

Accessory Mineral Chemistry of High Ba–Sr Granites from Northern Scotland: Constraints on Petrogenesis and Records of Whole-rock Signature

Emilie Bruand, C. Storey, M. Fowler

▶ To cite this version:

Emilie Bruand, C. Storey, M. Fowler. Accessory Mineral Chemistry of High Ba–Sr Granites from Northern Scotland: Constraints on Petrogenesis and Records of Whole-rock Signature. Journal of Petrology, 2014, 55 (8), pp.1619-1651. 10.1093/petrology/egu037 . hal-02347260

HAL Id: hal-02347260 https://hal.science/hal-02347260

Submitted on 5 Nov 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

2014

Accessory Mineral Chemistry of High Ba–Sr Granites from Northern Scotland: Constraints on Petrogenesis and Records of Whole-rock Signature

E. BRUAND*, C. STOREY AND M. FOWLER

SCHOOL OF EARTH AND ENVIRONMENTAL SCIENCES, UNIVERSITY OF PORTSMOUTH, BURNABY BUILDING, BURNABY ROAD, PORTSMOUTH POI 3QL, UK

RECEIVED SEPTEMBER 9, 2013; ACCEPTED JUNE 6, 2014

The Rogart and Strontian high Ba-Sr plutons (Northern Highlands, Scotland) comprise a range of lithologies from felsic to ultramafic rocks. The latter are mantle-derived and their differentiation to produce the felsic components of the plutons is the result of fractional crystallization and variable assimilation of the surrounding Moine metasediments. New results presented here demonstrate that accessory mineral chemistry can provide further insight into their petrogenesis and highlight the petrological potential of apatite and titanite. The main accessory minerals titanite, apatite and zircon contain most of the rare earth elements (REE) in the high Ba-Sr plutons. Results for apatite and titanite show that careful imaging and in situ trace element analysis provide constraints on the petrogenetic history of the host-rock. In both plutons, apatite and titanite record in situ crystallization and fractionation. In Strontian, both apatite and titanite from the granitoids record a mixing event with mafic magma in their rim compositions. Apatite and titanite chemistries are sensitive to the nature of their host-rocks (felsic versus ultramafic) and some elements (e.g. Sr, V) closely reflect whole-rock chemistry and the degree of fractionation. In some cases, whole-rock trace element concentrations can be calculated based on accessory mineral chemistry. Thus, trace elements in accessory minerals can give direct access to the nature and crystallization history of plutonic rocks. This petrological tool may be helpful in provenance studies using accessory minerals, and because high Ba-Sr plutons have recently been equated with Archaean sanukitoids, this might also be important in constraining the temporal distribution of this important magma type.

KEY WORDS: accessory minerals; apatite; high Ba-Sr granites; titanite

INTRODUCTION

The Strontian and Rogart plutons are typical high Ba-Sr granites in that they have high Ba-Sr contents, are extremely rich in light rare earth elements (LREE) and have relatively low Nb, Ta, and heavy rare earth element (HREE) abundances. They have been discussed in the literature for their high modal abundance of accessory minerals (mainly titanite and apatite, with lesser zircon and monazite; e.g. Paterson et al., 1989; Paterson & Stephens, 1992). Their whole-rock chemistry and isotope systematics (O, Nd and Sr) argue for a mantle-derived parent magma modified by fractional crystallization and host metasediment assimilation (Fowler et al., 2008). Although the whole-rock chemistry (trace element, radiogenic and stable isotopes) of the Rogart and Strontian plutons is well constrained (Fowler et al., 2001, 2008), studies of accessory minerals in other intrusions have demonstrated that these can give additional information on petrogenesis (e.g. Sha & Chappell, 1999; Hoskin et al., 2000; Tiepolo et al., 2002). The incorporation of trace elements and more particularly rare earth elements (REE) into their structures makes them ideal minerals for this purpose. More specifically, previous studies concentrating on titanite and apatite have suggested that these minerals might be sensitive to

* Corresponding author. E-mail: emilie.bruand@port.ac.uk

© The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@ oup.com

mixing processes, fO_2 , fluid circulation or P-T conditions (e.g. Tepper & Kuehner, 1999; Piccoli et al., 2000; Belousova et al., 2002a; Smith et al., 2009; McLeod et al., 2011). Recent work also shows promise in linking apatite compositions to their host-rocks (Chu et al., 2009; Belousova et al., 2002a; Jennings et al., 2011). On the other hand, although zircon is a well-known accessory phase with many geological applications, its utility as a petrogenetic tracer is still not fully understood (e.g. Hoskin et al., 2000; Hoskin & Schaltegger, 2003; Gagnevin et al., 2010). Although most studies focus on describing one of the accessory minerals contained within a suite of rocks (e.g. Sha & Chappell, 1999; Tepper & Kuehner, 1999; Piccoli et al., 2000; Belousova et al., 2002a; McLeod et al., 2011), comparison of the various accessory minerals within a suite of samples has been rarely done (Hoskin et al., 2000). As they all contain REE, systematic comparative studies are essential to understand their behaviour in different conditions. In this contribution, we study apatite, titanite and zircon in a suite of rocks from the Strontian and Rogart high Ba-Sr granites and develop a new petrographic tool to understand the behaviour of these phases in a range of felsic to mafic intrusive igneous rocks.

Recent advances in mineral trace element chemistry may also be exploited for sedimentary provenance studies and to constrain crustal evolution. Similarities between high Ba-Sr granites and sanukitoids have led previous workers to describe them as 'Phanerozoic sanukitoids' (Fowler & Rollinson, 2012). Sanukitoids are interpreted as being the products of partial melting of a metasomatized mantle wedge and have been reported as occurring during a short geological time span ($\sim 2.7-2.5$ Ga; Martin et al., 2009). They have been interpreted by various workers (e.g. Martin et al., 2009) as the result of changes from a shallow to a steep subduction style in this time interval and therefore might mark the onset of modern plate tectonics. Given this potentially pivotal role, it is important to constrain their temporal distribution. Assuming that accessory minerals record the geochemical characteristics of their host magmas, it should be possible to recognize different igneous protoliths in detrital heavy mineral assemblages. For example, if the high Ba-Sr (sanukitoid) 'fingerprint' is shown to be robust, then it can be sought in representative sediments of different ages, to monitor changing sanukitoid abundance with time.

This study presents detailed petrographic observations and systematic laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis of trace elements in apatite, titanite and zircon, with two main aims: to better constraint the petrogenesis of high Ba–Sr granites, and to test the assumption that their characteristic chemistry is recorded by the abundant accessory minerals that they contain.

GEOLOGICAL SETTING AND SAMPLES

Late Caledonian high Ba-Sr plutons

The late Caledonian orogeny in Scotland is marked by voluminous granite magmatism, resulting from the collision between Laurentia, Baltica and Avalonia following the closure of the Iapetus Ocean during Silurian times (Soper et al., 1992; Atherton & Ghani, 2002). The plutons have a broadly calc-alkaline composition and are widespread within the Scottish Highlands north of the Iapetus Suture (Soper, 1986; Fig. 1). Three suites have been distinguished (Stephens & Halliday, 1984): the Argyll suite (now modified to the Argyll and Northern Highlands suite; Stephenson et al., 1999), the Cairngorm suite and the South of Scotland suite. Most plutons of the last suite have now been subsumed into the Trans-Suture suite (Brown et al., 2008). High Ba-Sr granites (Tarney & Jones, 1994) characterize the Argyll and Northern Highlands suite and are the particular focus of this contribution. Their origin has previously been ascribed to slab break-off (Atherton & Ghani, 2002; Fowler et al., 2008).

In the Northern Highlands, the Caledonian foreland is separated from Moine Supergroup metasediments, into which the high Ba–Sr plutons were emplaced, by the Moine Thrust. To the south, the Great Glen Fault defines the boundary between the Northern Highland Terrane and the Grampian Terrane. The Midland Valley and Southern Uplands define the southern part of the Scottish Highlands between the Grampian Highlands and the Iapetus Suture.

The late Caledonian high Ba–Sr suite intruding the Northern Highland terrane can be divided petrographically into two groups: (l) a western area dominated by syenitic plutons and (2) a central–eastern area dominated by granitic plutons (e.g. Fowler *et al.*, 2008, and references therein). We present data obtained from single mineral grains (titanite, apatite, zircon) from the Rogart and Strontian plutons; these are both granite-dominated igneous complexes from the central–eastern area (Fig. l).

Rogart and Strontian igneous complexes

The Rogart and Strontian igneous complexes have a broadly concentric geometry and are mainly made up of biotite-hornblende granodiorite. Emplacement of the Strontian complex caused contact metamorphism evidenced by cordierite-K feldspar and sillimanite-K feldspar mineral assemblages in the adjacent country rocks (Soper, 1963; Tyler & Ashworth, 1983); no contact metamorphism is observed around the Rogart pluton. Strontian has a biotite granodiorite central facies surrounded by hornblende-biotite granodiorite, which grades from porphyritic to non-porphyritic at its margin (Sabine, 1963). The hornblende-biotite granodiorite has been dated at 425 ± 3 Ma (U-Pb on zircon) and 423 ± 3 Ma (U-Pb

Fig. 1. Map of the Northern Highland region (Scotland) modified after Fowler *et al.* (2008), showing sample localities and ages (in Ma) from Brown *et al.* (1968) and Rogers & Dunning (1991).

on titanite; Rogers & Dunning, 1991). The Rogart igneous complex is made up of an inner granodiorite and an outer tonalite, both of which are cross-cut by a later granite. It is contemporaneous with Strontian and has been dated at around 420 Ma (K–Ar on biotite; Brown *et al.*, 1968) and

 425 ± 15 Ma (U–Pb on zircon; Kocks *et al.*, 2013). Mafic igneous bodies (from centimetres to hundreds of metres in scale), referred to as appinites, were first described from the Appin area by Bailey & Maufe (1916) and are present in the main facies of both the Strontian and Rogart

plutonic bodies. Appinites are mantle-derived rocks with shoshonitic affinities (Fowler, 1988; Fowler et al., 2008), and are widely believed to be the plutonic equivalents of calcalkaline lamprophyres (Rock, 1984; Murphy, 2013). Their high Mg, Ni, Cr and V contents indicate a mantle source component in their petrogenesis. In these rocks, hornblende is the dominant mafic mineral and occurs mainly as large prismatic crystals contained in a groundmass of hornblende and feldspar \pm quartz. Local mingling and mixing relationships are observed between the main plutonic facies and the appinite bodies, especially at Strontian. The Strontian pluton was derived from a depleted mantle source and Rogart from an enriched mantle source, as discussed in detail by Fowler et al. (2008). Both plutons evolved by fractional crystallization and variable assimilation of the surrounding Moine metasediments.

In this contribution, seven samples in total have been studied: two hornblende-biotite granodiorites (SR1, SR3) and one appinite (SR2) from Strontian, and two tonalites (RT1, R2), one granite (RHG-1) and one appinite (RA1) from Rogart. All samples from both plutons contain abundant accessory minerals such as titanite, apatite and zircon and are exceptional in that respect (Table 1). The hb-bi granodiorite samples from Strontian are chemically similar with SiO₂ ranging from 62.81 to 63.83% (Fowler et al., 2008) and an Aluminium Saturation Index [ASI, calculated as molecular: $Al_2O_3/(Na_2O + K_2O + CaO)$] ranging from 0.87 to 0.90. Overall their trace element contents are also similar and have been described in detail by Fowler et al. (2008). Granitoid compositions from Rogart vary extensively (Fowler et al., 2001). In Rogart, tonalites vary in SiO₂ between 62.98 and 71.20%, Fe₂O₃ between 2.78 and 4.71% and their ASI are 0.81 (RT1) and 0.91 (R2). The granitic sample (RHG-1) has a somewhat comparable chemistry in major elements to R2 with an ASI of 0.92 but with slightly higher K_2O and CaO contents (Fowler *et al.*, 2001). Trace element contents vary significantly between the Rogart samples [e.g. Sr ranges from 693 ppm (RHG-l) to 1333 ppm (RTl); see Fowler *et al.* (2001) for analyses]. In the tonalitic samples, RTl has higher contents of Cr, Ni and Nb compared with R2, which can be linked to less fractionation, following Fowler *et al.* (2001).

Appinites in the central–eastern Northern Highlands carry the high Ba–Sr geochemical signature, but are commonly even more enriched in large ion lithophile elements (LILE; e.g. Sr, Ba), high field strength elements (HFSE; e.g. Nb, Th) and transition metals (e.g. Cr, Ni, V) than the associated granodiorites and granites (Fowler *et al.*, 2008). These characteristics can be observed in the two appinitic samples studied here (SR2 and RAI). However, some compositional differences do exist between them. In terms of major elements, the Strontian appinite is richer in Fe₂O₃ but has a higher ASI (0.59, compared with Rogart ASI = 0.49). The sample from Rogart is more enriched in Sr, Ba and LREE compared with that from Strontian, but has lower HREE, Zr, Cr and Ni.

ANALYTICAL METHODS Image acquisition

The samples were crushed (jaw-crusher, ball mill or SelfragTM), sieved (<355 μ m, 355–500 μ m and 500–1000 μ m fractions) and passed over a Wilfley table. A diamagnetic separator was then used to obtain fractions of different heavy minerals based on their diamagnetic properties. Titanite, apatite and zircon were handpicked, mounted in epoxy resin discs and polished for *in situ* chemical analysis. Titanite and apatite were also analysed

Sample	Rock type	Grid reference	Mineralogy	Titanite(%)*	Apatite(%)*	Zircon(%)
Strontian						
SR1	Granodiorite	NM795611	hbl-fsp-bt-qz	2-3	1	<1
SR2	Appinite	NM786611	hbl-fsp-bt \pm cc	5	1-2	<0.2
SR3	Granodiorite	NM779607	hbl-fsp-bt-qz \pm aln	1-2	<1	<1
Rogart						
RHG-1	Granite	NC671046	fsp-bt-qz \pm chl-cal	1-2	1-2	<1
R2	Tonalite	NC709029	hbl-fsp-qz-bt-ms \pm aln	1	<1	<1
RT1	Tonalite	NC741065	hbl-fsp-qz-bt-ms \pm aln	1-2	1	<1
RA1	Appinite	NC702026	hbl-cpx-fsp-bt \pm cc	3	5	<0.3

Table 1: Estimated modal proportion of titanite, apatite and zircon in the Rogart and Strontian samples

The grid reference system used is the Ordnance Survey National Grid reference system using OSGB 36 datum. Mineral abbreviations are after Whitney & Evans (2010).

*Modal proportion.

within thick sections (c. $150 \,\mu$ m). Back-scattered electron (BSE) images of titanites were taken with a scanning electron microscope (SEM) JEOL JSM-6100 at the University of Portsmouth (accelerating voltage = 20 kV). Cathodoluminescence (CL) images of apatites and zircons were taken with a KeDev Centaurus CL detector housed on a JEOL 6060LV SEM also at the University of Portsmouth (accelerating voltage = 15 kV).

Electron probe microanalysis (EPMA)

A Cameca SX-100 microprobe at Bristol University was used for determination of major elements in titanite and zircon using TAP, LPET, PET and LLIF crystals. PC0, TAP, LPET and LLIF crystals were used for apatite. An electron beam of 1 μ m was used for titanite and 10 μ m for apatite, both with 20 kV accelerating voltage and 40 nA and 10 nA beam currents, respectively. An electron beam of 5 μ m was used for zircon with an accelerating voltage of 17 kV and a beam current of 100 nA. Several trace elements in these minerals were also analysed for comparison with LA-ICP-MS data. The Durango apatite standard (Marks *et al.*, 2012) and the 91500 zircon standard (Wiedenbeck *et al.*, 2004) were analysed during microprobe sessions to monitor data quality.

Laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS)

Trace element contents of titanite, apatite and zircon were analysed by LA-ICP-MS at the University of Portsmouth using an Agilent 7500cs (quadrupole) ICP-MS system and a New-Wave UP213 ($\lambda = 213$ nm) solid-state Nd:YAG laser. Each analysis consisted of c. 30 s background acquisition and 60s sample acquisition. The diameter of the laser beam was $30 \,\mu\text{m}$ for titanite and apatite and either $30 \,\mu\text{m}$ or 40 µm for zircon (with a 10 Hz repetition rate, an output energy of 0.01-0.1 mJ per pulse, and a fluence of $\sim 4 \,\mathrm{J}\,\mathrm{cm}^{-2}$). Each analytical run had either nine or 16 spot analyses with at least two external standard analyses at the beginning and end of each run (either NIST 610 or NIST 612). NIST 610 standard (Pearce et al., 1997) was analysed with a laser beam diameter of 55 µm before and after titanite and apatite unknown runs. In addition, Durango apatite (reference value used: Marks et al., 2012) was also analysed with a laser beam diameter of $30 \,\mu\text{m}$ at the beginning of each apatite run. NIST 612 standard (Pearce et al., 1997) was analysed before and after zircon unknown runs with a laser beam diameter of 55 µm. The 91500 standard was analysed (Wiedenbeck et al., 2004) with a beam diameter of 40 µm at the beginning of each zircon run. Details of the standard analyses and their comparison with literature data can be found in the Supplementary Data Electronic Electronic Appendix 1 (supplementary data are available at http://www.pet rology.oxfordjournals.org). Internal references used for normalization of LA-ICP-MS data were ⁴³Ca for apatite

and titanite, and $^{29}\mathrm{Si}$ for zircon and were obtained by EPMA.

PETROGRAPHY

The hb–bi granodiorite samples from Strontian (SR1-SR3) mainly comprise hornblende, feldspar and biotite. Both samples contain titanite, apatite and zircon (Table 1) \pm allanite. The two tonalite samples from Rogart (R2 and RT1) comprise biotite, feldspar, hornblende and muscovite. Accessory phases present in these samples are titanite, apatite and zircon \pm allanite. The granite sample from Rogart (RHG-1) is mainly made up of partly sericitized feldspar and biotite, which is often replaced by chlorite and calcite. This sample is therefore more affected by alteration than the others considered in this study. Titanite, apatite and zircon are present.

Appinitic samples from both locations (SR2 and RA1) are mainly made up of hornblende, biotite and feld-spar \pm calcite. Sample RA1 contains pyroxene, which is fractured and often partially replaced by calcite, in contrast to SR2. Paterson *et al.* (1989) highlighted the exceptional amount of titanite in these rocks (Table 1), which also contain a large amount of apatite, together with minor zircon and allanite.

Titanite, apatite and zircon, occurring in every sample, are the focus of this study and their characteristics within the samples studied are described in the following section. Accessory allanite is occasionally observed in Rogart (R2 and RT1 samples) and less so in Strontian. Allanite is not a ubiquitous mineral across the range of samples analysed and is therefore not considered in this study.

Titanite

Bi-hb granodiorite: samples SR1and SR3

Titanites are euhedral and large (up to ~l cm in length; Fig. 2). In BSE images at least three zones, grading from a bright core towards a dark rim, can be identified (Fig. 2a and b). Occasionally a thin (~l0–40 µm), darker outer rim is present (Fig. 2a). The bright core often shows firtree zoning but also some oscillatory zoning, both of which are characteristic of titanite crystals (e.g. Paterson & Stephens, 1992; Watson & Liang, 1995; Hayden *et al.*, 2008; McLeod *et al.*, 2011; Fig. 2a and b). Locally, rare dissolution–reprecipitation textures have been identified. Apatite, Fe–Ti oxides and zircon occur as inclusions within titanite cores and rims.

Granite: sample RHG-1

Two generations of titanite can be identified on the basis of size and petrographic relationship with the rock-forming minerals. Large titanites (>500 μ m in length) are euhedral, often replaced by oxides and/or calcite and are also found as inclusions in feldspar. Smaller titanites (<500 μ m in length) are subhedral, locally replaced by chlorite and

Fig. 2. Back-scattered electron images of titanite crystals from the Strontian (a, b, f) and Rogart (c–e, g) localities. (a, b) Titanites show core– rim zoning from fir-tree bright cores towards dark rims. (c–e) Titanites show different zones with multiple dissolution–reprecipitation features. (f, g) Appinitic titanites from Strontian and Rogart, respectively, show typical sector zoning.

are always present as inclusions in biotite, aligned parallel to the basal cleavage. The chemical zoning pattern within this sample is more complicated than in those from the Strontian granodiorites. Cores usually display fir-tree zoning, surrounded by several successive bright to dark zones (10–50 μ m width; Fig. 2c), which seem to develop following dissolution–reprecipitation episodes (Fig. 2c–e). Such titanites locally contain many Fe–Ti oxide and some apatite inclusions.

Tonalite: samples R2 and RT1

Titanites are large (up to 1.5 mm in length) and euhedral. In RTl, they are often altered and replaced by calcite. Titanite zoning is comparable with that in RHG-1 with dissolution-reprecipitation textures observed. The results of several dissolution-reprecipitation events have caused complex zoning made of up to six zones around the core (e.g. Fig. 2e). Although oxides are abundant as inclusions within titanite, apatite inclusions are rarer.

Appinite: samples SR2 and RA1

Titanite is anhedral and larger than that in the granitoids (up to several centimetres; Fig. 2f and g). In SR2 it is interstitial between the main minerals (amphibole, biotite and feldspar), which suggests that it grew late in the crystallization sequence. Titanites from RA1 are anhedral-subhedral and in contrast to SR2 do not show any obvious interstitial texture. In both samples, titanite can be texturally in contact with apatite, but rarely contains inclusions. Titanites always have sector and often oscillatory zoning (Fig. 2f and g). However, in contrast to the granitoids, they do not exhibit any systematic core to rim zoning. The sectored and brighter zones can appear either at the edge or in the core. Rarely, a thin and external dark rim is present.

Apatite

Bi-hb granodiorite: samples SR1 and SR3

In both samples, apatite occurs mainly as inclusions within biotite and amphibole and more rarely within feldspar. It is also common as inclusions within titanite and zircon. Apatite grains are either large and subhedral (up to 500 μ m in length) or small and euhedral (<300 μ m). In CL, they are zoned and comprise an oscillatory zoned core enclosed by an homogeneous rim (<50 μ m; Fig. 3a and b). Some crystals are entirely homogeneous in CL.

Granite and tonalites: samples RHG-1, RT1 and R2

Apatites are mainly present within biotite and green amphibole. As for the Strontian granodiorite, apatite inclusions occur within titanite and zircon. CL reveals oscillatory zoning in most of the crystals, which is sometimes absent at the rim (Fig. 3c–e).

Appinite: sample SR2 and RA1

In SR2, two apatite types can be identified: one type is homogeneous in CL and the other has a homogeneous, partly dissolved core and a bright rim (Fig. 3f). These can be linked to different textural locations, the former within feldspar and the latter as inclusions in amphiboles or in late titanite. As feldspar is usually an early crystallizing phase compared with amphibole, it is likely that apatite within feldspar crystallized early and that apatite rims present within titanite crystallized later.

In RAI, apatites are large (up to 1 cm in length; Fig. 3g) and have a significant modal abundance (Table 1). Indeed, the amount of apatite is much higher than that of titanite. This is not the case in SR2, in which the proportion of both phases is roughly the same. Apatite occurs as inclusions within amphibole and feldspar or in contact with titanite. In CL images, apatite textures are similar to the second type of apatite found within SR2, with a dark core showing dissolution features surrounded by a brighter rim (Fig. 3g).

Zircon

Bi-hb granodiorite: samples SR1 and SR3

In these samples, zircons occur within the three main phases (biotite, green amphibole and feldspar) and can be up to $500 \,\mu\text{m}$ in length. They are abundant and exhibit typical igneous oscillatory zoning in CL (Fig. 4a and b). Inherited cores are rare.

Granite and tonalites: samples RHG-1, RT1 and R2

Zircons in these samples have the same characteristics as those in the Strontian granodiorite described above. The only difference is that a darker rim ($<30 \,\mu$ m) is occasionally observed (Fig. 4e).

Appinites: samples SR2 and RA1

Within SR2 a few zircons have been identified, of which two types could be distinguished. One shows clear igneous oscillatory zoning (Fig. 4f) and the second shows sector zoning. Within RA1 zircons were not observed in thin section and only a few tiny crystals could be extracted. Unfortunately, these zircons are extensively cracked and altered (Fig. 4g) and were therefore not suitable for analysis.

RESULTS

LA-ICP-MS *in situ* chemical data for titanite, apatite and zircon in the Strontian and Rogart samples are described below, concentrating on the REE because of their central role in petrogenetic interpretations, with other trace elements discussed as appropriate.

Fig. 3. Cathodoluminescence images of apatite crystals from granitoids (a-e) and appinites (f, g); (a, b, f) Strontian locality and (c-e, g)Rogart locality. (a, b) Apatites from Strontian granitoids comprise oscillatory zoned cores and unzoned rims. (c-e) Apatites from the Rogart granitoids are characterized by oscillatory zoning. (f, g) Apatites from appinitic samples are characterized by a main dark zone (Type 1), which can be dissolved at its rim and reprecipitate a bright rim (Type 2).

Fig. 4. Cathodoluminescence images of zircons from the Strontian locality [granitoids (a, b); appinite (f)] and the Rogart locality [granitoids (c-e); appinite (g)]. (a–f) Zircons are characterized by typical igneous oscillatory zoning. (g) Typical altered and cracked Rogart appinite zircon.

AUGUST 2014

Titanite chemistry

Rare earth elements

Chondrite-normalized REE patterns are illustrated in Fig. 5. The titanites from the Strontian granodiorite samples are similar but can be divided into three groups (Fig. 5a). The first group (Group 1) has a high REE content and a significant negative Eu anomaly [(Eu/ $Eu^*)_N = 0.56 - 0.85$; Table 2 and Supplementary Data: Electronic Appendix 2] and represent the broad core of the crystals and the fir-tree zones. The second group (Group 2) has lower REE content (especially LREE) and a Eu anomaly which is slightly negative [(Eu/ $Eu^*)_N = 0.75 - 0.93$]. This group of analyses are exclusively from the rims of the crystals. The third group (Group 3) has the lowest REE contents and a positive Eu anomaly $[(Eu/Eu^*)_N = 1.06 - 1.59]$. This last group is rare and could be characterized only when a darker external rim was present and was wider than the laser spot size $(30 \,\mu\text{m}, \text{Fig. } 2a)$.

Appinitic titanite REE patterns are somewhat different with a general pattern showing a slightly positive Eu anomaly (Fig. 5c), although two groups can be distinguished. Group 1 represents analyses made on bright sector zones. Group 2 represents analyses made on rare external dark rims. Group 1 is LREE enriched with a slightly negative to positive Eu anomaly $[(Eu/Eu^*)_N = 0.89 - 1.50]$. Different parts of the sector zones have REE patterns that overlap within a limited range of compositions (Fig. 5c); the brightest zones usually have higher REE abundances and the darkest the lowest (Table 2; Supplementary Data: Electronic Appendix 2). The external dark rims have lower LREE contents than Group 1 and are characterized mainly by a negative Eu anomaly $[(Eu/Eu^*)_N = 0.80 -$ 1.51]. Titanites from the Rogart appinite are more enriched in LREE than those in the Strontian appinite and have no Eu anomaly (Fig. 5c). Titanites from this sample are also characterized by a convex-upward shape in the LREE. The different sector zones observed within titanite crystals all have similar concentrations and patterns.

The chondrite-normalized REE patterns of the Rogart granite and tonalites have core patterns (Group 1) with a convex-upward LREE pattern and a negative Eu anomaly similar to that of titanite in the Strontian granodiorite. Rim compositions (Group 2) have lower LREE abundances than Group 1 (Fig. 5b) and have a similar or slightly less pronounced negative Eu anomaly. Rim compositions in the granite sample (RHG-1) vary more than the R2 or RT1 rims, which have a lower LREE content and no Eu anomaly (Table 2; Supplementary Data: Electronic Appendix 2). This could be linked to the two generations of titanite found within the RHG-1 thin section, of which one grew late. Bright dissolutionreprecipitation zones in R2 crystals (Group 3) have a convex-upward LREE pattern and a slightly negative to absent Eu anomaly.

Other trace elements

Previous studies on titanite zoning in the Strontian pluton (Paterson et al., 1989; Paterson & Stephens, 1992) have suggested that the zoned sectors are out of equilibrium with the magma. On the other hand, modelling and recent experimental studies (Watson & Liang, 1995; Hayden et al., 2008) have shown that although the most enriched sector zones do seem to be out of equilibrium (e.g. fir-tree features; FT), other parts of the titanite zones are not and therefore that titanite can be used as a petrogenetic indicator (e.g. Hayden et al., 2008; McLeod et al., 2011). These studies have also shown that the brightest parts of the sector zones preferentially incorporate a substantial amount of certain elements (such as Zr and some REE) on a set of growth surfaces. Such 'enriched' sector zones have been interpreted as representing an area or face of growth entrapment (Watson & Liang, 1995). Watson & Liang (1995) have shown that there is a 'critical ratio of growth rate to lattice diffusivity' above which sector zoning develops, leading to the abnormal enrichment of REE and some trace elements (e.g. Nb and Zr). This was confirmed in a later study (Hayden et al., 2008) in which experiments with titanite crystallization have shown that the Zr content of bright sector zones resulted in an overestimation of the temperature of crystallization of the titanite [see discussion by Hayden et al. (2008)]. The FT and bright sector zones in the titanites from our study similarly have a substantially higher Zr content (Table 2; Supplementary Data: Electronic Appendix 2). Although analyses of FT and brightest sector zones always correspond to the highest REE contents (Table 2; Supplementary Data; Electronic Appendix 2), their chondrite-normalized REE patterns are not clearly distinguishable from the other parts of the crystals. Similar to Zr content, FT zone Nb contents are much higher (ranging from 2000 to 3500 ppm) than the non-FT zoned cores of the granodiorite titanites (between 1000 and 1700 ppm). The brightest sector zones of the appinite sample reveal the same systematics, with Nb being much higher than in the other sector zones (Table 2; Supplementary Data: Electronic Appendix 2). Following the results of the experimental and modelling studies (Watson & Liang, 1995; Hayden et al., 2008), these anomalously high Nb and Zr contents in the FT and sector zones are interpreted as being out of equilibrium with the magma composition and will not be considered further here.

Discarding the FT and brightest sector zone data, two trends are apparent within the Strontian granitoid data on a Nb vs Gd plot (Fig. 6a), corresponding to core and rim compositions. Core compositions have a constant Nb content, although Gd generally decreases outwards. Rim analyses correspond to an abrupt decrease in Nb and Gd contents, comparable and parallel to that defined by the appinite titanite compositions.

