which makes the former algorithms inappli-
cable in our settings. Additionally, none of these prior
work studies our problem with the objective to maxi-
mize affinity with multiple skills and cost constraints. In
[10], authors demonstrate empirically that the utility is
decreased for larger teams which validates our approach
to divide group into multiple sub-groups obeying upper
critical mass. However, no optimization is proposed to
solve the problem.

In summary, principled optimization opportunities
for complex collaborative tasks to maximize collabora-
tive effectiveness under quality and budget constraints
is studied for the first time in this work.

9 Conclusion and Future Work

In this paper, we borrow our motivation from the fact
that the aspect of collaboration naturally fits into solv-
ing many complex tasks. To that end, we develop a
framework which aims to find the optimal group of
workers for collaborative tasks. We identify both in-
dividual and group based human factors (i.e. affinity,
critical mass) that are significant for successful comple-

20 Habibur Rahman et al.

tion of collaborative tasks. We propose a set of opti-
mization objectives, which maximize the collaboration,
while appropriately considering the complex interplay
of human factors. We show that our overall problem
is NP-complete, and then provide a two-staged solu-
tion to our problem. Furthermore, we show that the
problem at each individual stage is also NP-Complete.
This prompts us to design efficient approximation algo-
rithm for both of the stages. Our extensive experiments
on real data collected from Amazon Mechanical Turk
show the superiority of our algorithms on their respec-
tive baseline counterparts.

In future, we plan to explore alternative collabora-
tion frameworks. An example of such framework can be
a star-shaped framework, where the task assignment
module assigns both managers and the workers for a
task. We also plan to estimate the worker to worker
affinity more accurately since it plays a very important
role in collaborative task assignment process. We would
like to leverage the task assignment framework and task
evaluation score to estimate the affinity of the workers.

References

1. S. Ahmad, A. Battle, Z. Malkani, and S. Kamvar. The
jabberwocky programming environment for structured
social computing. In Proceedings of the 24th annual ACM
symposium on User interface software and technology,
pages 53–64. ACM, 2011.

2. S. Amer-Yahia and S. Basu Roy. From complex object
exploration to complex crowdsourcing. In Proceedings of
the 24th International Conference on World Wide Web,
pages 1531–1532. ACM, 2015.

3. A. Anagnostopoulos, L. Becchetti, C. Castillo, A. Gionis,
and S. Leonardi. Power in unity: Forming teams in large-
scale community systems. CIKM ’10, 2010.

4. A. Anagnostopoulos, L. Becchetti, C. Castillo, A. Gio-
nis, and S. Leonardi. Online team formation in social
networks. WWW ’12, 2012.

5. H. P. Andres. Team cognition using collaborative technol-
ogy: a behavioral analysis. Journal of Managerial Psy-
chology, 2013.

6. M. S. Bernstein, G. Little, R. C. Miller, B. Hart-
mann, M. S. Ackerman, D. R. Karger, D. Crowell, and
K. Panovich. Soylent: a word processor with a crowd
inside. In Proceedings of the 23nd annual ACM sympo-
sium on User interface software and technology, pages
313–322. ACM, 2010.

7. K. Boudreau, P. Gaule, K. R. Lakhani, C. Riedl, and
A. W. Woolley. From crowds to collaborators: Initiat-
ing effort & catalyzing interactions among online creative
workers. 2014.

8. K. Chai, V. Potdar, and T. Dillon. Content quality as-
sessment related frameworks for social media. In ICCSA
2009.

9. D. L. Chen and W. B. Dolan. Building a persistent work-
force on mechanical turk for multilingual data collection.
In HCOMP, 2011.

10. M. Chhabra, S. Das, and B. Szymanski. Team forma-
tion in social networks. In Computer and Information
Sciences III, pages 291–299. Springer, 2013.

11. A. T. M. B. Daniela Retelny, Sbastien Robaszkiewicz.
Expert crowdsourcing with flash teams. In CrowdConf
2013 poster.

12. D. E. Difallah, M. Catasta, G. Demartini, P. G. Ipeiro-
tis, and P. Cudré-Mauroux. The dynamics of micro-task
crowdsourcing: The case of amazon mturk. In Proceed-
ings of the 24th International Conference on World Wide
Web, pages 238–247. ACM, 2015.

13. J. S. Downs, M. B. Holbrook, S. Sheng, and L. F. Cra-
nor. Are your participants gaming the system?: screening
mechanical turk workers. CHI ’10.

14. S. K. et. al. Compact location problems. Th. Comp. Sci,
1996.

15. S. S. R. et. al. Facility dispersion problems: Heuristics
and special cases. In WADS, 1991.

16. A. Gajewar and A. D. Sarma. Multi-skill collaborative
teams based on densest subgraphs. In SDM, pages 165–
176. SIAM, 2012.

17. M. R. Garey and D. S. Johnson. Computers and In-
tractability: A Guide to the Theory of NP-Completeness.
1979.

18. M. Grotschel and L. Lovász. Combinatorial optimization.
Handbook of combinatorics, 2:1541–1597, 1995.

19. S. Guo, A. G. Parameswaran, and H. Garcia-Molina. So
who won?: dynamic max discovery with the crowd. In
SIGMOD Conference, pages 385–396, 2012.

20. N. Guttmann-Beck and R. Hassin. Approximation algo-
rithms for minimum k-cut. Algorithmica, 2000.

21. G. Hertel. Synergetic effects in working teams. Journal
of Managerial Psychology, 2011.

22. J. Hffmeier and G. Hertel. When the whole is more than
the sum of its parts: Group motivation gains in the wild.
Journal of Experimental Social Psychology, 2011.

23. A. Jøsang, R. Ismail, and C. Boyd. A survey of trust and
reputation systems for online service provision. Decis.
Support Syst., 43(2):618–644, Mar. 2007.

