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ABSTRACT

We investigate online group formation where members seek to
increase their learning potential via collaboration. We capture two
common learning models: LpA where each member learns from all
higher skilled ones, and LpD where the least skilled member learns
from the most skilled one. We formulate the problem of forming
groups with the purpose of optimizing peer learning under differ-
ent affinity structures: AffD where group affinity is the smallest
between all members, and AffC where group affinity is the smallest
between a designated member (e.g., the least skilled or the most
skilled) and all others. This gives rise to multiple variants of a multi-
objective optimization problem. We propose principled modeling
of these problems and investigate theoretical and algorithmic chal-
lenges. We first present hardness results, and then develop compu-
tationally efficient algorithms with constant approximation factors.
Our real-data experiments demonstrate with statistical significance
that forming groups considering affinity improves learning. Our
extensive synthetic experiments demonstrate the qualitative and
scalability aspects of our solutions.
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1 INTRODUCTION

The emergence of platforms that support online networked tech-
nologies has changed the way we communicate, collaborate, and
learn things together. Existing works have focused on how to iden-
tify and rank groups and communities [8], how to efficiently form
a set of groups to optimize different group recommendation seman-
tics [7], or form groups for task assignment [4–6, 14, 18]. The effect
of online collaboration however goes beyond, as it enables powerful
and versatile strategies to improve knowledge of individuals and
promote learning. For example, online critiquing communities,1
social Q&A sites,2 and crowdsourcing platforms3 investigate how
1https://movielens.org/
2http://quora.com/
3https://www.figure-eight.com/
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collaboration can promote knowledge and skill improvement of
individuals. Learning potential, is a key reason behind effective
collaboration. It has been shown that the increase in learning one
expects from collaboration yields fruitful coordination and higher
quality contributions [2, 3]. For instance, in online fan-fiction com-
munities, informal mentoring improves people’s writing skills [11].
In this paper, we propose to explore how affinity between group
members improves peer learning and address modeling, theoretical,
and algorithmic challenges. To the best of our knowledge, our work
is the first to examine algorithmic group formation with affinities
for peer learning.

Group formation in online communities has been studied pri-
marily in the context of task assignment [4–6, 14, 18]. The problem
is often stated as: given a set of individuals and tasks, form a set of
groups for the tasks that optimize some aggregated utility subject to
constraints such as group size, maximum workload etc. Utility can
be aggregated in different ways: the sum of individual skills, their
product, etc [5]. Group formation is combinatorial in nature and
proposed algorithms solve the problem under different constraints
and utility definitions (e.g., [14]). Unlike these problems, we study
how to form groups with the goal of maximizing peer learning
under different affinities.

Our first contribution is to present principled models to formalize
peer learning and affinity structures. We assume that a peer can
only learn from another peer if the skill of the latter is strictly
higher than the skill of the former [3]. The learning potential of
a peer from a more skilled peer can then naturally be defined as
the skill difference between the latter and the former [2, 3]. The
learning potential of the latter from the former is null. We use that
to formulate two common learning models (see picture below): LpA
where each member learns from all higher skilled ones, and LpD
where the least skilled member (resp., the most skilled) learns from
(resp. teaches to) all others.

LpA: members learn from LpD: the least skilled member
higher-skilled ones learns from the most skilled one

Affinity, on the other hand, depends on the application and can
be expressed using common socio-demographic attributes or more
generally, using models that capture psychological traits. We study
our two learning models in conjunction with two common affinity
structures (see picture below): AffD where group affinity is the
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smallest between all members, and AffC where group affinity is
the smallest between a designated member (e.g., the least skilled or
the most skilled) and all others. We investigate these two affinity
scenarios through fact-checking and fact-learning applications.

AffD: smallest affinity between AffC: smallest affinity
all pairs between one member and others

Our second contribution is to study the formalized models sys-
tematically and present our theoretical findings. In its general form,
our problem formulation is a bi-objective optimization, with the
goal to build k equi-sized groups over a set of n members that max-
imize both learning potential and affinity. Interestingly, we prove
that no variant of optimizing learning potential alone is hard to
solve (LpD and LpA), however, the problems become NP-hard when
affinity and group size constraints are considered. Therefore, our
solution first finds k groups that yield the highest possible learning
potential value and then transforms our two-objective problem into
a constrained optimization that looks for k groups that optimize
affinity, with that learning potential value as a constraint.

Our third contribution is algorithmic. We present a suite of scal-
able algorithms that form groups to maximize learning potential
and optimize affinity within constant approximation factors. To at-
tain their approximation guarantees, these algorithms assume that
affinity satisfies triangle inequality [14]. Many similarity/distance
measures such as Jaccard distance and edit distance are known
to satisfy metric properties and these properties are usually as-
sumed to design algorithms with guarantees [14]. Our technical
contributions are summarized in Table 2.4

This paper is organized as follows. Our model and problem are
provided in Section 2. Section 3 discusses various optimization prob-
lems: optimizing learning potential alone, optimizing affinity alone,
and combining the two. Section 4 contains our algorithms. Real
and simulated experiments are reported in Section 5. The related
work and conclusion are given in Sections 6 and 7. Supplementary
material with all proofs is provided in Section 8.