Fig. 5. Chondrite-normalized REE patterns [using McDonough & Sun (1995) chondrite values] for titanites in (a) Strontian granodiorites (SR1, SR3), (b) Rogart granite (RHG-I) and tonalites (RT1, R2) and (c) Rogart and Strontian appinites (RA1, SR2). (See Table 2 and Supplementary Data: Electronic Appendix 2.)

	ž
	¥
	à.
	5
	ē
	E.
	Ô.
	ħ
	0
	Ξ
	5
	Ħ
1	
	2
1	8
	Ť.
	Ó.
	0
9	20
1	2
	8
	Ð,
	Ч.
	<u>e</u> .
	<u>o</u> .
	Ξ.
	Ë.
	2
	S.
	g
(10
	ົ
	÷
	C
	Uni
	Unive
	Univer
	Universi
,	University
,	University o
,	University of
	University of Pe
	University of Port
	University of Portsi
	University of Portsm
	University of Portsmou
	University of Portsmouth
	University of Portsmouth
	University of Portsmouth Li
	University of Portsmouth Lib
	University of Portsmouth Libra
	University of Portsmouth Library
	University of Portsmouth Library c
	University of Portsmouth Library on
	University of Portsmouth Library on A
•	University of Portsmouth Library on Au
	University of Portsmouth Library on Aug
•	University of Portsmouth Library on Augus
	University of Portsmouth Library on August
	University of Portsmouth Library on August 24
•	University of Portsmouth Library on August 24,
•	University of Portsmouth Library on August 24, 20
	University of Portsmouth Library on August 24, 201

Mount	SiO ₂	Ca0	TiO ₂	>	۲	s	~	Z	qN	La (e	Pr	, Id	Sm) E	рg	Tb [γ	lo E	r Tr	d۲ ر	Lu	Та	(Eu/Eu*)	_N (La/Sm) _N
RA1 sample—	appinit	θ																							
mr07d09	28 [.] 2	26·4	29·8	1140	23	257	2170	731	1950	. 0662	14100	2250 1	1100	2170 4	167 î	1230	135 5	85	88	88 23	134	15	233	0.87	20.23
mr30b03*	29·9	26·0	32.2	1010	46	263	1990	1280	2110	5290	17000	2470 1	1300	2000	154	1130	119 5	11	79 1	67 21	123	14	101	0.92	29·22
mr30c03	30 [.] 8	25·7	32.0	066	46	256	2190	1330	2240	5420	17500	2520 1	1900	2210 4	188	1260	136 5	20	87 1	89 23	135	16	150	0·89	27·27
mr30a06	32.4	27·2	33.7	1080	51	217	1300	426	652	2240	8090	1320	. 0629	1250 3	337	716	78 3	35	52 1	08 13	79	10	30	1.09	1.12
mr30a03	32.7	27·8	33·1	1140	86	219	963	362	416	1340	5190	876	4370	808	199	546	59 2	57	39	87 10	65	7.6	16	0.87	0.93
mr30a05	33·6	27·8	34·2	1200	06	229	1220	415	433	1670	6410	1070	5300	1070 2	249	646	71 3	115	48 1	03 13	78	9.3	16	0.91	0.97
mr30b05*	32·6	26·8	33·0	1210	45	213	1450	528	588	3040	10400	1620	7650	1400 3	328	813	88	176	57 1	23 14	86	10	24	0.94	1.36
RT1 sample—	granito.	įd																							
mr07c14	28·2	26·9	30·7	822	172	96	2540	576	2500	3780	12200	1760	7350	1290 2	225	784	104 5	38	99 2	48 34	220	25	345	0·68	1·83
mr30d13	32.5	26·6	33·0	808	161	87	2280	528	1830	3200	10600	1490	6250	1070	191	681	90 4	99	85 2	18 30	194	33	168	0·68	1.87
ap3a05*	31 5	26·9	33·8	833	191	82	1720	446	1460	2330	7530	1030	4270	726	136	471	61 3	24	61 1	64 24	172	21	132	0.71	2·00
1-mr07d06	30·1	27.6	30·8	877	200	84	1900	485	1400	2470	8210	1200	5080	, 968	160	525	73 3	06	72 1	87 27	187	53	127	0.71	1·72
1-mr30d14	32·1	26·7	32.5	823	197	117	2910	568	1200	3200	11800	1850	8620	1730 2	277	1080	141 7	04 1	21 2	84 37	214	23	115	0.62	1.16
1-ap3a03*	32·3	27·3	34.2	845	143	86	2360	519	1310	2930	10200	1520	6720	1230 2	207	<u></u>	102 5	20	93 2	29 32	194	23	120	0.65	1.49
2-mr07c13	29·2	28·8	32.4	790	223	102	1350	322	1050	1170	4040	620	2720	518	141	350	48 2	53	48 1	28 19	140	18	50	1.01	1-41
2-mr30d06	34·1	27·8	34.0	778	204	108	1860	372	1310	1610	5650	854	3850	737	180	510	68	165	69 1	75 26	183	24	75	0.89	1.36
2 -ap3a06*	31·3	27·5	33.7	735	206	66	1580	362	1190	1640	5760	836	3740	713	166	472	62 3	123	60 1	54 22	148	18	75	0.87	1-44
RHG-1 sample	-gran	itoid																							
1-mr08a04*	28·0	26·7	29-4	811	191	78	1850	481	1220	2940	9330	1290	5300	883	164	549	72 3	81	69 1	71 24	160	20	93	0.72	2·08
1-mr08a05	27-7	27·3	30·6	751	159	89	2300	511	1080	3440	11500	1680	7380	1330 2	222	835	108 5	46	93 2	22 30	174	20	86	0.64	1·62
2 -mr08a03*	28·5	28·3	30·8	882	224	71	924	308	1240	1250	3800	487	1910	301	80	202	28	49	29	88 14	107	16	64	66·0	2.59
2 -mr08a07	27-9	27·3	30·0	783	186	82	2080	491	1160	3160	10400	1480	6320	1100	190	675	90 4	165	81 1	97 27	174	20	87	0.67	1.79
Rp -mr08a06	29-7	27·2	30·8	737	124	86	2040	539	1470	3710	11800	1630	6720	1080	192	662	85 4	31	77 1	90 26	169	20	127	0.69	2.15
R2 sample-g	ranitoia	+																							
mr08a12*	27-9	26·0	30·0	841	146	89	3570	644	2220	3920	14600	2350 1	11100	2220	341	1340	180 5	106	52 3	50 44	260	27	282	0.60	1·10
mr08a13	28 [.] 3	26·9	29·8	813	183	85	2450	592	1860	3050	10600	1570	6810	1240	208	760	103 5	37	97 2	43 32	207	24	241	0.65	1-54
1-mr08a11*	28·8	27-4	30.6	006	215	82	2290	507	1340	2520	0006	1380	2970	1110	187	692	93 4	85	87 2	21 30	202	24	121	0.65	1.42
1 -mr08a14*	28·8	27-4	30.1	855	231	88	2120	483	1300	2560	8560	1250	5350	948	173	582	80 4	37	80 2	07 29	198	25	108	0.71	1.69
2 -mr08a10*	28·9	28·1	31·2	821	193	65	1850	360	1400	1620	5710	862	3770	748	158	500	69	89	66 1	76 26	176	23	97	0.79	1.35
2 -no10d14	32·8	27-9	35.5	704	219	89	1470	307	1250	1010	3830	611	2920	586	152	400	55 2	66	54 1	47 21	145	20	53	0.96	1.08
Rp -mr08a08	27-7	28·2	30·8	716	119	57-5	2050	349	1580	1440	5610	904	4250	668	177	604	81 4	11	77 1	91 28	172	21	120	0.73	1.00
Rp -mr08a09	27·8	27-9	30-9	669	104	60·1	2050	335	1690	1430	5640	917	4250	803	176	603	82 4	34	1 1	94 27	182	21	131	0·73	1·00
																								-	continued)

•	ontnued
0) :/:
:	Iable

Mount	SiO ₂	CaO	TiO ₂	>	Ċ	ي.	~	Zr	- qN	La (e	Pr –	PZ	Sm		Dd	Тb	۰ ۲	우	н Т	۲	۲۲ و	Та	(Eu/Er	ı*) _N (La/S	Sm) _N
SR2 sample-	- appini	ite																								
no09d11	34.7	28 [.] 3	34·9	789	250	168	951	1080 1	1480	1390	8380	932	3500	548	201	331	43	12	39	96 1	_	33 12	47	1-44	5.00	_
no10a08*	34.0	28 ·6	36.9	820	269	164	1090	895 1	1250	3870	7660	892	3530	565	661	359	45	33	4	105 1/	-	04 13	37	1.35	4·28	
no10a10*	35.1	29-4	36.6	857	409	114	697	352	201	1880	3970	466	1920	326	108	210	28	44	27	70 1(0	35 8	·9 (·	5 1·26	3.60	_
no10a12	34·2	28.9	35.2	842	450	120	487	376	233	1860	3680	407	1580	258	95	155	20	04	18	46 (2.7	16 6	، ى	4 1-45	4.50	_
2 -no10a11*	34·8	29.1	35.9	855	481	127	451	337	223	1720	3370	369	1440	227	89.88	141	18	92.9	17	45	9.9	¹²	·9	7 1.51	4·73	
2 -no10b06	34·1	29.2	36.4	919	522	95.7	821	431	272	1390	3130	418	1900	374	82.4	264	35	81	32	79 1	_	38 10	10	0.80	2·32	
SR1 sample-	- granit	bid																								
no08c06*	34·6	27·8	36.5	859	96	72	2130	699	240	1880 1	4800	1910	7490	1160	198	694	88	152	8	205 2	-	35 21	351	0.67	2·63	
no08d03	33·0	27 . 8	34-5	940	136	69	3310	770	5060	4630 1	5600	2370	00201	1990	202	1260	161 8	908	35	318 40	0	39 27	396	0.58	1-45	
1-no08c13	33·5	28·1	35.0	851	175	65	1310	601	1030	3900 1	0200	1280	4680	660	120	392	49	256	47	126 19	1	28 17	113	0.72	3·69	_
1-no08c14*	33·9	28·1	34-9	887	167	68	2090	659 1	1620	4040 1	2700	1720	7030	1180	195	708	7 06	154	80	200 28		72 21	264	0.65	2·14	
2-no08c09	32·8	28·1	35.4	774	114	64	622	471	797	2790	5410	531	1900	294	71	194	26	31	23	28	3.2	53	·8 27	0-91	5.93	
2 -no08c12*	33·0	28·1	34-7	741	134	65	524	520	721	2630	5080	481	1620	235	56	146	20	02	19	50	6.0	54 8	·5 36	0.92	66-99	_
2 -no08d14	32.7	28·8	35·1	783	131	65	698	471	674	2740	5340	536	1930	314	79	214	28	50	27	72 1(73 10	30	0.93	5.45	
3 -no08c10	32·6	28·8	35.2	860	125	61	652	333	589	2370	4730	515	1970	332	93	217	27	46	26	62	ŝ	55 7	·2 20	1·06	4.46	
3-no08c11*	34·0	28·8	35.4	964	125	50	273	212	265	1070	2170	220	806	117	51	80·1	10	50	9.8 0	26	L-1	24 3	·7 1	3 1·59	5·71	
SR3 sample-	– granit.	bio																								
ap3e04*	31·9	25.7	33 [.] 0	852	230	64·0	3290	635 2	2140	4770 1	6200	2360	00601	2060	310	1280	166 8	30	8	317 40	2	33 26	364	0.58	1-45	
mr07a05	28·7	27·8	31·4	741	109	72·8	826	759 2	2110	4850 1	0060	1080	3420	411	82	234	29	47	29	76 1:		36 13	260	0·81	7:37	
1-ap3e05*	32.7	26·8	33·4	835	147	62·6	1730	612 1	1080	3640 1	0200	1390	5510	854	150	542	67	349	83	162 23	~	55 20	134	0-67	2.66	
1 -no09b13	32·1	27·8	34.5	716	134	67-4	1520	512 1	1190	3820	8460	987	3820	615 1	141	420	56	663	21	143 2(1	33 18	116	0.85	3·88	
2 -mr07a03*	29.5	28.5	31·8	764	141	64-7	526	481	836	2640	5240	513	1690	231	55	149	19	01	19	49	ŝ	35 8	·2 47	06.0	7·14	
2 -ap3e03	32.4	27.9	33·9	716	119	62·8	630	470	869	2920	5560	530	1880	282	66	199	25	29	24	61	8·4	31 9	·0 34	0.85	6.47	
2 -no09a03	34·2	28·6	37.6	787	181	58·7	844	570 1	1260	3210	7270	742	2490	325	63	202	27	37	27	79 1	0	91 14	116	0.75	6.17	
1, core cc SiO ₂ , CaC *Analyses	mpos and plotte	TiO ₂ ti	2, rin are re Fig. 2	n corr porte	r ni b	ions; S wt %,	3, dark the o	exter ther e	nal rir lemer	n; Rp, ıts in	repre ppm.	cipitat	ion fea	ature.	Analy	ses in I	ploc	are fro	n fir-t	ree (F	T) ar	d ext	remely	bright s	ector zor	les.

HIGH Ba–Sr GRANITES, SCOTLAND

Fig. 6. Nb (ppm) versus Gd (ppm) for titanite from (a) Strontian and Rogart (b) localities. Data reported in this figure do not include analyses of the FT or bright sector zones (See Table 2; Supplementary Data: Electronic Appendix 2). Reprecipitation zones are indicated by smaller symbols and the shaded field.

On a $(Eu/Eu^*)_N$ versus $(La/Sm)_N$ diagram (Fig. 7a), two trends (cores and rims) can again be identified within the granitoid samples. Core compositions mostly plot between unity and ~5 [$(La/Sm)_N$] with some core analyses and all the rims plotting above five; $(La/Sm)_N$ increases and the negative Eu anomaly reduces towards the rim. One analysis representing the dark external rim and two analyses of the rim within SR1 have positive Eu anomalies and plot in the same area as the appinite trend. The $(La/Sm)_N$ ratio within Strontian appinite shows a positive correlation with $(Eu/Eu^*)_N$.

Hayden *et al.* (2008) have shown that the Zr content of titanite is temperature dependent. Considering that the different plutons cooled at similar pressures during titanite crystallization [13–14 km depth, following Tyler & Ashworth (1983)], Fig. 7b can be interpreted in terms of temperature (proxied by Zr) versus HREE content (Y being a proxy for the HREE). Once again, two groups

can be distinguished following core-rim compositions. Core compositions vary from high Y contents (>3000 ppm) towards lower Y contents (~1000 ppm, external part of the core) at comparable Zr contents (500-700 ppm). Rim compositions of Y plot below 1000 ppm but show more rapidly decreasing Zr contents (ranging from 600 to \sim 400 ppm). Rims from SR1 have much lower Zr contents (~200 ppm). Titanites from the Strontian appinite show a similar range of Y concentrations (from ~ 1000 to \sim 500 ppm; Fig. 7b) to titanite rims from the granitoids. The Zr content of titanite from the appinite decreases from ~ 650 ppm to 100 ppm in the dark external rims. Thus, applying the Zr-in-titanite thermometer [Hayden et al. (2008), who estimated the uncertainty at $\pm 20^{\circ}$ C], titanite in the Strontian granitoids began to crystallize at \sim 772°C and finished at \sim 709°C, based on maximum Zr contents in the cores towards minimum Zr contents in the rims (Table 2; Supplementary Data: Electronic

Fig. 7. (a) Eu/Eu^* versus $(La/Sm)_N$ for the Strontian and Rogart granitoid titanite compositions and the appinite titanite compositions. Core and rim compositions are differentiated. (b) Zr content (ppm) versus Y content (ppm) for Rogart and Strontian titanites. Reprecipitation analyses are indicated by smaller symbols and the shaded field.