24. H. Kaplan, I. Lotosh, T. Milo, and S. Novgorodov.
Answering planning queries with the crowd. PVLDB,
6(9):697–708, 2013.

25. M. Kargar and A. An. Discovering top-k teams of ex-
perts with/without a leader in social networks. CIKM
’11, 2011.

26. M. Kargar, A. An, and M. Zihayat. Efficient bi-
objective team formation in social networks. In P. Flach,
T. Bie, and N. Cristianini, editors, Machine Learning and
Knowledge Discovery in Databases, volume 7524 of Lec-
ture Notes in Computer Science, pages 483–498. Springer
Berlin Heidelberg, 2012.

27. M. Kargar, M. Zihayat, and A. An. Finding affordable
and collaborative teams from a network of experts.

28. M. Karpinski. Approximability of the minimum bisec-
tion problem: an algorithmic challenge. In Mathematical
Foundations of Computer Science 2002.

29. D. Katz and R. L. Kahn. The social psychology of orga-
nizations. 1978.

30. R. Kenna and B. Berche. Managing research quality:
critical mass and optimal academic research group size.
IMA Journal of Management Mathematics.

31. A. Kittur and R. E. Kraut. Harnessing the wisdom of
crowds in wikipedia: quality through coordination. In
Proceedings of the 2008 ACM conference on Computer
supported cooperative work, CSCW ’08, pages 37–46, New
York, NY, USA, 2008. ACM.

32. A. Kittur, J. V. Nickerson, M. Bernstein, E. Gerber,
A. Shaw, J. Zimmerman, M. Lease, and J. Horton. The
future of crowd work. In CSCW ’13, 2013.

Optimized Group Formation for Solving Collaborative Tasks 21

33. A. Kittur, B. Smus, S. Khamkar, and R. E. Kraut.
Crowdforge: Crowdsourcing complex work. In UIST,
2011.

34. A. Kittur, B. Suh, B. A. Pendleton, and E. H. Chi. He
says, she says: conflict and coordination in wikipedia. In
Proceedings of the SIGCHI conference on Human factors
in computing systems, pages 453–462. ACM, 2007.

35. D. Klakow and J. Peters. Testing the correlation of word
error rate and perplexity. Speech Commun., 38(1):19–28,
Sept. 2002.

36. A. Kulkarni, M. Can, and B. Hartmann. Collaboratively
crowdsourcing workflows with turkomatic. In Proceedings
of the ACM 2012 conference on Computer Supported Co-
operative Work, pages 1003–1012. ACM, 2012.

37. T. Lappas, K. Liu, and E. Terzi. Finding a team of ex-
perts in social networks. KDD ’09.

38. T. Lappas, K. Liu, and E. Terzi. Finding a team of ex-
perts in social networks. In SIGKDD, pages 467–476,
2009.

39. W. S. Lasecki, K. I. Murray, S. White, R. C. Miller, and
J. P. Bigham. Real-time crowd control of existing inter-
faces. In Proceedings of the 24th Annual ACM Sympo-
sium on User Interface Software and Technology, UIST
’11, pages 23–32, New York, NY, USA, 2011. ACM.

40. E. L. Lawler and D. E. Wood. Branch-and-bound meth-
ods: A survey. Operations research, 14(4):699–719, 1966.

41. G. Little, L. B. Chilton, M. Goldman, and R. C. Miller.
Turkit: human computation algorithms on mechanical
turk. In Proceedings of the 23nd annual ACM sympo-
sium on User interface software and technology, pages
57–66. ACM, 2010.

42. A. Majumder, S. Datta, and K. Naidu. Capacitated team
formation problem on social networks. In Proceedings
of the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’12, pages
1005–1013, New York, NY, USA, 2012. ACM.

43. G. Marwell, P. E. Oliver, and R. Prahl. Social networks
and collective action: A theory of the critical mass. Amer-
ican Journal of Sociology, 1988.

44. I. B. Myers and M. H. McCaulley. Myers-Briggs Type
Indicator: MBTI. Consulting Psychologists Press, 1988.

45. P. Ojha and P. Talukdar. Quality estimation of workers
in collaborative crowdsourcing using group testing. 2016.

46. H. Rahman, S. B. Roy, S. Thirumuruganathan, S. Amer-
Yahia, and G. Das. Task assignment optimization in
collaborative crowdsourcing. In Data Mining (ICDM),
2015 IEEE International Conference on, pages 949–954.
IEEE, 2015.

47. H. Rahman, S. Thirumuruganathan, S. B. Roy, S. Amer-
Yahia, and G. Das. Worker skill estimation in team-based
tasks. Proceedings of the VLDB Endowment, 8(11):1142–
1153, 2015.

48. D. J. Rosenkrantz, G. K. Tayi, and S. S. Ravi. Facility
dispersion problems under capacity and cost constraints.
J. Comb. Optim., 2000.

49. S. B. Roy, I. Lykourentzou, S. Thirumuruganathan,
S. Amer-Yahia, and G. Das. Optimization in knowledge-
intensive crowdsourcing. CoRR, abs/1401.1302, 2014.

50. A. Schrijver. Theory of Linear and Integer Programming.
John Wiley & Sons, Inc., New York, NY, USA, 1986.

51. J. Surowiecki. The wisdom of crowds: Why the many are
smarter than the few and how collective wisdom shapes
business. Economies, Societies and Nations, 2004.

52. S. van Dongen and A. J. Enright. Metric distances de-
rived from cosine similarity and pearson and spearman
correlations. CoRR, abs/1208.3145, 2012.

53. R. Yan, M. Gao, E. Pavlick, and C. Callison-Burch. Are
two heads better than one? crowdsourced translation via
a two-step collaboration of non-professional translators

and editors.