2 MODELING AND PROBLEM DEFINITION

We present our models following which we define the problems we
tackle in this work.

Example 1. We have a set of fact-checking tasks to be completed by

12 individuals with varying skills. We design questions to compute one

skill per individual (e.g., on the British royal wedding) and obtain the

skill values: {2, 3, 1, 5, 6, 4, 9, 8, 10, 12, 14, 17}. Each pair of individuals
has an affinity that reflects how effectively they can collaborate based

on their socio-demographics. Therefore, there are

(12
2
)
pairs of affinities

forming a complete graph. We show a subset of that graph in Table 1

where each worker is identified by her skill. Our goal is to divide the

workers into 3 equi-sized groups of 4 members each.

4Theoretical proofs are presented in Section 8.

member 2 3 1 5 6 4 9 8 10 12 14 17
2 - 20 - - - - 3 - - - 11 17
3 20 - 13 - - - 17 - - - 11 4
1 - 13 - - - - 10 - - - 14 21
. . .
17 17 4 21 - - - - - - - 6 -

Table 1: Partial Affinity Table for Example 1

2.1 Modeling

Group. A group is a set of individuals who will complete a task
together. The group size is constant throughout task completion.

Skill. Each individual has an approximated skill reflecting an
ability to perform a task. We obtain skills from standard tests and
questionnaires to assess expertise level. Other approaches such as
inferring skills from completed tasks [19], are also possible.

Affinity. Between every pair of individuals working on a task,
affinity captures how well they get along. We express affinity as a
similarity measure (higher values are better). We assume affinity
satisfies triangle inequality [14]. Group affinity is the aggregation
of affinities between its members.

Learning Potential. We define the learning potential between
two individuals as the difference between their skill values. The
learning potential is not a metric since for the person with the
higher skill value, we set it to 0 [2, 3]. The learning potential for a
group is the sum of learning potentials of its members.

We have a set ofn individuals who are working on a collaborative
task. Eachwi has a skill valuews

i ∈ R ≥ 0 representing an ability
to complete a task. Our goal is to group them into k equi-sized
groups such that the aggregated learning potential and affinity
of the groups are maximized. Before formalizing the problem, we
investigate variants of learning potential and affinity.

2.1.1 Learning Potential Models. Intuitively, the higher the learn-
ing potential of a group, the more likely its members will learn
from each other. We examine two definitions.

Learning Potential - Diameter. We define LpD as the differ-
ence in skills between themost skilled and the least skilled members.
This reflects that for a group, we are interested in maximizing the
highest learning potential of the least skilled individual in that
group.

LpD(д) = max
wi ∈д

(ws
i ) − min

w j ∈д
(ws

j ) (1)

In Example 1, if we create the following 3 groups (we use a mem-
ber’s skill to represent her).G = {д1 = (2, 3, 1, 5),д2 = (6, 4, 9, 8),д3 =
(10, 12, 14, 17)} then, LpD(д1) = 5− 1 = 4, LpD(д2) = 9− 4 = 5, and
LpD(д3) = 17 − 10 = 7. The aggregated learning potential of the
grouping G is 16.

Learning Potential - All.We define LpA as the sum of differ-
ences between each member’s skill and that of all other members
with higher skills.

LpA(д) =
∑
wi ∈д

∑
(w j ∈д,s .t .ws

i <w
s
j )

(ws
j −w

s
i ) (2)

Given the previous grouping, we can compute G = {д1 =
(2, 3, 1, 5),д2 = (6, 4, 9, 8),д3 = (10, 12, 14, 17)}, LpA(д1) = |1 −



2|+ |1−3|+ |1−5|+ |2−3|+ |2−5|+ |3−5| = 13, LpA(д2) = 17, and
LpA(д3) = 23. The aggregated learning potential of the grouping
under LpA is 53.

2.1.2 Affinity Models. It is important to look at the effect of affinity
on learning since members with higher affinities are likely to learn
better from each other and collaborate more effectively [11, 17, 18].
We examine two affinity variants.

Affinity - Diameter. We can formalize affinity as a complete
graphG = (V ,E) whereV is the set of n individuals and E contains
weighted edges that correspond to the affinity between every pair
of them. In this case, affinity satisfies triangle inequality. We refer to
this case as AffD and define the affinity of a group as the minimum
pairwise affinity of all its members as follows:

AffD(д) = min
wi ,w j ∈д

aff (wi ,w j ) (3)

According to Example 1, if д = {2, 12, 14} then
AffD(д) = min{aff (2, 12), aff (2, 14), aff (12, 14)}, i.e., 4.

Affinity - Center. Affinity can also be defined based on the
relationship between one member and all others. We refer to that as
AffC and capture it as a graphG = (V ,E) where edges are defined
between one designated memberwD and all others.

AffC(д) = min
wD,w j ∈д

aff (wD ,w j ) (4)

AffC captures the cases where the designated member is the
least skilled or the most skilled. Similarly to AffD, in Example 1, if
д = {2, 12, 14} and the group center is 14 then
AffC(д) = min{aff (2, 14), aff (12, 14)} which corresponds to
aff (12, 14) = 6.