Appendix 2). Using maximum and minimum values within the Strontian appinite, titanites crystallized between ~772°C and ~682°C. These values are maximum estimates, assuming the activities of TiO₂ and SiO₂ in our calculations were unity as quartz is present and the amount of titanite in the samples is more likely to reflect a high dTiO₂. Using a lower activity of dTiO₂=0.5 [suggested as the lower limit for typical crustal rocks by, for example, Ferry & Watson (2007) and Hayden & Watson (2007)] in the calculations would decrease the temperature results by about 50°C.

As for the titanites from Strontian, those from Rogart (Table 2; Supplementary Data: Electronic Appendix 2) also show a wide compositional scatter between FT and sector zones, consistent with disequilibrium conditions. Removing these FT and bright sector zones, the data show a single Nb vs Gd trend within the granitoid samples (Fig. 6b). Although Gd content decreases from the cores towards the rims (from \sim 1100 ppm to 200 ppm), Nb contents are mostly between 1000 and 1400 ppm with analyses from areas interpreted as having undergone reprecipitation being higher (up to 2030 ppm). Except for one analysis plotting at extremely high Nb and Gd contents, the appinitic titanites define a positive correlation between Gd and Nb.

Rogart granite and tonalite analyses are also plotted on the $(Eu/Eu^*)_N$ versus $(La/Sm)_N$ diagram (Fig. 7a). Core values plot within the core trend of Strontian analyses. However, the rim compositions are different with $(La/Sm)_N$ values in the range 1–3 and a Eu anomaly tending towards unity. The spread of titanite compositions in Rogart is more restricted than in Strontian (Fig. 7a). Similarly, the appinite values plot in a narrow range of 1–2 in $(La/Sm)_N$ ratio and around unity for $(Eu/Eu^*)_N$. Although $({\rm Eu}/{\rm Eu}^*)_N$ values are comparable with those for the Strontian appinite, the $({\rm La}/{\rm Sm})_N$ ratio is much lower in Rogart.

Zr and Y data are plotted in Fig. 7b. In contrast to the Strontian granitoid titanites, those in Rogart define a single trend with Zr and Y contents decreasing from cores (Y = 3240 ppm) toward rims (Y = 924 ppm). Zr content varies from ~654 ppm in the cores towards 303 ppm within the rims corresponding to temperatures between ~771°C and ~728°C. The titanites from the appinites crystallized between ~759°C and ~731°C.

Apatite chemistry

Chondrite-normalized REE patterns for apatites from the Strontian granodiorite samples (Samples SR1 and SR3) are subparallel and define two groups (Fig. 8a). One group (Group 1) has higher REE contents and a negative Eu anomaly [$(Eu/Eu^*)_N = 0.47 - 0.93$], whereas the second group has lower REE contents and a weaker negative Eu anomaly $[(Eu/Eu^*)_N = 0.78-0.94]$. These two groups correspond, respectively, to analyses made in the oscillatory zoned cores and the rims of the apatite crystals (Fig. 3a and b). Both groups have enriched LREE relative to middle REE (MREE). The (La/Sm)_N ratio, representing the slope of the LREE, is plotted versus Gd, representing the MREE concentrations, to illustrate the characteristics of the two apatite groups (Fig. 9). Figure 9a shows that two apatite compositions, reflecting core and rim compositions, can be distinguished within the granodiorite. As for titanite (Fig. 5a), apatite records a distinct change in REE content during its growth. A Ce versus Y diagram also highlights a compositional gap in apatite between cores and rims (Fig. 9c). Minimum Ce concentrations in the cores are ~2300 ppm and maximum Ce values for rim compositions are ~1500 ppm. Interestingly, no other trace elements apart from the REE show systematic variations between core and rim compositions.

The appinite sample (SR2) has apatite REE patterns evolving continuously from high and flat LREE–MREE content with a strong negative Eu anomaly towards higher LREE/MREE and slightly negative to absent Eu anomaly (Fig. 8c). The lower REE contents correspond to apatite rims when they occur as inclusions in amphibole and titanite or simply in contact with them. Apatites in appinites display a general increase in (La/Sm)_N and decrease in Gd content toward the bright rims of the crystals (when this rim has been identified—see petrography description; Figs 3f, h and 9a). Figure 9a highlights the decrease of MREE (Gd) in apatite rims in contact with late phases such as titanite.

Chondrite-normalized REE patterns for apatite from the Rogart granite and the two tonalites are illustrated in Fig. 8b. In contrast to the Strontian apatites, the REE patterns of cores and rims overlap; consequently the core and rim patterns of the various samples have been merged for

easier inter-sample comparison. The R2 REE patterns are tightly clustered with a flat LREE pattern and a slight negative Eu anomaly. RTl is similar, but also has more enriched LREE compared with MREE. The RHG-1 patterns are more clustered and in general have the lowest normalized abundances of the three samples. However, the RHG-1 patterns show exactly the same characteristics (flat LREE pattern and slight negative Eu anomaly) as the other two samples. Core compositions of the RHG-1 apatite tend to have the highest total REE (Table 3; Supplementary Data: Electronic Appendix 3). For all three samples, despite overlap, there is a trend to lower total REE concentration from cores towards rims (Table 3; Supplementary Data: Electronic Appendix 3). Apatite compositions in the Rogart tonalites or granite do not show abrupt changes in composition. They are characterized by large variations in Gd and small variations in $(La/Sm)_N$ (Fig. 9b).

Apatite chondrite-normalized REE patterns for the Rogart appinite are different from the Strontian appinite, with a flat LREE pattern and a slightly negative to absent Eu anomaly (Fig. 8c). Analyses either from cores or rims are tightly clustered and do not show significant differences. The flat LREE and the Eu anomaly of apatite REE patterns in the Rogart appinite have similar characteristics to the titanite from the same location (Fig. 5c).

Apatite $(La/Sm)_N$ values are around two, as for the other more evolved samples (Fig. 9b). Appinite apatites have Gd contents ranging from ~200 ppm to ~80 ppm. Appinite and tonalites or granite cannot be distinguished based on their apatite composition in this diagram and have a rather constant $(La/Sm)_N$ ratio. There is a positive correlation between Ce and Y within each Rogart sample, with a general continuous decrease of these elements from cores toward rims (Fig. 9c).

Zircon

Chondrite-normalized REE patterns for zircon within the Strontian granodiorite (SR1 and SR3) are homogeneous and have typical igneous zircon REE patterns (e.g. Hoskin & Schaltegger, 2003) with large positive Ce anomalies, negative Eu anomalies and strong HREE enrichment (Fig. 10a). No systematic core to rim variations have been observed, in contrast to apatite and titanite (Figs 5a and 8a). Appinitic zircons have similar REE patterns, although the REE content is systematically higher. This is opposite to the Belousova *et al.* (2002b) compilation of zircon data, which infers an increase of REE content within zircon from ultramafic toward granitoid compositions. Generally the Th/U ratio is <0.5 for igneous zircons (Hoskin & Schaltegger, 2003) and although the Th/U values in zircons from our granitoids are consistent with this, the appinitic sample has slightly higher Th/U (Th/U $\sim 0.5-1.6$, Table 4; Supplementary Data: Electronic Appendix 4).

Fig. 8. Chondrite-normalized REE patterns for apatites in (a) Strontian granodiorites (SR1, SR3), (b) Rogart granite (RHG-1) and tonalites (RT1, R2) and (c) Rogart and Strontian appinites (RA1, SR2). (See Table 3 and Supplementary Data: Electronic Appendix 3)

Fig. 9. (a, b) $(La/Sm)_N$ versus Gd (ppm) for apatites from (a) Strontian and (b) Rogart localities. (c) Ce (ppm) versus Y (ppm) for apatites from the Strontian and Rogart localities. Analyses of cores and rims in the granitoids and appinitic samples are distinguished in these figures. In (a) and (c), dotted lines separate granitoids and appinite analyses.

The Rogart tonalites or granite zircons have comparable REE patterns and concentrations to those from Strontian (Fig. 10b). Other trace elements analysed within these zircons do not show any variation between core and rim zones (Table 4; Supplementary Data: Electronic Appendix 4).

DISCUSSION

Petrogenetic records during apatite and titanite crystallization

Accessory mineral composition data from the Rogart and Strontian plutons provide constraints on their crystallization history, particularly in terms of *in situ* crystal fractionation and mixing processes during the crystallization of the magmas.

Saturation of accessory phases

Zircon saturation temperature estimates for granitoids have been made for several decades (e.g. Larsen, 1973; Watson, 1979; Watson & Harrison, 1983; Barrie, 1995, and reference therein; Miller et al., 2003; Harrison et al., 2007; Fu et al., 2008) and have promoted significant understanding of zircon crystallization behaviour in plutons. However, similar data have not been intensively obtained for apatite and titanite since the work of Harrison & Watson (1984) and Green & Pearson (1986). Hoskin et al. (2000), in a detailed study of a cogenetic suite of plutonic rocks (Boggy Plain pluton, Australia), described the variation of titanite, apatite and zircon trace element chemistry and used an integrated approach to identify accessory mineral saturation during differentiation. Despite the value of such work, there is a lack of data for other pluton chemistries and geological settings. Several studies [including that by Hoskin et al. (2000)] have shown that zircon usually saturates in felsic melts (SiO₂ >65%) but not in those that are less evolved. In the Boggy Plain suite, Hoskin et al. (2000) estimated that apatite probably saturates throughout the range of compositions (aplite to diorite) whereas titanite was interpreted as never saturating within the suite. Titanites in these samples were anhedral (except for the most evolved samples) and their abundance was limited.

In contrast to Boggy Plain, all the granitoids from our study are extremely rich in accessory phases (titanite, apatite, zircon; >3% modal proportion). These are euhedral and present as inclusions within all of the rock-forming minerals, strongly suggesting that saturation has been reached. Zircons are large, abundant and contain apatite inclusions. Apatites are large, euhedral in every sample and have been found as inclusions in the other accessory phases (titanite and zircon). These textural relationships suggest that the three accessory minerals grew simultaneously, although apatite might have started to crystallize slightly earlier. The homogeneous composition of apatite cores in these samples does not, however, necessarily support this last statement. In the appinites, apatite is commonly found as inclusions within all the rock-forming minerals and occasionally within titanite, but is not found within zircon. Therefore, either apatite could have saturated and stopped crystallizing before zircon crystallization or the low abundance of zircon may obscure the relationship between these minerals. In appinite SR2, titanite is abundant, anhedral and interstitial, and is therefore interpreted to have crystallized late, possibly in residual melt pools, as described by Hoskin et al. (2000). In contrast, titanite in RAl is anhedral-subhedral, but not interstitial, and therefore might have saturated and started to crystallize slightly earlier. Zircons are tiny, extremely rare and free of apatite inclusions, and are therefore interpreted as not crystallizing early in these ultramafic

Ő
8
p
0
2
e
р.
f
0
B
—
Ē
P
15
D,
e
7
Ĕ-
š
ଞ୍ଚ
6
×
ਨਿ
8
분
2
H.
E
<u></u>
~
0
Ħ
ğ
ng/ s
ng∕ at
org/ at U
org/ at Un
org/ at Univ
org/ at Univer
org/ at Univers
org/ at University
org/ at University
org/ at University of
org/ at University of H
org/ at University of Pc
rg/ at University of Port
org/ at University of Portsi
rg/ at University of Portsm
org/ at University of Portsmou
rg/ at University of Portsmouth
rg/ at University of Portsmouth
rg/ at University of Portsmouth Li
ng/ at University of Portsmouth Lib
ng/ at University of Portsmouth Libra
ng/ at University of Portsmouth Library
rg/ at University of Portsmouth Library of
ng/ at University of Portsmouth Library on
ng/ at University of Portsmouth Library on A
rg/ at University of Portsmouth Library on Au
ng/ at University of Portsmouth Library on Aug
rg/ at University of Portsmouth Library on Augu
rg/ at University of Portsmouth Library on August
rg/ at University of Portsmouth Library on August 2
rg/ at University of Portsmouth Library on August 24.
rg/ at University of Portsmouth Library on August 24, 2
rg/ at University of Portsmouth Library on August 24, 20
rg/ at University of Portsmouth Library on August 24, 201:

(continued)