For instance, when the task is collaborative fact-checking (e.g.,
check facts related to the British royal wedding), LpA reflects that
each group member will learn from other members with higher
skills and AffD captures agreement between the most two dis-
agreeing members in the group. When LpA is combined with AffC,
we can capture a task such as text editing where group members
collaborate to correct grammar and spelling mistakes in text. In that
case, one can intuitively assume that each group member will learn
from other members with higher skills and that everyone must have
affinity with the highest skilled member. Another example, AffD
LpD captures a task where group members are asked to produce
facts they believe to be true. In that case, the least skilled member
learns from all others and all get along when stating facts.

2.2 Problem Definition

Given a setW = {w1, ...,wn } of individuals with their correspond-
ing skill valuesws

i , our goal is to form a grouping G that contains k
equi-sized groups д1,д2, ...,дk that maximizes two objective func-
tions, aggregated learning potential and aggregated affinity. More
formally:

maximize
G

k∑
i=1

LP (дi ),
k∑
i=1

Aff (дi )

s.t. |G| = k, |дi | =
n

k

(5)

Problem Algo. Approx. Time
(AffC LpD) GrAffC-LpD exact LpD, 3 AffC O (kloдn + nloдk )
(AffC LpA) GrAffC-LpA exact LpD, 3 AffD O (nloдn)
(AffD LpD) GrAffD-LpD exact LpA, 6 AffC O (kloдn + nloдk )
(AffD LpA) GrAffD-LpA exact LpA, 6 AffD O (nloдn)

Table 2: NP-Hard problems and technical results

where LP (дi ) (resp. Aff (дi )) refers to any of the learning poten-
tial (resp. affinity) definitions above.

Since the two objectives are incompatible with one another, our
problem qualifies as multi-objective. Upon examining the learning
potential expressions, we notice that these are polynomial time
solvable problems, simply because the primary operation that these
problems require is sorting. We present exact algorithms for the
two learning potential problems in Section 3.1. The complexity of
our problem lies within the affinity structure and the group size
constraint. One way to solve our bi-objective optimization problem
is therefore to transform it into a single-objective problem with
constraints. We can rewrite Equation 5 as follows:

maximize
G

k∑
i=1

Aff (дi )

s.t.
k∑
i=1

LP (дi ) ≥ OptLP

|G| = k, |дi | =
n

k

(6)

where OptLP is the optimal solution for learning potential maxi-
mization. Essentially, we are interested in finding a solution for the
affinity objective on the Pareto front, that has the highest learning
potential. In Section 4, we present approximation algorithms that
find a feasible grouping (that maximizes learning potential) and
offer provable constant approximation for affinities.

3 OPTIMIZATION

In this section, we first study how to optimize each of our two
objectives individually, learning potential and affinity, and in the
last subsection we begin studying our bi-objective optimizations by
translating them into constrained optimization problems. This exer-
cise has many benefits - (a) it offers a deeper understanding of the
individual problems and (b) it provides perspective on how to com-
bine them and design scalable solutions with provable guarantees
(refer to Section 4). All proofs are in Section 8.

3.1 Optimizing Learning Potential

Our algorithmic endeavor begins by first describing solutions to
group formation that maximize learning potential (LP) alone. Once
we obtain the optimal LP value, we use that as a constraint when
optimizing affinity (Equation 6 in Section 2.2). Fortunately, both LP
problems are computationally tractable, and we present efficient al-
gorithms that form a grouping with exact solutions. While different,
our algorithms are designed in the same spirit as those designed
to solve the value-based group formation [2] and the p-percentile



partitioning problem [3]. A central idea to those algorithms is to
create a grouping based on sorting group members on skill values.

3.1.1 Learning Potential LpD. We want to form k groups that max-
imize the aggregated learning potential which in LpD is the maxi-
mum pairwise skill difference (Equation 4). LpD of a group is always
determined by a single pair of its members, the least skilled and
the most skilled ones. Therefore, if we have to form a single group,
we just need to select the most and least skilled members and make
them part of that group. The other members in the group could be
any as their participation does not increase or decrease the LpD
value. This seemingly simple logic sufficiently extends to forming
k groups. To form k groups, we need to find two buckets with a
total of 2k people, the most skilled bucket containing the k high-
est skilled workers (the i-worker in that bucket is referred to as
w
s .hiдh
i ), and the least skilled bucket containing the k least skilled

workers (the i-worker in that bucket is referred to asws .low
i ). We

can then form k pairs by grouping one member in the least skilled
bucket with one in the most skilled bucket and placing them in
the same group. The remaining n − 2k workers can be distributed
arbitrarily across the k groups, while keeping the group size the
same (pseudo-code in Algorithm 1).

Applied to Example 1, this is akin to forming the least skilled
bucket with participants of skill values {1, 2, 3}, the most skilled one
with values {12, 14, 17}, and forming 3 pairs, each one representing
a group of size 2, by pairing members across the buckets. We can
state the following theorem:

Theorem 1. Any pairing across the least skilled and most skilled

buckets produces the optimal aggregated value for LpD.