Analysis Nb	P_2O_5	CaO	>	Sr	~	Zr	La	Ce	Pr	s pN	Sm E	iu Go	d Tb	Dy	Но	Er	Tm	٩۲	Lu	Pb	Тh	∍	(Eu/Eu*) _N	(La/Sm) _N
RA1 sample—	appinite																							
1-ap04b04*	44·30	55.4	31·80	2550	236	1.6	645	1910	274	1310 2	21 4	8 13	7 12	56	8·6	18	2.2	14	1. 8	14	36	22	0·84	1·82
1-ap04b06	42·50	54-7	39·20	2650	229	4·8	1000	2590	331	1520 2	244 5	3 14	2 14	55	¢ Ö	20	2.4	13	2.2	15	37	13	0·87	2.56
1-ap04b07	41·00	53.1	35·80	2370	208	3·1	871	2350	291	1310 2	206 4	6 12	5 12	51	7.3	16	1 [.] 8	12	1.8	13	41	19	0·87	2·64
R -ap04b05*	44·20	55.0	7-46	2610	140	<0.26	397	1140	162	762 1	128 3	0	8 7	29	5.1	11	1.3	7	1.1	12	25	26	06-0	1.94
R-ap04d06	44·00	55-4	9-04	2730	163	9.0	565	1510	198	952 1	152 3	3 10	6 0	40	5.7	14	1.3	6	1. Ö	13	25	24	0.81	2.32
R -sp04f14	42·00	55.0	39·90	2380	324	4.0	1030	2630	373	1700 2	283 5	5 17	2 17	71	11-5	25	3·0	18	2.4	13	42	17	0.76	2.27
R2 sample-gr	anitoid.																							
1-ap04d14*	40.60	55.1	10-40	786	334	2.1	363	1100	147	681	39 2	6 10	6 13	83	11 · 8	31	3.9	25	4·1	6	55	49	0.65	1.63
1-sp03c09	44·10	55.2	8-46	872	337	0.5	449	1210	163	699	29 2	4 9	3 12	57	11-3	28	3.00 3.00	23	3.8 3	00	g	12	0·68	2.17
2 -ap04c04	46.00	55.2	7·02	862	215	0.4	309	868	113	499	93·4 2	0	2 8	39	ĿL	19	2.4	15	2.6	7	29	18	0.73	2.07
2 -ap04e04*	45.30	55.2	5.98	897	312	0·3	382	1110	150	684 1	36 2	6 10	2 12	58	10·8	27	3.7	21	3.5	00	37	18	0-67	1.75
2-sp03b10	42.70	55.2	9-54	870	447	0.5	554	1450	199	901	179 3	3 14	5 18	88	17·0	40	4.9	34	5.3	6	53	16	0·62	1.93
2 -sp03d05	42.40	55.2	6.71	847	273	0.4	380	1030	134	612 1	115 2	6	0 11	52	10·2	26	з:1	22	3.7	00	g	15	0·68	2.06
3 -ap04d13*	47-40	55.3	6-58	895	284	0·3	339	1000	131	611 1	17 2	4 9	3 11	55	10-5	26	3.2	21	3.5	6	31	16	0.69	1·81
RT1 sample—g	granitoid																							
1 -ap04h13	40.00	55.3	8·63	982	315	1.0	558	1550	197	844 1	38 3	3 10	4 12	59	11.0	28	3.4	23	3.7	7	55	48	0·83	2.53
1 -ap04i10*	41-40	55-3	16·80	1060	187	6.0	355	920	120	514	84·3 2	1 6	0 7	34	6 [.] 9	17	2.0	15	2.4	7	8	33	0.89	2.63
1-sp04c05	44·50	55.0	9.27	1020	441	1.4	801	2110	279	1220 1	93 4	8 13	9 16	78	15.6	39	5.3	33	5.3	7	69	34	0.89	2.59
RT1 sample—g	granitoid																							
2 -ap04h14*	42·30	54.7	9.08	1050	450	1·8	926	2460	297	1290 1	98 5	3 14	5 16	78	15·8	40	5.1	33	0·9	6	74	31	0.96	2.92
2 -ap04i09*	41·30	55.1	8·68	1070	470	2.0	935	2450	306	1300 2	207 5	2 15	0 17	82	16·4	43	5.6	34	0.9	6	79	38	06-0	2·82
2 -ap04i11*	40·60	55.0	8·75	1020	452	2.1	871	2340	289	1230 1	95 5	1 14	4 16	82	16·1	40	5.7	36	5.8	œ	81	35	0·92	2·79
2 -sp04b05	45·50	55.0	8·44	1010	375	1·2	786	2150	273	1120 1	174 3	9 11	7 13	99	12·6	33	4.4	30	4.9	7	09	27	0·83	2.82
3 -sp04b06	43.40	55-0	5.43	1060	134	0·2	286	798	94-9	400	60·4 1	5 4	5	26	4·8	12	1-4	10	1نى	2	18	15	06-0	2.96
3 -sp04c06	43·00	55.0	7.05	1020	220	6.0	443	1130	145	633	99.6 2	4 7	1 8	41	7-9	20	2.6	16	2.9	9	8	32	0·88	2·78
3 -sp04c08	45·50	55.0	7.13	1060	192	0.3	397	1020	131	554	86·6 2	200	4 7	35	6.4	17	2.1	14	2.3	9	26	26	0.91	2.86
RHG-1 sample	- granito	id																						
1 -sp03d10	42.40	55.0	8·23	870	272	0.3	523	1290	160	701 1	14 2	8	5 9	46	8 [.] 8	23	3.2	22	3.3	00	25	13	0.73	2·86
1-sp03e07*	41·90	55.0	10·70	862	446	1:5	1050	2580	320	1290 2	201 4	0 13	9 16	76	15·3	40	5.2	35	5.7	00	82	42	0·73	3·26
1-sp03f05	43·30	55.0	8·35	867	339	1.1	616	1670	214	900	41 2	6	9 12	56	11·0	29	4·1	27	4·1	œ	46	19	0·72	2·73
1-sp03f10	42·00	55.0	9-93	974	450	1:3	1470	3260	370	1410 1	98 3	9 13	8 16	F	15·1	38	5.2	36	5.4	10	74	24	0·72	4·64
2 -ap04f06	42·60	55·2	9·37	896	433	1·2	1030	2810	320	1280 1	88	13 13	9 15	76	14·1	37	4.9	36	5.8	11	70	21	0.70	3·42
2 -ap04f07	43·50	55.0	8·27	926	305	9.0	588	1540	195	818 1	30 2	6 6	0 11	49	9 [.] 3	25	э.3	20	3.5	00	46	16	0-77	2·82
2 -sp03e06*	44·30	55.0	8·50	006	282	0.5	660	1630	195	799	22 2	6 8	4 10	47	9·6	24	3.4	21	3.6	00	48	16	0-77	3·38
2 -sp03e08	42·60	55.0	00·6	894	457	1.3	1050	2470	308	1210 1	87 3	9 13	6 16	76	15.4	37	5.5	37	6·1	6	64	19	0·75	3·51
3 -ap04f10	42·60	55·2	7·09	858	205	0.2	537	1390	165	592	94·6 1	9 7	0 8	37	7.3	18	2.4	16	2.4	6	32	21	0.70	3·54
3 -sp03e10	42·80	55 · 0	7.59	868	183	0.2	329	852	107	460	76.7 1	6 5	8 7	30	5.8	15	2.0	14	2·1	9	27	21	0·74	2.68
3 -sp03f08	42.40	55.0	8·24	972	439	1·2	1490	3230	365	1410 1	97 3	9 13	7 16	F	14.6	38	5.1	35	5:2	10	73	22	0·72	4·72

Table 3: Representative analyses of aparite (for full dataset see Supplementary Data)

HIGH Ba–Sr GRANITES, SCOTLAND

Analysis Nb	P_2O_5	CaO	>	Sr	≻	Zr	La	Ce	Pr	PN	Sm	Eu	μ	DV	Но	ц	д	Υb	Lu	Pb	Th		(Eu/Eu*) _N	(La/Sm) _N
SR1 sample-	granodior.	ite																						
1-ap04f13	42·40	55.4	10·80	572	225	1·8	2680	3310	263	869	112	59	8 6/	42	8 8	21	2.4	16	2.7	11	136 4	47	9. 93	14·94
1-ap04f14	43·80	55.4	12.40	571	211	1.7	2540	3040	249	822	103	27	5	88	7.4	18	2.4	17	2 ^{.8}	11	125 4	6	0·92	15·40
1-ap04g05	41-50	55.0	8.90	697	154	1.1	2030	2510	201	664	84·8	19	69	23	5.5	14	1.7	12	ò	6	62	17)·81	14·95
1-ap04g09*	43·90	55.0	16.30	623	162	0.7	1440	2250	219	608	118	13	3 62	33	5.9	14	1.6	00	1·6	6	72	25	0-41	7.62
1 -ap04g10*	43·00	55.3	8·37	676	156	1:2	1910	2490	205	726	94	18	88	34	6.3	14	1 [.] 8	12	1.9	10	61	8	0-67	12.69
1-sp03h09	44·70	55.0	9.35	666	194	1:2	2190	2750	249	891	119	21	32	41	7.8	18	2.2	14	2·1	10	8	ន្ត	J-63	11-49
1-sp03h13	46·60	55.0	12·80	653	198	1:3	1860	2820	291	1030	134	17	38 10	4	7-5	18	2.0	10	1·6	6	8	24	0-47	8·67
2 -ap04g04	45.40	55.9	8·34	665	68	0.4	880	1060	82·5	274	33·1		24	1	2:3	9	8 0	2	6·0	œ	6	21	06.0	16·60
2 -ap04g06*	44·40	55.5	9·28	687	74·8	0.4	993	1280	98·7	333	42·2	6	000	14	2.9	7	0·0	9	1·Ó	6	46	15	LT-0	14·69
2 -ap04g08*	46.90	55.4	9·84	619	89.4	0.5	1080	1390	116	390	50.5	11	32	18	э	œ	1.0	7	1:2	œ	52	2	J·81	13·35
2 -sp03h04	45·80	55.0	9·20	681	75.1	0.4	968	1130	90·7	303	37·8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	27	14	2.6	9	0·0	9	1.0	œ	51	20	0·80	15·99
2 -sp03h11	45·30	55.0	9.15	735	84·7	0.4	1120	1400	117	396	47·6	10	33	16	э.1	00	0·0	9	1.0	œ	20	15	LT-O	14·69
2 -sp03h14	43·30	55.0	9.34	700	103	0·6	1300	1620	133	464	57.6	12	7 68	20	3.7	00	1-1	7	i ç	10	75	21	0·76	14·09
2 -sp03h05	43·00	55.0	9.25	634	77-9	0.4	955	1170	90·8	310	39.2	10	56	14	2.7	7	0.0	7	1·Ó	00	5	8	J-94	15·21
2 -sp03h07	43·70	55.0	8·65	627	79	0.4	985	1230	97-4	326	38 [.] 8	10	57	14	2.8	7	6·0	9	1·0	00	5	18	0.93	15·85
SR2 sample-	appinite																							
1 -ap04a12*	42·10	55.5	23·50	1360	109	7.3	904	1340	112	404	50.5	13	7 68	19	3.7	6	1·2	œ	1 i	œ	e e e e	15	06.0	11·18
1 -ap04a14	42·60	55.1	20·00	1350	228	4·2	1410	2310	213	857	127	22	94 10	46	8:2	20	2.4	16	2.3	6	52	28)·62	6·93
SR2 sample—	appinite (suite)																						
1 -sp01b07	42·60	55.0	24·60	1340	200	5.8	1190	2090	232	897	126	22	31	42	7.8	19	2.3	13	2·1	œ	e B	11)·66	5.90
1-sp01b08	42·30	55.0	15·70	1270	218	2·2	1050	1900	219	891	132	18	38 10	45	8:4	18	2.3	14	2·1	7	40	11	0.50	4·97
1-sp05f08	42·50	55.0	23·00	1320	242	8 3	1330	2440	261	1060	152	2	99 11	50	9·1	21	2.7	17	2·3	œ	31	12)·53	5.46
1-sp05f09	42.90	55.0	18·10	1310	240	5.1	1250	2230	249	1010	148	20	10	51	9.1	22	2.5	16	2:4	00	47	1	0-51	5·27
R -ap04a08	41-30	55-4	6.38	1490	132	0.6	947	1510	148	557	6·77	16	52	28	4.9	12	1:3	10	; v	10	23	33)·74	7-59
R -ap04a13*	44·70	55.3	20.30	1340	96·2	2.3	805	1100	96·3	348	45.1	=	32	18	3.4	6	1-1	7	1-1	6	22	19	.89	11·15
R -sp01b06	43·60	55.0	23·50	1330	124	8·2	890	1200	115	429	60.1	12	1 5	33	4.6	12	1.6	10	1·6	7	30	00	17.0	9.25
R-sp05f03	47·20	55.0	12·10	1230	123	1:5	927	1280	120	445	61-4	14	4	24	4.6	12	ά	6	15	7	47	S	0·80	9.43
SR3 sample-	granitoid																							
1 -ap04e12	43·30	54.8	9-44	600	165	1:3	2070	2750	219	735	95.4	21	1	35	6.7	16	1.9	13	2 [.] 0	10	83	34)·76	13·55
1-ap04e13	52·00	54.6	9-44	714	195	1-5	2580	3370	270	878	113	2	62	4	7:3	18	2.2	14	2.5	11	95	62)·72	14·26
1 -ap04e14*	43·50	54·7	9.04	728	176	1·3	2420	3130	249	824	101	21	74	36	6.7	16	1.9	13	2 ^{.0}	6	81	2	0·73	14·96
1-sp01d13	46.20	54.8	10.10	742	186	1-4	1980	2810	261	950	129	20	36	42	7·8	18	2.0	13	2·0	6	69	21	0-57	9.58
2 -ap04f04*	44·70	55.2	8·22	643	75.2	<0·30	946	1170	91-1	304	37-1	6	56	12	2:7	9	0 0	2	6·0	00	6	25)·84	15·92
2 -sp01c07	47-40	54.8	8·84	665	76.6	0·3	1020	1230	94-4	324	38·2	10	56	14	2.8	7	0·0	2	1·0	00	46	19	J-92	16·67
2 -sp01d06	45·40	54·8	0.95	654	47·9	≪0·11	664	806	67.3	228	28·5	പ	22	6	1.8	4	0.5	ო	0-5	9	00	4	.0-68	14-55
Rogart sar present in *Analvses	mples: the ap	1, core pinite	e compe apatite	osition crysta	ls; 2, 0 als. P ₂ C	scillator 5 and	ry rim; CaO ar	3, un; e repc	zoned r orted in	im. Str wt %	ontian and th	samp ne oth	les: 1, er elei	core ments	or all in pp	crysta m.	al con	posit	ion; 2	, rim	compo	ositic	n. R, brij	ght rims
Allalyses	piorie		۲. o.																					

Table 3: Continued

Fig. 10. Chondrite-normalized REE patterns for zircons in (a) Strontian granodiorites (SR1, SR3) and appinite (SR2). (b) Rogart granite (RHG-l) and tonalites (RT1, R2). (See Table 4 and Supplementary Data: Electronic Appendix 4.)

(appinite) samples. REE patterns (Fig. 10) support the suggestion that such zircons seem to have crystallized from REE-enriched melt pockets.

The granitoids: in situ *crystal fractionation and a late mixing event?*

In the Strontian granitoids, both apatite and titanite exhibit two chemical groups, which presumably relate to the same petrogenetic events. The first group (crystal cores) has higher REE contents and a more significant negative Eu anomaly. The second group (crystal rims) has a lower REE content, with a slightly negative to absent Eu anomaly.

Cores of titanite and apatite in Strontian record a systematic outward decrease in trace elements (Figs 6a, 7a, b, 9a, c and 1l). For example, Fig. 7b shows a correlation between Zr and Y content, of which the latter can be used as a proxy for the HREE, which are compatible in titanite. The progressive decrease of Y is consistent with *in situ* crystal fractionation, as titanite and other accessory minerals progressively deplete the remaining melt in trace elements. The same systematics is observed in apatite cores (Fig. 9a–c), suggesting that the cores of titanite and apatite grew during the same interval.

However, progressive *in situ* crystal fractionation cannot explain the sudden compositional change observed in the

õ	
νn	
lo:	
ď	
ď	
fre	
Ĕ	
Ē	
Ę	
Ë	
Pe	
8	
0	
S.	
ġ	
ਿਓ	
ā	
ġ.	
H	
a	
S.C	
ый В	
a	
Ĵ	
'n.	
ve	
rsi.	
Ę,	
of	
P	
Ĩ	
sn	
10I	
Ξħ.	
Ē	
ij	
ar	
~	
/ on	
/ on Au	
on Augu	
on August	
/ on August 24	
/ on August 24, 2	
/ on August 24, 20	
7 on August 24, 2015	

nued)	contii	-																							
0-5	377	207	9·3	1·25	8220	45·8	207	20	81	16	39	а З	6	0.64	1·6	0-91	<0.0297	34		2.6	511	104	0.035	33	2-ap06d10
0·6	281	160	7.5	1.06	7980	40·1	178	17	68	14	33	2.7	10	0·72	1 [.] 8	0.94	0.054	30	0.072	2.1	447	96	0.030	33·1	2-ap06d04*
0·7	466	324	13·0	1.17	8700	43·6	197	19	83	16	43	3.4	10	0.79	1.7	0.71	0-041	43	I	2.2	537	110	0.034	33·3	2 -ap06c14*
0 [.] 8	338	265	12·2	0.65	8580	48·8	240	25	108	22	64	5.2	19	1-47	4·0	2.57	0.318	36	0.735	1.0	708	06	0·032	33	1-oc03f09
0·6	313	179	7.6	1·12	8320	38·2	190	17	74	15	38	2.8	6	0.69	1.6	0.85	0.055	30	0.031	2.0	471	91	0·034	33	1-oc03f06
																								c	SR1 sample
0.5	429	223	9.7	0.92	9260	53	248	24	93	18	45	3.4	11	0.75	1 ò	1.0	0.041	38	0·132	3·0	593	110	0·022	33·2	2 -oc03c04
0·6	364	202	8 [.] 9	0·81	9280	34	161	16	65	13	33	2.5	6	0.65	1-7	1.1	0.057	33	ī	2.0	403	06	0·028	33·2	2-oc03b11
0.7	379	280	13·7	96-0	8380	52	241	24	101	20	52	4·2	15	1·22	э.1	1.6	0.109	52	ī	3.2	649	94	0.043	33·3	2 -ap05f11
0·7	222	160	7.1	0.63	8140	44	222	21	93	19	50	4·1	13	1·01	3·2	1.6	0.133	32	0.071	1-7	584	115	0.041	33·2	1-oc03b07
0·6	368	236	11-5	1·04	9050	51	231	22	92	17	44	3.5	11	1·05	2·0	1-4	0.083	48	0.064	3.6	581	06	0·034	33·2	1-ap05f12*
																									R2 sample
0·6	346	199	11·6	0.773	8410	32.5	150	14-7	62·2	12	31·1	2.4	8.79	0.606	1-46	1.11	0.106	31-7	0.260	1.96	385	78	0.0326	32-9	3 -ap05d06
0·7	302	208	9.2	1.16	8700	52·4	247	23.6	96.7	18·5	48·6	3.65	10·6	0·884	2·44	1.09	0-11	44·3	0·082	3·36	611	100	0·0342	33·2	2 -oc03e09*
0·6	331	200	8·36	0.964	8640	39.3	189	18·2	76.7	14·8	36.6	3·08	8.75	0.686	1·52	0·871	0.0815	33·4	0.098	2.14	480	85	0.0315	33·2	2 -oc03e08*
0·6	437	276	10.3	1.16	10700	48·6	244	23.3	93	18·9	48·2	3.6	11.2	0·807	2·37	1·02	0.0686	43·3	0.078	2.8	593	109	0.0258	33·2	2 -oc03e04
0·2	328	175	8·18	0.738	9430	31.6	146	13-9	58.6	11·5	30	2.35	7.54	0.578	1·57	0.767	0.0509	30.2	0.064	2.27	379	81	0·034	33	2 -ap05f07
0 [.] 8	491	388	15·8	1.19	9170	9.99	330	31-7	136	27·8	73·5	5.83	20.1	1.59	5.1	2.87	0·27	60.5	0.140	3.58	869	107	0·0384	33·2	1-oc03d07
0 [.] 8	421	325	12.7	1.13	9560	46·8	240	22·2	95-9	18·4	48·4	3.96	15.3	0·883	3·07	1.58	0·182	53·7	0·289	2.99	591	98	0.0453	33·2	1-oc03d05
0-5	349	189	9·21	1·03	8510	48·7	227	21-4	86·6	16·9	42-9	3.27	10.9	0·84	1·59	1.16	0.123	36·7	0·233	2.73	542	93	0.0375	33·2	1-ap05d04
																								ale	RHG-1 sam
0·2	300	162	6.6	0.96	0606	51.3	242	23.4	87·9	17.3	43·6	3·13	10.7	0.66	2·04	1.3	0.048	34	0.047	2.58	560	98	0.029	33·2	3 -oc03e14
0.6	398	241	10.6	0.87	9040	41 <i>·</i> 3	189	18·3	74·8	14.6	38·4	2.91	10·1	0·80	2·09	1.0	0.084	39	0.049	2.60	483	101	0.035	33·3	3 -ap06c10
0·6	316	176	7.9	0.72	9370	32·1	154	15.1	62·1	12·4	32.0	2.58	8.4	0.69	1·57	1.0	0.103	32	0·158	1.91	394	85	0.061	33·3	2 -oc03f05
0·7	315	225	9.7	0·78	8710	34.6	170	16·2	68·2	13·8	36.2	2.75	9.4	0·71	1.95	1.4	0.064	40	060.0	2.02	440	88	0.033	33·2	2 -oc03f04*
0.6	327	191	8 [.] 0	0.85	9420	35.5	166	15-7	67-7	12.6	34.5	2.58	8·5	0·75	1·63	0·8	I	34	0.061	2.60	418	66	0.032	33·5	2 -ap06c07
9·0	313	192	0.6	0·88	8450	43·8	198	19-0	80·8	15.6	39.7	3.16	10-4	0·78	2·04	1·2	0.067	41	ī	2.45	503	98	0.035	33·3	2-ap06c06*
0.5	360	193	8·4	0.95	9250	49·8	228	21-1	88·1	16·8	43·2	3.22	10.9	0·80	2·11	1.1	0.052	39	ı	2.94	550	97	0·028	33·2	2 -ap05c05
																									RT1 sample
Th/U	∍	Ч	Pb	Та	Ħ	Lu	٩۲	щ	ъ	어	Dy	Дþ	Gd	Eu	Sm	Nd	Pr	Ce	La	dN	~	Sc	P_2O_5	SiO ₂	

Table 4: Analyses of zircon compositions (for full dataset see Supplementary Data)

	SiO_2	P_2O_5	Sc	≻	ЧN	La	Се	Pr	PN	Sm	Eu	Вd	Tb	Dy	Ho	.–	Tm Y	p Lu	Ŧ	Та	Pb	Η	∍	Th/U
SR2 sample																								
1-ap06d13*	33·1	0.038	111	676	2.2	0.026	34	0.12	2.0	3·1	0·98	17	4·8	20	22	102	24 2	38 4	93,	20 0.5	97 10	236	334	0·7
1-oc04b10	33	0.072	116	1230	3.8 3.0	I	74	0.25	3·4	5.5	2·82	29	8·4	109	41	202 4	19	30 9.	.96 6	10 1.€	53 60	123(1340	6.0
2 -oc04a07	33	0.061	117	1080	4·5	T	105	0.24	4·1	6.5	2.97	31	8·9	101	35	167 S	37 31	32 7.	3 91;	70 2·(123	269(1780	1:5
2-oc04b07	33	0.064	108	1110	5.2	0.077	114	0.30	4·3	6.4	3·19	32	8·9	103	36	99	38	34 7	1 917	70 2:	39 177	352(2240	1.6
3-oc04b05	33.2	0.038	100	932	1 <u>·</u> 1	0·249	39	0-54	7·2	7.5	3·01	26	7·6	84	30	43	33	32 6	6 87.	70 0·{	39 32	712	601	1·2
3-oc04b11	33	0.030	66	818	3.2	I	99	0.15	2.2	4·5	1·78	19	5.7	71	26 1	128	30 31	77 6	7 1100	30 1·6	34 56	1160	2170	0.5
3-oc04b12	33	0.057	135	1270	5.4	660·0	91	0.26	3.8 8	5.4	2·28	27	7·8	103 ,	41	208	50 51	72 10	1 83(90 2·í	19 64	132(1260	1.0
SR3 sample																								
1-ap06g05*	33·1	0·024	93	433	2:3	0.059	33	0.05	0·66	1-4	0·80	8.3 8	2.9	35	14	69	1 1	73 3	5 80	10 0.5	9. 9.	3 219	359	0·0
1-oc03a06	33	0.037	121	724	2.9	0·068	42	0.12	1·87	2.9	1·07	14.5	4·6	09	23	111 2	2, 2,	35 5 ₂	5 86()0 1.	28 14·	8 38(530	0·7
2 -ap06g08	33.2	0.036	94	397	2.4	0.087	30	60·0	0·74	1.9	0.57	8·2	2.3	31	12	63	15 1	57 3	3 779	3-0 06	30 8 [.]	2 185	327	0.6
2 -ap06g09	33	0.038	87	349	1.9	0·081	30	0.06	0·84	1-4	0·64	۲·۲	2.2	28	11	54	13	31 2	.02 20.	10 0.5	30 9·	7 211	340	0·0
2-oc03b04	33	0.032	96	441	2·0	0.077	28	0.04	0.92	1·6	0.59	7.4	2.6	34	13	68	1 1	30 3	8 75(<u>)</u> 0 1.(1 7-	8 158	278	0·0
3 -oc03a05	33	0.035	112	514	2·1	0.055	39	60·0	0 ^{.88}	1.9	0·84	9.9	3.2	41	16	76 1	1	34 4	0 82:	20 1.()4 13 [.]	5 328	439	0.7
3 -oc04d05	33	0·043	87	629	1·0	0.502	32	0·22	2.29	3.7	1.09	15.5	4·8	57	20	95 2	24 2	30 4	8 81(1:0 OC	73 11 [.]	1 24/	326	0.7
1, 2 and 3 * A nalyzee	corre	spond in Fi	to and	alyses	from	1 cores	(1) to	wards ex	kternal	rims	(3). S	iO ₂ an	d P₂O _€	; are r	eporte	id in w	Λ% έ	ind th	e other	. elem	ents in	ppm.		

Analyses plotted in Fig. 4.

1641

Table 4: Continued

Fig. 11. (a) Selected mineral-melt partition coefficient for apatite and titanite for felsic and mafic melt compositions (from Prowatke & Klemme, 2005, 2006). (b) Nb/Ta versus Y (ppm) for titanites from the Strontian and Rogart localities. A sudden increase of Nb/Ta recorded in titanite rims in Strontian granitoids indicates a mixing event with a mafic magma (field defined by dashed borders).

titanite and apatite rims in Strontian (Figs 6a, 7a, b, 9c, d and 11). There are several possible causes, such as a change in oxygen fugacity, fluid circulation-hydrothermal alteration or magma composition (e.g. Piccoli et al., 2000; Prowatke & Klemme, 2005, 2006; Smith et al., 2009; McLeod et al., 2011). More reducing magma conditions will lead to the dissolution of the outer rims of titanite crystals, resulting in the stabilization of ilmenite within titanite and the regrowth of titanite with a lower REE content (e.g. Piccoli et al., 2000; McLeod et al., 2011). Although the presence of titanite-magnetite-quartz in a felsic magma indicates relatively high fO_2 , decreasing fO_2 in such a magma has been shown to induce crystallization of ilmenite (Wones, 1989). Moreover, under reduced conditions, the lower activity of ferric iron induces the need to charge balance REE in the titanite structure, which can partly explain the lower REE uptake. Except for the change in REE content, other features that might characterize a change in fO_2 are not observed in the Strontian titanites. Belousova *et al.* (2002a) have shown that La/Sm, Ce/Th and Y/ Σ REE in apatite compositions are dependent upon the oxygen fugacity of the magma. La/Sm and Ce/ Th increase with fO_2 , whereas Y/ Σ REE tends to decrease. None of these ratios show systematic differences between apatite cores and rims in the samples discussed here (Table 2; Supplementary Data: Electronic Appendix 2). It is therefore unlikely that abrupt changes in REE between the cores and rims of apatite or titanite can be explained by a simple change in fO_2 . Hydrothermal alteration of titanite is characterized by patchy zoning and formation of anhedral crystals with trace element contents depending on the nature and chemistry of the fluid (e.g. Piccoli et al., 2000; Horie et al., 2008; Smith et al., 2009; McLeod et al., 2011). Titanites from the Strontian granitoids are euhedral

Downloaded from http://petrology.oxfordjournals.org/ at University of Portsmouth Library on August 24, 2015

and have typical magmatic zoning and do not reveal obvious hydrothermal alteration between cores and rims (Fig. 2a and b). Prowatke & Klemme (2005) have shown that $D_{\text{titanite/melt}}$ for the REE and some other trace elements (Ta, Nb) is strongly influenced by melt composition (Fig. 11a). They have shown that $D_{\text{titanite/melt}}$ increases significantly for these elements from mafic to felsic magma compositions. For instance, Gd D_{titanite/melt} varies from about unity in mafic compositions to 370 in the most felsic compositions studied. Our results show major systematic changes for the same elements (REE, Ta, Nb) between cores and rims, with the rim values plotting within the field for appinites (Table 2; Supplementary Data: Electronic Appendix 2; Figs 5a and 6a, b). Another example is illustrated in Fig. 11b based on the Nb/Ta ratio in titanite. In this figure, Nb/Ta ratios in Strontian titanites increase significantly towards those in the appinite and in the titanite rims of the granitoids. This phenomenon can be best explained by considering the $D_{\text{titanite/melt}}$ for Nb and Ta (Fig. 11a). Indeed, $D_{\rm Nb}/D_{\rm Ta}$ felsic $\ll D_{\rm Nb}/D_{\rm Ta}$ mafic is mimiced by the Ta/Nb ratio in titanite. Prowatke & Klemme (2006) have shown that $D_{\text{apatite/melt}}$ increases from mafic towards felsic melt compositions for the REE. The apatites from our study reveal changes in REE composition between cores and rims, but no systematic changes for the other trace elements. It therefore seems likely that the titanite and apatite rims in the Strontian granitoids record a mixing event with a more mafic magma, characterized in these minerals by (1) an abrupt decrease in REE in the rims of both minerals, (2) an abrupt decrease in Nb and Ta in titanite rims and (3) rim compositions comparable with appinite apatite or titanite compositions (Fig. 12b). This conclusion, at the micrometre scale, is consistent with numerous macro-scale mixing and mingling features between the granitoids and mafic magmas observed at the locality from which the samples were taken, including abundant microgranular mafic enclaves and a disrupted synplutonic microdiorite dyke. In Rogart, titanite and apatite trace element contents

In Rogart, titanite and apatite trace element contents decrease generally from the core towards the rim (Figs 7a, b, 8b and 9b, c). Unlike Strontian, there is no abrupt change in their chemistry at the rim, and the overall trends are consistent with progressive *in situ* crystallization of minerals that crystallized simultaneously (Fig. 12b). Petrographic description and some analyses have highlighted some dissolution–reprecipitation BSE-bright zones (Fig. 2e). When these zones were large enough to be analysed they were shown to be enriched in certain elements (e.g. HREE + Y and Nb, Figs 6b and 7b; Table 2; Supplementary Data: Electronic Appendix 2). These brighter zones are always succeeded by a zone that plots within the general core-to-rim trend of the Rogart titanite compositions [Figs 2e (e.g. al4), 6b and 7b]. Thus, these dissolution–reprecipitation episodes are thought to

be a consequence of injection of several pulses of the same magma, which is consistent with recent interpretations of the construction of the pluton (Kocks *et al.*, 2013).

The appinites: in situ crystal fractionation?

The petrogenetic interpretations of the appinite titanite and apatite compositions are somewhat different, as titanite is a late phase in sample SR2 (interstitial growth) and is anhedral-euhedral in sample RA1 (Fig. 2f and g). In Rogart, the titanite and apatite REE patterns are similar (flat LREE with an absent or slightly positive Eu anomaly; Figs 5c and 8c). This would imply that $D_{\text{apatite/melt}}$ and $D_{\text{titanite/melt}}$ for the different REE are comparable for a given magma composition and that the minerals crystallized at a similar time, consistent with the data of Prowatke & Klemme (2005, 2006) for mafic magma compositions. In contrast, the appinitic titanites and apatites from Strontian have rather different REE patterns and apatite cores and rims have distinctive REE contents (Fig. 9a and c; Supplementary Data: Electronic Appendices 2 and 3). It is also observed that apatite with BSE-bright rims is systematically present as inclusions in late phases such as interstitial titanite or amphibole (Fig. 3f), suggesting that apatite rim growth is synchronous with titanite. Changes in REE content between cores and rims in apatite may, therefore, be related to the late growth of titanite (Fig. 12a). Progressive depletion of the melt in LREE-MREE as a result of early apatite saturation may explain the difference in titanite REE patterns between appinites from Rogart and Strontian (Fig. 5c).