Based on Theorem 1, we can state that multiple groupings maxi-
mize the LpD value. This corollary is important, because it provides
intuition on the challenges that arise when combining affinity with
learning potential.

Corollary 1.1. There are k !×(n−2k )!
(n/k−2)!k

possible groupings to maxi-

mize LpD.

Lemma 1. Computing one optimal grouping for LpD takes O (n +
kloдn).

3.1.2 Learning Potential LpA. The LpA of a group is the sum of skill
differences between every member with every other more skilled
member (Equation 3). The LpA of a set of k groups is the sum over
the LpA of each group. What becomes intuitively apparent is that
if one has to form one group to maximize LpA, one should always
group the most skilled member with the remaining less skilled ones.
This logic extends to creating k groups by sorting members on skills
(in increasing or decreasing order), and creating n/k buckets, each
with k members. To form a group of size n/k , we choose a member
from each bucket and repeat this process k times.

Using Example 1, this is akin to sorting the skills of the partici-
pants and forming a total of 4 buckets:

{1, 2, 3}, {4, 5, 6}, {8, 9, 10}, {12, 14, 17}

We form the first group by arbitrarily selecting one member from
each of these 4 buckets, for example, those with skills {1, 4, 8, 12}.

Algorithm 1 Algorithm to maximize LpD
input: set of workersW , k
output: a grouping G, OPTLpD
procedure LpD(W ,k)

OPTLpD← 0
create highest and lowest skill buckets with k workers each
G ← a set of k empty groups
for i in (1, ...,k ) do

pickwm ∈most_skilled andwl ∈ least_skilled
дi ← {wm ,wl }

W ←W \ {wl ,wm }

OPTLpD← OPTLpD + (ws
m −w

s
l )

end for

whileW is not empty do

Assignwi ∈W in дi , s.t дi ≤ n/k .
end while

end procedure

Then we repeat the process twice to get the 2 other groups, e.g.,
{2, 5, 9, 14} and {3, 6, 10, 17}.

This algorithm turns out to be optimal - moreover, just like for
LpD, all possible groupings across n/k buckets are permissible and
will produce the same optimal LpA value.

Theorem 2. Any grouping across the n/k buckets produces the

optimal aggregated value for LpA.

The proof is similar to that of Theorem 1. We omit the details
for brevity.

Corollary 2.1. There are k!n/k possible groupings for LpA.

Lemma 2. Computing one optimal grouping for LpA takesO (nloдn).

3.2 Optimizing Affinity

Since we express affinity as similarity, optimizing it amounts to
minimizing distance. AffC takes the affinity graph over n members
and a subset ofk members as centers (teachers) as input, and intends
to partition the remaining n − k members into k equi-sized groups
such that the sum of the radii (maximum distance between the
center and a member in each group) is minimized. AffD, on the
other hand, only takes the affinity graph over n members and k to
partition the members into k equi-size groups, such that, the sum
of the diameters (diameter of a group is the maximum pairwise
distance in the group) of the grouping is minimized.We first present
some theoretical results on the hardness of these two problems.

Even though it intuitively appears that AffC is an easier problem
than AffD, both problems are NP-hard. The hardness of AffC is
due to the group size constraint.

Theorem 3. The decision version of the AffC problem in NP-

Complete.

Theorem 4. The decision version of the AffD problem is NP-

Complete.



3.3 Optimizing Affinity with Learning

Potential as a Constraint

Finally, we turn our attention to studying the four constrained
optimization problems, with the objective to optimize affinity, while
satisfying the learning potential value obtained from the algorithms
in Section 3.1. Since affinity is modeled as a distance, our goal
is to minimize that distance, considering the underlying affinity
structure. Recall that LpD and LpA are polynomial-time problems
and that we presented exact solutions for both in the previous
section. To ease exposition, we will henceforth call the optimal
values obtained for the LP problems as Lp-* (it is either LpD or LpA).
Our focus now is to study how to optimize Aff-* (AffC or AffD),
with Lp-* as constraints.

Theorem 5. The decision versions of Aff-* Lp-* problems are

NP-Complete.

Our technical deep dive into these four problems is described in
Section 4. We develop greedy algorithms that are extremely lean in
computational time with constant approximation factors. Table 2
summarizes the 4 problem variants and our technical results.

4 CONSTRAINED OPTIMIZATION

We now present a suite of algorithms with theoretical guarantees to
solve the four different variants of optimizing affinity with learning
potential as a constraint. As our problems are NP-hard, we develop
approximation algorithms that are scalable and bear theoretical
guarantees. Our results are summarized in Table 2 and Section 8
contains the proofs.

Our algorithms are greedy and use the following intuition: Lp-*
problems are first solved and these solutions produce an intermedi-
ate grouping that has the optimal LP values. Our algorithms start
from these solutions and greedily choose the rest of the members
to output the final grouping that is guaranteed to have optimal LP
values and provable constant approximation factors for affinity.