Summary of apatite-titanite crystallization history

Based upon the data and observations presented above, it is possible to reconstruct the different stages of growth of apatite and titanite and link them to pluton petrogenesis (Fig. 12a and b). For this purpose, the average (Sr/Sm) ratio is used in Fig. 12c because it allows discrimination of the nature of the magma from which the mineral has crystallized. The average Sr content in the cores or rims of the two minerals is homogeneous and correlates with the Sr whole-rock content (see below). Sm is used as it has been shown from experimental studies (Prowatke & Klemme, 2005, 2006) that titanite and apatite REE distribution coefficients vary significantly between mafic and felsic magma compositions. Bearing these points in mind, the following crystallization sequence for the granitoids is proposed.

(I) In the granitoids, inclusion of apatite within titanite and zircon demonstrates that apatite is an early phase in the crystallization sequence. The presence of apatite within titanite zones implies that apatite crystallized slightly earlier than or simultaneously with titanite. Most of the time, apatite inclusions do not appear within the FT zones that crystallized first in titanite. Moreover, both apatite and titanite have

Fig. 12. (a, b) Summary of the crystallization history of titanite and apatite in the felsic and mafic intrusive rocks from Rogart and Strontian. (c) Discrimination of the host-rock composition (felsic vs mafic) based on the Sr/Sm ratio in apatite and titanite. Each sample point represents the average composition of core and rim (Supplementary Data: Electronic Appendices 2 and 3).

homogeneous cores with an abrupt change in REE composition at their rims. If titanite had crystallized later than apatite, a shift in apatite REE patterns owing to the new uptake of LREE–MREE by titanite might be expected (see Sr2 sample in Fig. 8c). This is not observed (Fig. 8). All these observations strongly

suggest that these minerals have crystallized simultaneously. In Fig. 12c, the Strontian and Rogart titanite and apatite core compositions plot in the same area.

(2) Subsequently, rims of both minerals within the different granitoids crystallized (Fig. 12b and c). The abrupt change in the composition of the rims of Strontian samples is similar to the mafic samples in Sr/Sm space, revealing a mixing event between the granitoid and a mafic magma. On the other hand, Rogart granitoid rim data plot close to their core compositions. As a result of *in situ* crystal fractionation, the Sr/Sm ratio for both minerals increased slightly, but still clusters in a tight area (Fig. 12c).

For the appinite, the (Sr/Sm) ratio for each mineral is characteristically higher than for the granitoid and plots in an area where $(Sr/Sm)_{Apatite} > 10$ and $(Sr/Sm)_{Titanite} > 0.20$. RAl apatite and titanite grew simultaneously and have core and rim composition plotting in a tight field. Apatite cores in SR2 crystallized first, indicated by the increase of $(La/Sm)_N$ in apatite towards the rim and the interstitial habit of titanite crystals (Fig. 12a). Consequently, $(Sr/Sm)_{Titanite}$ for SR2 plots at a higher value in Fig. 12c.

Thus, the (Sr/Sm)_{Apatite} versus (Sr/Sm)_{Titanite} of a given sample can be used to track in situ crystallization and to discriminate the composition of the magma from which the accessory minerals crystallized (felsic or mafic). In this example, the plot identifies a mixing event in the petrogenesis of the Strontian granitoids, but further work on other samples and magma compositions needs to be done to assess if this kind of diagram can be used more widely as a discrimination tool. In this case, the diagram is only of use when combined with a detailed petrographic study. This contribution has shown that detailed study of accessory minerals can highlight petrogenetic processes not visible with whole-rock data only. However, wholerock chemistry and isotope data (O, Nd, Sr) argue for petrogenetic processes that could not be observed in the apatite, titanite or zircon trace element chemistry; for example, metasediment assimilation (Fowler et al., 2008). This is consistent with the bulk of such contamination occurring before crystallization of the accessory phases; that is, en route to the site of magma emplacement.

Accessory mineral records of whole-rock composition

Sr–*V* in apatite and titanite

 $V_{apatite}$, $Sr_{titanite}$ and $Sr_{apatite}$ have significant potential to reflect the content of these elements in the whole-rock and therefore have potential applications for provenance studies. Previous studies have suggested a link between apatite composition and that of the whole-rock (e.g. Hoskin *et al.*, 2000; Belousova *et al.*, 2001, 2002*a*; Chu *et al.*, 2009; Jennings *et al.*, 2011; Miles *et al.*, 2013). From these studies, several correlations have been highlighted, such as Sr in apatite (Sr_{apatite}) reflecting the degree of fractionation of the host granite. Chu *et al.* (2009) have also used Sr, MnO and F contents in apatite to infer different settings of pluton genesis. In the Scottish samples studied here, differences between the Sr contents of apatite cores and rims are minor (Fig. 13a, Table 3; Supplementary Data: Electronic Appendix 3), which is consistent with the work of Tepper & Kuehner (1999) suggesting that elements (Mn, Fe, Sr) occupying the Ca site in apatite are redistributed between zones by intracrystalline diffusion. A plot of Sr_{apatite} versus Sr_{WR} defines two separate groups corresponding to whole-rock (WR) ultramafic and granitoid compositions (Fig. 13a). Literature data for granitoid samples have also been plotted (Hoskin et al., 2000; Belousova et al., 2002a; Chu et al., 2009; Jennings et al., 2011), which correspond well to our new data. 'Gabbros' from the suite of complex intrusive bodies studied by Jennings et al. (2011) also plot in the same field as the appinites (E. S. Jennings & H. R. Marschall, personal communication). The data distribution in Fig 13a therefore suggests that magma composition may have some influence on Sr partition coefficients, in contrast to the conclusions of Klemme & Prowatke (2005). Similarly, V content is fairly homogeneous in apatite crystals ($V_{apatite}$); Fig. 13b shows the relationship with V_{WR}. There is an increase of V_{apatite} from felsic to ultramafic samples, again discriminating the two main compositions.

Although such apatite and whole-rock compositional correspondence has been investigated in recent years, the similar use of titanite has not. Figure 13c and d shows that Sr in titanite (Sr_{titanite}) correlates with Sr_{apatite} and therefore with Sr_{WR}. There is a good correlation between the Sr content of apatite and titanite and there is a consistent enrichment factor of about 10 in apatite with respect to titanite (Fig. 13d). Available data from the literature (Hoskin *et al.*, 2000) plot on the same trend.

Figure 14a and b demonstrates that Sr_{WR} and V_{WR} reflect the degree of fractionation of the samples, although the Sr data are rather more scattered (Fig. 14a and b). Reported SiO_{2WR}-Sr_{apatite} values for the felsic samples are consistent with available literature data (Hoskin et al., 2000; Belousova et al., 2002a; Chu et al., 2009; Jennings et al., 2011), although in general our samples have higher Sr_{apatite} for similar SiO₂ values (Fig. 14c). This can be explained by the characteristic high Ba-Sr contents of our samples (Fowler et al., 2001, 2008). Comparable ultramafic compositions (E. S. Jennings & H. R. Marschall, personal data) and our appinitic samples (Fig. 14c) define a second trend (see above, Fig. 13a). Similarly, $\mathrm{Sr}_{\mathrm{titanite}}$ (Fig. 14d) and $V_{\rm apatite}~(Fig.~l4e)$ show similar trends. In summary, Sr_{apatite}, Sr_{titanite} and V_{apatite} seem to reflect the degree of fractionation of the Strontian and Rogart samples.

Apatite and titanite: recovery of whole-rock REE content

Application of distribution coefficients to early crystallizing apatite and titanite should allow recovery of the original melt composition. Zircon was not tested because previous workers have shown that back-calculation for this mineral is difficult, either because of substitution by

Fig. 13. Variation of Sr and V content in apatite (a, b) and titanite (c) versus whole-rock (WR) composition (Fowler *et al.*, 2001, 2008). Average compositions of cores and rims are plotted for each sample (See Supplementary Data: Electronic Appendices 2 and 3). (a) Average apatite values from Hoskin *et al.* (2000, cross symbols), Belousova *et al.* (2002*a*, small open circles); Chu *et al.* (2009, plus symbols); Jennings *et al.* (2011) and E. S. Jennings & H. R. Marschall (personal communication; small open triangles) are also shown. (c, d) Data from Hoskin *et al.* (2000, cross symbols) are also plotted. (d) Sr_{Ap} versus Sr_{Tit} for the Rogart and Strontian samples. The dotted line represents a 1:10 correlation between Sr contents in apatite and titanite.

xenotime (e.g. Hoskin et al., 2000) or because of the lack of experimental data for our felsic range of magma compositions. Strontian samples have been affected by a mixing event (see discussion above) and therefore cannot be used to calculate original whole-rock values. We therefore test the back-calculation approach on Rogart titanite and apatite, which have fairly homogeneous compositions. In a first stage, calculations for felsic samples were done using available $K_{\rm D}$ values from experimental studies for both minerals (e.g. Tiepolo et al., 2002; Prowatke & Klemme, 2005, 2006), giving results that appear to be completely inconsistent (especially for titanite) with the whole-rock data (Supplementary Data: Electronic Appendix 5). Compositions used during the experiments are dissimilar to the composition of our samples. Therefore, apatite and titanite $K_{\rm D}$ values were chosen from natural samples (mineral or glass; Luhr et al., 1984) with a bulk composition that is more appropriate. Results calculated with apatite

and titanite core compositions from the RHG-1 and RT1 samples show reassuring comparability with the wholerock chondrite-normalized REE patterns (Fig. 15a and b; Fowler et al., 2001; Table 4 and Supplementary Data: Electronic Appendix 4). Calculations for sample R2 give a similar pattern shape but systematically higher REE contents than the whole-rock data (Fig. 15c). Apatite gives more reliable results than titanite but calculated HREE abundances for both minerals plot far above the wholerock data. This cannot be explained by later saturation of zircon in which the HREE are extremely compatible because apatite crystals have been found as inclusions parallel to zircon growth zones, implying that they grew at the same time. R2 apatites systematically have lower La/Sm and higher $Y/(\Sigma R E E)$ than the other samples (Table 4; Supplementary Data: Electronic Appendix 4), which could suggest a different fO_2 for this sample (Belousova et al., 2002a), although there is a lack of experimental data

Fig. 14. (a, b) Variation of whole-rock Sr and V content versus SiO₂ for the samples studied. Data from Fowler *et al.* (2001, 2003). (c, e) Variation of Sr (ppm) and V (ppm) content in apatite versus SiO_{2WR}. (d) Variation of Sr (ppm) content in titanite versus SiO_{2WR}. The abundances of these elements within apatite and titanite vary with SiO_{2WR} content and reflect the degree of differentiation of the samples. (c) Literature data have also been plotted. (See Fig. 13 for data sources and symbols.)

to confirm this. Further, in plutonic igneous rocks such as these, it is entirely possible that the whole-rock itself does not represent a melt composition. Each sample is a combination of evolving melt and entrained crystals, such that for sample R2 admixture of a low HREE mineral (e.g. feldspar) would effectively reduce the whole-rock HREE content. The observed mismatch might therefore be related to different fO_2 conditions, to dissimilarity to the apatite compositions of Luhr *et al.* (1984), or to a difference in composition between the whole-rock composition and the evolving magma as recorded in the accessory minerals.

Fig. 15. Chondrite-normalized REE patterns modelled by back-calculating whole-rock compositions from titanite and apatite average core compositions in the Rogart samples (Supplementary Data: Electronic Appendices 2 and 3). Calculations were performed using $D_{\text{apatite/melt}}$ and $D_{\text{titanite/melt}}$ values from Luhr *et al.* (1984) for granitoids (a–c) and from Prowatke & Klemme (2005, 2006) for appinite (d). Data sources: Supplementary Data: Electronic Appendix 5. X-ray fluorescence whole-rock data are from Fowler *et al.* (2001) for the same samples.

For the Rogart appinite, K_D values for basic rocks are taken from Prowatke & Klemme (2006) (Table 4; Supplementary Data: Electronic Appendix 4). Calculations using apatite, which crystallized early in RA1 (Fig. 15d), have LREE concentrations consistent with the whole-rock data. Those performed with titanite, which is a late crystallizing phase, do not reflect the whole-rock data (Fig. 15d). The lack of experimental data for HREE distribution coefficients does not allow for comparison with the HREE.

What about zircons?

Zircon is undoubtedly one of the most widely used mineral to date rocks (e.g. Compston *et al.*, 1984; Feng *et al.*, 1993; Kosler & Sylvester, 2003, and references therein), and is extremely valuable for provenance studies (e.g. Fedo, 2000), to track magma sources (using O and Hf isotopes; e.g. Hawkesworth & Kemp, 2006; Dhuime *et al.*, 2012) and potentially to estimate oxygen fugacity (e.g. Ballard *et al.*, 2002; Trail *et al.*, 2011; Burnham & Berry, 2012). Some researchers (e.g. Heaman *et al.*, 1990; Belousova *et al.*, 2002*b*) have tried to discriminate source rock type using trace elements in zircons but the systematics remains unclear (see Hoskin & Schaltegger, 2003). The use of trace elements in a single grain of zircon to record petrogenetic processes has been described as unsuccessful (e.g. Hoskin *et al.*, 2000), but a recent study by Gagnevin *et al.* (2010) suggested that U–Th–Y variations in zircon could reflect a magma mixing event. No significant elemental differences have been found within the zircon analytical data produced for this study. The only noticeable difference is the higher REE content of the appinite sample compared with the granitoids, which is suggested to be the consequence of late crystallization from REE-enriched melt pockets. Therefore, zircon seems not to be a good candidate to track petrogenetic processes.

CONCLUSIONS

Careful imaging and chemical characterization of single grain accessory phases (apatite and titanite) can be a powerful petrogenetic tool. With the new results presented here, several observations can be made, as follows.

 Apatite and titanite trace element data can be used to constrain part of the petrogenetic history of the studied plutons. *In situ* crystal fractionation is evident during the crystallization of both the Strontian and Rogart plutons, and a late mixing event with mafic magma can be identified in Strontian, which is not evident from whole-rock data.

- (2) Other petrogenetic events, such as metasediment assimilation recorded in whole-rock isotope systematics, are not visible in the mineral chemical data presented here (trace elements). This may be a matter of timing, with *in situ* crystallization of the accessory minerals post-dating crustal assimilation that occurred during magma transport.
- (3) Many elements within apatite and titanite (e.g. Sr, V, REE) closely reflect whole-rock chemistry and the degree of differentiation of the samples.
- (4) All the accessory phases studied here can be dated by U-Pb methods and therefore, the association of U-Pb dating and trace element analysis could provide important additional constraints for provenance studies (e.g. McAteer et al., 2010). Although tonalitetrondhjemite-granodiorite are the main plutonic rock types generated during the Archean, an important change around 2.7 Ga led to the genesis of sanukitoids. This event is often interpreted as the result of a change from shallow to steep subduction and would represent the onset of modern plate tectonics. Ultimately, the study of accessory minerals within sanukitoid-like rocks has implications for the recognition of the sanukitoid signature through time. Further work on sanukitoid accessory phases is now needed to confirm that these also reflect their original magma compositions. If successful, this will be helpful in defining the temporal distribution of sanukitoids from the detrital record.
- (5) Elemental variations within zircon crystals are not petrogenetically informative.

ACKNOWLEDGEMENTS

We are particularly grateful to M. Tiepolo, D. Chew and M. Ducea for the reviews provided and their helpful comments. We are grateful to Stuart Kearns for the help provided with the microprobe analyses, to Christine Hugh and Tony Butcher for assistance during the SEM and cathodoluminescence work, and to Geoff Long for amazing technical support. We wish to thank the Selfrag company (Kerzers, Switzerland) for the use of a Selfrag machine during the preparation of the samples. This is a contribution to International Geoscience Programme (IGCP) 599.