4.1 Algorithm for AffC LpD

Our discussion of LpD in Section 3.1.1 stated that only 2k members
(k most skilled and k least skilled) are needed to produce the optimal
grouping. Our proposed Algorithm GrAffC-LpD starts from there
(recall Algorithm 1) - that is, it first identifies the 2k members
which will guarantee the optimal LpD value (thereby satisfying the
constraint of the optimization problem). These outputs are referred
to as boundary members. That means, 2 members in each group
are decided by now and a total of 2k members are decided for the
grouping. In each group, the highest skilled member is the teacher
and acts as the center for that group since AffC is formalized as the
maximum distance between that member and anyone else in the
group. The rest of the grouping is performed in a greedy manner.
For the remaining n − 2k members, all we have to do is assign
them to their respective closest center. Since each group has a size
constraint, this greedy assignment may lead to sub-optimality -
since for a memberwi , the group with the closest distance between
its center and wi may have reached its size and wi may need to
be assigned to a group such that the distance betweenwi and its
center ci is larger (potentially worsening the AffC value). But as
we shall prove later, this greedy assignment cannot be arbitrarily

worse, since affinity between members satisfies triangle inequality
(pseudo-code in Algorithm 2).

Going back to Example 1, based on GrAffC-LpD, initially we
will have the following partial grouping : д1 = {1, 12}, д2 = {2, 17},
д3 = {3, 14}. After that, Algorithm GrAffC-LpD greedily adds 2
more members in each group that are not yet part of any group.
For example, for д1, it will add the member who has the highest
affinity with 12 and the process will repeat.

Algorithm 2 Algorithm GrAffC-LpD
input: a setW of n participants, k groups
output: a grouping G
B = Call LpD(W ,k)
C = the k highest skilled members in B that are k centers
Assignwi ∈ {W − B} to the closest center c j s.t., |дj | ≤ n/k

Theorem 6. Algorithm GrAffC-LpD accepts a 3 approximation

factor to optimize AffC.

Corollary 6.1. Running time of GrAffC-LpD isO (kloдn+nloдk )

4.2 Algorithm for AffC LpA

The idea of this greedy algorithm GrAffC-LpA is similar to the
previous one, that is start with the partial grouping that LpA returns.
However, unlike LpD, LpA creates a set ofn/k buckets (or partitions)
(see Section 3.1.2) that dictate that forming an intra-partition group
is forbidden, and any possible inter-partition groups will result in
the same optimal LpA value. In fact, as Corollary 2.1 suggests, there
are (k!)n/k possible groupings that yield the optimal LpA value.
The challenge is to find one grouping that optimizes affinity.

GrAffC-LpA begins by invoking the LpA procedure to compute
n/k buckets that are sorted in increasing order of skills. It selects
the teachers as the k members in the last buckets (they are the
centers and they have the k highest skills). After that, GrAffC-LpA
operates in a greedy fashion. For the remaining n − k members,
it follow a similar approach as Algorithm GrAffC-LpD. At each
iteration, it chooses a member from the bucket and assigns it to the
closest center. In Example 1, we create a total of 4 buckets:

{1, 2, 3}, {4, 5, 6}, {8, 9, 10}, {12, 14, 17}

Next, we assign each high skilled member in the last bucket to
a group and consider them as centers. As an example, д1 = {12},
д2 = {14}, and д3 = {17}. Next, for the members of the first bucket,
based on their affinities, 1 is assigned to д1, 2 to д3, and 3 to д2. The
process continues until all the buckets are empty.

Since each group has a size constraint, this greedy assignment
may lead to sub-optimality - as it happened in GrAffC-LpD. How-
ever, this greedy assignment cannot be arbitrarily worse, because
affinity between members satisfies triangle inequality.

Theorem 7. Algorithm GrAffC-LpA accepts a 3 approximation

factor for AffC.

Corollary 7.1. Running time of AlgorithmGrAffC-LpA isO (nloдn).
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Figure 1: Skill improvement with and w/o affinity in LpD (a)

and LpA (b)

4.3 Algorithms for AffD Lp-*

There is an interesting relationship between AffC and AffD that
merits further delineation. In the AffC problem, we want to mini-
mize the distance from a center to the farthest member in the group
(i.e., minimizing the radii). In AffD, we do not have any member
as the center, rather we are interested to form groups to minimize
the maximum distance (i.e., the diameter). The next theorem states
that any solution for the former problem is a solution for the latter
that is at most 2 times worse. Based on that, the greedy algorithms
in Sections 4.1 and 4.2 could be used to solve AffD,Lp-* problems.
We refer to these algorithms as GrAffD-LpD and GrAffD-LpA,
respectively for the AffD LpD and AffD LpA problems. GrAffD-
LpD is identical to GrAffC-LpD, and GrAffD-LpA is identical to
GrAffC-LpA operationally. Their respective running times are the
same as their counterparts.

Theorem 8. Any solution for AffC gives a 2 approximate solution

for AffD.

Corollary 8.1. Algorithms GrAffD-LpD and

GrAffD-LpA have a 6 approximation factor for AffD.

Proof. (sketch): Proofs are direct derivatives of Theorem 8. □

5 EXPERIMENTAL EVALUATIONS

Our experimental effort goes in two directions. In Section 5.1, we
involve actual human workers and collaborative tasks. In the re-
maining three subsections, we describe synthetic data experiments.

5.1 Real Data Experiments

These experiments examine if affinity brings added utility in peer

learning. They are designed for collaborative fact-checking and fact-
learning and involve Amazon Mechanical Turk (AMT) workers in
three stages: 1) pre-task skill assessment, 2) task completion in a
group, and 3) post-task completion skill assessment.

Experimental setup and design. We design 4 HITs for the
four variants of our problem that consider both AFF and LP, as well
as 4 additional HITS that only consider LP (without AFF), a model
similar to [2]. We recruit 100 workers from AMTwho are redirected
to an internal website. Each HIT contains the three aforementioned
stages. The fact-checking tasks is about the British royal family.
The details of the design and setup are provided in Supplemental
Material in Section 8.2.

Evaluation criteria. In order to evaluate the effectiveness of
affinity in peer learning, we measure the difference between each
member’s skills before and after task completion, and refer to that

as skill improvement. We also measure the average number of com-
ments in each group and the quality of contributions. These two
criteria help us interpret worker engagement and skill improve-
ment.

Summary of results. We compare with and without affinity
counterparts for each problem variant (e.g., AffC LpD with LpD).
Our results confirm that affinity improves learning potential sub-
stantially with statistical significance. Figure 1(a) contains the aver-
age skill improvement comparison of LpD with and without affinity
and shows the important role of affinity. This is consistent with LpA
(Figure 1(b)). We also observe that LpA has higher improvements,
possibly because facts have many facets that one learns from more
skillfull peers. Additionally, Figure 2 presents two sample inter-
actions between two workers during task completion. In the first
question,Worker 2 provides a new piece of information about the
Queen, which is set as one of the questions in the post-task skill
assessment. This additional information helps Worker 1 improve
her skill during post-task assessment.

The Queen does not need a passport to 
travel 

True or False ?

• Worker 1: True. All British Passports are 
issued in the Name of Her Majesty, The 
Queen.

• Worker 2 : I found an article which agrees 
with your findings. Fun fact: she also 
doesn’t need a driver’s license or a 
license plate on her car.

Members of the royal family have to 
accept absolutely all gifts.

• Worker 1 : (Mostly false; Large true in 
practice.) While I couldn’t find any law 
requiring the Royals to accept all gifts. 

• Worker 2 : I found an article which says 
they make a list of all gifts they receive 
throughout the year and release it 
publicly. In addition, they donate many of 
their gifts.

Figure 2: A sample worker interaction

Finally, we anecdotally observe that higher learning potential
yields higher quality task outcomes. On average, quality (computed
as the average number of facts correctly identified by the groups),
is higher for groups built with affinity (4.3 facts out of 5 are correct),
compared to their counterparts built without affinity (3.9 out of 5).

5.2 Synthetic Experiments Setup

These experiments evaluate the qualitative guarantees and the
scalability of our algorithms. All algorithms are implemented in
Python 3.6 using Intel Core i7 4GHz CPU and 16GB of memory and
Windows operating system. All numbers are averages of 10 runs.

5.2.1 Implemented Algorithms. The closest works to ours [2, 3] do
not consider affinity and cannot be used for synthetic data experi-
ments. Hence, we implement three additional baselines:

Optimal. An Integer Linear Programming (ILP) algorithm that
produces optimal values for Aff-* Lp-*. We use the PuLP library
to build the ILP model whose exact ILP formulation is given in
Section 8.2.

The rationale behind implementing ILP is to demonstrate that
the theoretical approximation factors of our algorithms hold in
practice. Since ILP is NP-hard, the algorithm does not terminate
beyond k = 3 and n = 50.
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Figure 3: AFF-* LP-* values varying n for Normal Distribution

Baseline-1 (clustering-based). This baseline is motivated by
the popular k-means algorithm. It starts with a random grouping
and greedily swaps members across groups as long as that improves
affinity, while satisfying group size. Once the grouping converges
based on affinity, we check if it satisfies the optimum learning
potential value (which could be derived efficiently in polynomial
time). If not, we perform another set of swaps to move members
across the groups until we find a grouping that reaches the optimal
learning value.

Baseline-2. This is a simpler and efficient baseline. It first solves
the learning potential problem and finds the seed members in each
group that dictate the optimal learning value. The rest of the mem-
bers are assigned randomly to groups by considering group size.

These solutions are compared with 4 of our algorithms GrAffC-
LpD, GrAffC-LpA, GrAffD-LpD, GrAffD-LpA (refer to Section 4,
whenever applicable).

5.2.2 Experimental Setup. We simulate a group of workers with
two functions that capture the relationship between skill and affin-
ity. Specifically, there are two random number generators, one
produces the skill of each member and the other generates pairwise
affinities that satisfy triangle inequality.

We consider two skill and affinity distributions: (a) Normal,
where the mean and standard deviations are set to µ = 100, σ = 20,
respectively; (b) Zipf, where the value of the exponent α is set to
1.5.

Parameters:We vary n (the total number of individuals), k (the
number of groups), and the skill and affinity distributions.

5.2.3 Summary of Results. 1. Our algorithms exhibit tighter ap-
proximation factors than the bounds we proved. Our algorithms
also outperform the two baselines.
2. The approximation factors of the algorithms with a Normal skill
distribution are better than Zipf.
3. All algorithms are highly scalable considering up to 106 members
and 160 groups and only take seconds to run.