FUNDING

This work was supported by the Natural Environment Research Council (Grant number NE/I025573/l).

SUPPLEMENTARY DATA

Supplementary data for this paper are available at *Journal* of *Petrology* online.

REFERENCES

- Atherton, M. P. & Ghani, A. A. (2002). Slab breakoff: a model for Caledonian, Late Granite syn-collisional magmatism in the orthotectonic (metamorphic) zone of Scotland and Donegal, Ireland. *Lithos* 62, 65–85.
- Bailey, E. B. & Maufe, H. B. (1916). The geology of Ben Nevis and Glen Coe and the surrounding country, 1st edn. Memoir of the Geological Survey of Great Britain, Sheet 53 (Scotland). HMSO.
- Ballard, J. R., Palin, J. M. & Campbell, I. H. (2002). Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile. *Contributions to Mineralogy and Petrology* **144**, 347–364.
- Barrie, C. T. (1995). Zircon thermometry of high-temperature rhyolites near volcanic-associated massive sulfide deposits, Abitibi Subprovince, Canada. *Geology* 23, 169–172.
- Belousova, E. A., Walters, S., Griffin, W. L. & O'Reilly, S. Y. (2001). Trace-element signatures of apatites in granitoids from the Mt Isa Inlier, northwestern Queensland. *Australian Journal of Earth Sciences* 48, 603–619.
- Belousova, E. A., Griffin, W. L., O'Reilly, S. Y. & Fisher, N. I. (2002a). Apatite as an indicator mineral for mineral exploration: traceelement compositions and their relationship to host rock type. *Journal of Geochemical Exploration* **76**, 45–69.
- Belousova, E. A., Griffin, W. L., O'Reilly, S. Y. & Fisher, N. I. (2002b). Igneous zircon: trace element composition as an indicator of source rock type. *Contributions to Mineralogy and Petrology* 143, 602–622.
- Brown, P. E., Miller, J. A. & Grasty, R. L. (1968). Isotopic ages of Late Caledonian granitic intrusions in the British Isles. *Proceedings of the Yorkshire Geological Society* 36, 251–276.
- Brown, P. E., Ryan, P. D., Soper, N. J. & Woodcock, N. H. (2008). The Newer Granite problem revisited: a transtensional origin for the Early Devonian Trans-Suture Suite. *Geological Magazine* 145, 235–256.
- Burnham, A. D. & Berry, A. J. (2012). An experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity. *Geochimica et Cosmochimica Acta* **95**, 196–212.
- Chu, M. F., Wang, K. L., Griffin, W. L., Chung, S. L., O'Reilly, S. Y., Pearson, N. J. & Iizuka, Y. (2009). Apatite composition: tracing petrogenetic processes in Transhimalayan granitoids. *Journal of Petrology* **50**, 1829–1855.
- Compston, W., Williams, I. S. & Meyer, C. (1984). U–Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. *Journal of Geophysical Research— Solid Earth and Planets* 89, B252–B534.
- Dhuime, B., Hawkesworth, C. J., Cawood, P. A. & Storey, C. D. (2012). A change in the geodynamics of continental growth 3 billion years ago. *Science* 335, 1334–1336.
- Fedo, C. M. (2000). Setting and origin for problematic rocks from the >3.7 Ga Isua Greenstone Belt, southern west Greenland: Earth's oldest coarse elastic sediments. *Precambrian Research* 101, 69–78.
- Feng, R., Machado, N. & Ludden, J. (1993). Lead geochronology of zircon by laserprobe-inductively coupled plasma-mass spectrometry (LP-ICPMS). *Geochimica et Cosmochimica Acta* 57, 3479–3486.

- Fowler, M. B. (1988). Ach'uaine hybrid appinite pipes: evidence for mantle-derived shoshonitic parent magmas in Caledonian granite gneiss. *Geology* 16, 1026–1030.
- Fowler, M. & Rollinson, H. (2012). Phanerozoic sanukitoids from Caledonian Scotland: Implications for Archean subduction. *Geology* 40, 1079–1082.
- Fowler, M. B., Henney, P. J., Darbyshire, D. P. F. & Greenwood, P. B. (2001). Petrogenesis of high Ba-Sr granites: the Rogart pluton, Sutherland. *Journal of the Geological Society* **158**, 521–534.
- Fowler, M. B., Kocks, H., Darbyshire, D. P. F. & Greenwood, P. B. (2008). Petrogenesis of high Ba–Sr plutons from the Northern Highlands Terrane of the British Caledonian Province. *Lithos* 105, 129–148.
- Fu, B., Page, F. Z., Cavosie, A. J., Fournelle, J., Kita, N. T., Lackey, J. S., Wilde, S. A. & Valley, J. W. (2008). Ti-in-zircon thermometry: applications and limitations. *Contributions to Mineralogy and Petrology* 156, 197–215.
- Gagnevin, D., Daly, J. S. & Kronz, A. (2010). Zircon texture and chemical composition as a guide to magmatic processes and mixing in a granitic environment and coeval volcanic system. *Contributions to Mineralogy and Petrology* **159**, 579–596.
- Green, T. H. & Pearson, N. J. (1986). Ti-Rich Accessory Phase Saturation in Hydrous Mafic-Felsic Compositions at High P,T. *Chemical Geology* 54, 185–201.
- Harrison, T. M. & Watson, E. B. (1984). The Behavior of Apatite during Crustal Anatexis – Equilibrium and Kinetic Considerations. *Geochimica et Cosmochimica Acta* 48, 1467–1477.
- Harrison, T. M., Watson, E. B. & Aikman, A. B. (2007). Temperature spectra of zircon crystallization in plutonic rocks. *Geology* 35, 635–638.
- Hawkesworth, C. J. & Kemp, A. I. S. (2006). Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. *Chemical Geology* **226**, 144–162.
- Hayden, L. A. & Watson, E. B. (2007). Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon. *Earth and Planetary Science Letters* 258, 561–568.
- Hayden, L. A., Watson, E. B. & Wark, D. A. (2008). A thermobarometer for sphene (titanite). *Contributions to Mineralogy and Petrology* 155, 529–540.
- Heaman, L. M., Bowins, R. & Crocket, J. (1990). The chemical composition of igneous zircon suites—implications for geochemical tracer studies. *Geochimica et Cosmochimica Acta* 54, 1597–1607.
- Horie, K., Hidaka, H. & Gauthier-Lafaye, F. (2008). Elemental distribution in apatite, titanite and zircon during hydrothermal alteration: Durability of immobilization mineral phases for actinides. *Physics and Chemistry of the Earth* 33, 962–968.
- Hoskin, P. W. O., Kinny, P. D., Wyborn, D. & Chappell, B. W. (2000). Identifying accessory mineral saturation during differentiation in granitoid magmas: an integrated approach. *Journal of Petrology* 41, 1365–1396.
- Hoskin, P. W. O. & Schaltegger, U. (2003). The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar, J. M. & Hoskin, P. W. O. (eds) Zircon. Mineralogical Society of America and Geochemical Society, Reviews in Mineralogy and Geochemistry 53, 27–62.
- Jennings, E. S., Marschall, H. R., Hawkesworth, C. J. & Storey, C. D. (2011). Characterization of magma from inclusions in zircon: Apatite and biotite work well, feldspar less so. *Geology* **39**, 863–866.
- Kocks, H., Strachan, R. A., Evans, J. A. & Fowler, M. B. (2013). Contrasting magma emplacement mechanism within Rogart igneous complex, NW Scotland, record the switch from regional

contraction to strike-slip during Caledonian orogeny. *Geological Magazine*. http://dx.doi.org/10.1017/S0016756813000940.

- Kosler, J. & Sylvester, P. J. (2003). Present trends and the future of zircon in geochronology: Laser ablation ICPMS. In: Hanchar, J. M. & Hoskin, P. W. O. (eds) Zircon. Mineralogical Society of America and Geochemical Society, Reviews in Mineralogy and Geochemistry 53, 243-275.
- Larsen, L. H. (1973). Measurement of solubility of zircon (ZrSiO₄) in synthetic granitic melts. *Transactions of the American Geophysical Union* 54, 479–&.
- Luhr, J. F., Carmichael, I. S. E. & Varekamp, J. C. (1984). The 1982 eruptions of El Chichon volcano, Chiapas, Mexico-mineralogy and petrology of the anhydrite-bearing pumices. *Journal of Volcanology and Geothermal Research* 23, 69–108.
- Marks, M. A. W., Wenzel, T., Whitehouse, M. J., Loose, M., Zack, T., Barth, M., Worgard, L., Krasz, V., Eby, G. N., Stosnach, H. & Markl, G. (2012). The volatile inventory (F, Cl, Br, S, C) of magmatic apatite: An integrated analytical approach. *Chemical Geology* 291, 241–255.
- Martin, H., Moyen, J.-F. & Rapp, R. (2009). The sanukitoid series: Magmatism at the Archaean–Proterozoic transition. *Transactions of the Royal Society of Edinburgh* 100, 15–33.
- McAteer, C. A., Daly, J. S., Flowerdew, M. J., Connelly, J. N., Housh, T. B. & Whitehouse, M. J. (2010). Detrital zircon, detrital titanite and igneous clast U–Pb geochronology and basement–cover relationships of the Colonsay Group, SW Scotland: Laurentian provenance and correlation with the Neoproterozoic Dalradian Supergroup. *Precambrian Research* 181, 21–42.
- McDonough, W. F. & Sun, S. S. (1995). The composition of the Earth. *Chemical Geology* **120**, 223–253.
- McLeod, G. W., Dempster, T. J. & Faithfull, J. W. (2011). Deciphering magma-mixing processes using zoned titanite from the Ross of Mull Granite, Scotland. *Journal of Petrology* **52**, 55–82.
- Miles, A. J., Graham, C. M., Hawkesworth, C. J., Gillespie, M. R. & Hinton, R. W. (2013). Evidence for distinct stages of magma history recorded by the compositions of accessory apatite and zircon. *Contributions to Mineralogy and Petrology* **166**, 1–19.
- Miller, C. F., McDowell, S. M. & Mapes, R. W. (2003). Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. *Geology* **31**, 529–532.
- Murphy, J. B. (2013). Appinite suites: A record of the role of water in the genesis, transport, emplacement and crystallization of magma. *Earth-Science Reviews* **119**, 35–59.
- Paterson, B. A. & Stephens, W. E. (1992). Kinetically induced compositional zoning in titanite—implications for accessory-phase/melt partitioning of trace elements. *Contributions to Mineralogy and Petrology* **109**, 373–385.
- Paterson, B. A., Stephens, W. E. & Herd, D. A. (1989). Zoning in granitoid accessory minerals as revealed by backscattered electron imagery. *Mineralogical Magazine* 53, 55–61.
- Pearce, N. J. G., Perkins, W. T., Westgate, J. A., Gorton, M. P., Jackson, S. E., Neal, C. R. & Chenery, S. P. (1997). A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. *Geostandards Newsletter* 21, 115–144.
- Piccoli, P., Candela, P. & Rivers, M. (2000). Interpreting magmatic processes from accessory phases: titanite—a small-scale recorder of large-scale processes. *Transactions of the Royal Society of Edinburgh*, *Earth Sciences* **91**, 257–267.
- Prowatke, S. & Klemme, S. (2005). Effect of melt composition on the partitioning of trace elements between titanite and silicate melt. *Geochimica et Cosmochimica Acta* 69, 695–709.

- Prowatke, S. & Klemme, S. (2006). Trace element partitioning between apatite and silicate melts. *Geochimica et Cosmochimica Acta* 70, 4513–4527.
- Rock, N.M.S. (1984). Nature and origin of calc-alkaline lamprophyre: minettes, vogesites, kersantites and spessartites. *Transactions of the Royal Society of Edinburgh, Earth Sciences* 74, 193–227.
- Rogers, G. & Dunning, G. R. (1991). Geochronology of appinitic and related granitic magmatism in the W Highlands of Scotland: constraints on the timing of transcurrent fault movement. *Journal of the Geological Society, London* 148, 17–27.
- Sabine, P. A. (1963). The Strontian granite complex, Argyllshire. Bulletin of the Geological Survey of Great Britain 20, 6–42.
- Sha, L. K. & Chappell, B. W. (1999). Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis. *Geochimica et Cosmochimica Acta* 63, 3861–3881.
- Smith, M. P., Storey, C. D., Jeffries, T. E. & Ryan, C. (2009). In situ U– Pb and trace element analysis of accessory minerals in the Kiruna district, Norrbotten, Sweden: new constraints on the timing and origin of mineralization. Journal of Petrology 50, 2063–2094.
- Soper, N. J. (1963). The structure of the Rogart igneous complex, Sutherland, Scotland. Quarterly Journal of the Geological Society of London 119, 445–478.
- Soper, N. J. (1986). The Newer Granite problem—a geotectonic view. Geological Magazine 123, 227–236.
- Soper, N. J., England, R. W., Snyder, D. B. & Ryan, P. D. (1992). The Iapetus suture zone in England, Scotland and eastern Ireland—a reconciliation of geological and deep seismic data. *Journal of the Geological Society, London* 149, 697–700.
- Stephens, W.E. & Halliday, A.N. (1984). Geochemical contrasts between late Caledonian granitoid pluton and morthern, central and southern Scotland. *Transactions of the Royal Society of Edinburgh*, *Earth Sciences* **75**, 259–273.
- Stephenson, D., Bevins, R. E., Millward, D., Highton, A. J., Parsons, I., Stone, P. & Wadsworth, W. J. (1999). Caledonian

igneous rocks of Great Britain. *Geological Conservation Review Series* **17**, 648.

- Tarney, J. & Jones, C. E. (1994). Trace element geochemistry of orogenic igneous rocks and crustal growth models. *Journal of the Geological Society, London* 151, 855–868.
- Tepper, J. H. & Kuehner, S. M. (1999). Complex zoning in apatite from the Idaho batholith: A record of magma mixing and intracrystalline trace element diffusion. *American Mineralogist* 84, 581–595.
- Tiepolo, M., Oberti, R. & Vannucci, R. (2002). Trace-element incorporation in titanite: constraints from experimentally determined solid/liquid partition coefficients. *Chemical Geology* **191**, 105–119.
- Tyler, I. M. & Ashworth, J. R. (1983). The metamorphic environment of the Foyers Granitic Complex. Scottish Journal of Geology 19, 271–285.
- Trail, D., Watson, E. B. & Tailby, N. D. (2011). The oxidation state of Hadean magmas and implications for early Earth's atmosphere. *Nature* 480, 79–83.
- Watson, E. B. (1979). Zircon saturation in felsic liquids—experimental results and applications to trace-element geochemistry. *Contributions to Mineralogy and Petrology* **70**, 407–419.
- Watson, E. B. & Harrison, T. M. (1983). Zircon saturation revisited temperature and composition effects in a variety of crustal magma types. *Earth and Planetary Science Letters* 64, 295–304.
- Watson, E. B. & Liang, Y. (1995). A simple model for sector zoning in slowly grown crystals: Implications for growth rate and lattice diffusion, with emphasis on accessory minerals in crustal rocks. *American Mineralogist* **80**, 1179–1187.
- Wiedenbeck, M., Hanchar, J. M., Peck, W. H. et al. (2004). Further characterisation of the 91500 zircon crystal. *Geostandards and Geoanalytical Research* 28, 9–39.
- Whitney, D. L. & Evans, B. W. (2010). Abbreviations for names of rockforming minerals. *American Mineralogist* 95, 185–187.