5.3 Quality Experiments (Synthetic)

We assess quality by measuring the approximation factor and the
objective function value. Both of these are described considering
affinity, per our problem definition. LP values are always optimal
(as the algorithms for LP are exact) and we skip those details for
brevity.

Algo. Parameters App. Factor

(GrAffC-LpD) [n = 15,k = 3] 1.13(0.12)
[n = 50,k = 3] 1.23(0.02)

(GrAffC-LpA) [n = 15,k = 3] 1.04(0.07)
[n = 50,k = 3] 1.02(0.03)

(GrAffD-LpD) [n = 15,k = 3] 1.21(0.14)
[n = 50,k = 3] 1.31(0.04)

(GrAffD-LpA) [n = 15,k = 3] 1.18(0.11)
[n = 50,k = 3] 1.19(0.12)

Table 3: Approximation factors

Default parameter setting. Unless otherwise stated, k is set
to 25 and n to 1000.

Comparison against ILP: Table 3 presents the approximation
factor of the 4 algorithms on a small dataset generated from Normal
Distribution. For all the 4 algorithms, the approximation factor in
practice is very tight and the deviation is always between 1 and 2.

Varying n : Figure 3 reports the results of varying n for Normal
distribution. Of course, ILP does not scale beyond n = 50, but it is
easy to notice that for all the cases we could compare, our greedy
solutions attain a very tight approximation factor (close to 1.5).
Figure 4 shows the affinity values for Zipf distribution. Similar
observations hold. Our proposed algorithms perform significantly
better. There are two interesting observations in both Figures 3
and 4. Firstly, the grouping generated by our algorithm attains
smaller objective value as the number of workers grow. Secondly,
for Normally distributed data, we observe a consistent growth of
objective value as the number of workers increases. This is not
the case for the Zipfian distributed data. We conjecture that this
is caused by the skew in the values generated from the Zipfian
distribution. Some values are very large and others are vary small.
Another important factor is that the data sampled from a Zipfian
distribution consists of mostly duplicate values.

Varying k : Figures 5 and 6 present the results of varying k
for Normal and Zipf distributions. The ILP for k = 5 is ran on
n = 50. Our presented algorithms consistently outperform the
other baselines.We observe that the change ink affects the objective
value significantly more than change in the number of workers
(n). We believe this is because larger k signifies more centers to
assign workers to. Remember in Algorithm 2, we need to assign
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Figure 4: AFF-* LP-* values varying n for Zipf Distribution
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Figure 5: AFF-* LP-* Values varying k for Normal Distribution

workers to the closest center. This means for larger values of k , we
would diverge from the optimal solution easier. In fact, k impacts
our algorithm more than n.

5.4 Scalability Experiments (Synthetic)

We measure running times and compare with Baseline-1. We ex-
clude ILP since it does not scale, and Baseline-2 since it produces
inferior objective values. Running time is reported in seconds.

Default parameter settings.We found that Normal and Zipf
skill distributions have identical running times for each variant of
Aff-* Lp-* problems. We also note that, as proved in Section 4.3, the
running time of AffD is identical to that of AffC, considering their
respective Lp-* counterparts. Therefore, we only present results
for Aff-* LpD and Aff-* LpA. We vary n and k with defaults set to
n = 100000 and k = 5.

Results. Figure 7 presents results. Our algorithms are highly
scalable and take seconds only. The algorithms run linearly with
varying n and k which confirms our theoretical analysis.

6 RELATEDWORK

Our work studies computational aspects and relates to team forma-
tion and computer-supported learning.

Team formation was first studied to form a single group with
one objective and later a 2-approximation algorithm was proposed
for bi-criteria team formation in social networks [14]. In [4, 5], Anag-
nostopoulos et al. propose online algorithms for the balanced social
task assignment problem. Capacitated assignment was studied in
a follow up work [16]. Generalized density sub-graph algorithms

were later proposed [20]. [6, 18] study the problem of forming
teams for task assignment considering affinity. In [7], the hardness
of forming groups to optimize group satisfaction is studied under
different group satisfaction semantics.

Unlike ours, none of these works study the problem of peer learning,

hence their proposed modeling and algorithmic solutions do not apply.

Computer-Supported Collaborative Learning (CSCL). So-
cial science has a long history of studying non-computational as-
pects of computer-supported collaborative learning [9, 10]. With
the development of online educational platforms (such as, Massive
Open Online Courses or MOOCs), several parameters were identi-
fied for building effective teams: (1) individual and group learning
and social goals, (2) interaction processes and feedbacks [21], (3)
roles that determine the nature and group idiosyncrasy [10].

To the best of our knowledge, the closest to our work are [1–3],
where quantitative models are proposed to promote group-based
learning, albeit without affinity.

Our work is grounded in social science and takes a computational

approach to the design of scalable solutions with guarantees.

7 CONCLUSION

We examine online group formation where members seek to in-
crease their learning potential via task completion with two learning
models and affinity structures. We formalize the problem of forming
a set of k groups with the purpose of optimizing peer learning under
different affinity structures and propose constrained optimization
formulations. We show the hardness of our problems and develop
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Figure 6: AFF-* LP-* values varying k for Zipf Distribution
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Figure 7: Scalability Results

4 scalable algorithms with constant approximation factors. Our ex-
periments with real workers demonstrate that considering affinity
structures drastically improves learning potential, and our synthetic
data experiments corroborate the qualitative and scalablity aspects
of our algorithms.
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8 SUPPLEMENTAL MATERIAL

We present the proofs and important formulation necessary to
reproduce the results in the paper in this section. We also provide
additional information regarding our experimental evaluation.

8.1 Theorems and Proofs

8.1.1 Proof of Theorem 1.

Proof. (sketch) Consider the set ofk least skilledmembers andk
most skilled members. It is easy to see that changing the assignment
of the least skilled members would not change the overall sum of
the skill difference. LpD of the grouping is:

OPTLpD = (w
s .hiдh
1 −ws .low

1 ) + (w
s .hiдh
2 −ws .low

2 )+

. . . + (w
s .hiдh
k −ws .low

k )

Indeed, any possible grouping across the buckets over these 2k
members will not affect the sum, and thus the LpD value. □

8.1.2 Proof of Corollary 1.1.

Proof. The members in the highest and the lowest skilled buck-
ets could be paired in k! groupings. The remaining (n−2k ) members
are to be placed over (n/k − 2) positions in each group, and a total
over k groups. This gives rise to k !×(n−2k )!

(n/k−2)!k
groupings. □

8.1.3 Proof of Theorem 2.

Proof. The proof is very similar to the proof of LpD. Consider a
grouping that we get by running the above algorithm. We sort the
members based on their skill values and we create x buckets. The
first k workers will go into the first bucket and so on. We create
a group by choosing 1 member of each bucket. After k iterations,
we obtain our grouping. Without loss of generality, assume that
the highest skilled member of group i has the skill value of Si
and the other members have s ji where j denotes the bucket that
this member has been chosen from. Consider the grouping G =
{д1 = (S1, s11 , s

2
1 ),д2 = (S2, s12 , s

2
2 ), . . . ,дk = (Sk , s

1
k , s

2
k )}. We can

show that swapping two members from the same bucket will not
change the LpA optimal value. Without loss of generality, consider
a new grouping G ′ where the position of s ji and s

j
i′ is swapped.

Now consider the LpA value for G and G ′. We can show that the
difference between these two scores is 0. This holds when we pick
the lowest skilled member.

LP (G) =
k∑
i=1

x−1∑
j=1

(Si − s
j
i ) (7)

In the Equation 7, the only difference betweenG andG ′ is in group
i and i ′. More accurately, we need to show that (Si − s

j
i ) + (Si′ − s

j
i′ )

in the grouping G is equal to (Si − s
j
i′ ) + (Si′ − s

j
i ). It’s easy to see

that these two are identical hence the proof.
□

8.1.4 Proof of Theorem 3.

Proof. (sketch) It is easy to see that the problem is in NP. To
prove the NP-hardness, the reduction is straightforward (there is a
one-to-one correspondence) if we consider the uniform p-centered
min-max partition problem as the source problem, which is proved

to be NP-hard [15] for general graphs.We omit the rest of the details
for brevity. □

8.1.5 Proof of Theorem 4.

Proof. For simplicity, we consider a simpler scenario, where
affinity (distance) is binary - 0/1.

For this binary scenario, the decision version of the Affinity-All
problem is as follows: given a set of n members, is there a grouping
of k equal sized groups, such that the sum of diameters of the
grouping is k?

It is easy to see that the problem is in NP. To prove NP-hardness,
we use the well-known exact cover by 3-Sets (X3C) for reduction.
The decision version of X3C is as follows: given a finite set X with
|X | = 3q elements and a collection C of 3-element subsets of X ,
doesC contain an exact cover forX , that is, a sub-collectionC ′ ⊆ C ,
where C ′ contains exactly q subsets, such that every element of X
occurs in exactly one member of C ′?

Given an instance of X3C, we reduce it to an instance of AffD in
the following way: Each element in X is a member. Therefore, the
total number of members n = 3q. The affinity graph is a weighted
complete graph among the n members and it involves adding edge
weights between every pair of members. Each subset of 3 elements
in C represents 3 members in this graph, and the edge weights
between them gets the value 1. This is a polynomial time operation
and the number of operations involved in this is the size ofC . After
that, we need to resolve all the edge weights that are across the
subsets. For that, we start considering all the triangles with some
unresolved edge weights.

There are three possible scenarios to handle in this process: (1)
all 3 edges unresolved, (2) 2 edges unresolved, (3) 1 edge unresolved.
For the first case, we can safely add the weight of 0 to each of such
edge (this happens when the subsets are fully disjoint). For the
second scenario (this happens when 2 nodes in the triangle are
part of the same subset but the third node is part of a different
subset), one of the unresolved edges gets 1 and the other gets 0.
Finally, for the third scenario (this happens when one member in
the triangle is part of both subsets), the unresolved edge gets a 0.
We note that this step is again fully polynomial and takes at most
O
(n
3
)
time. After completing this step, we will have assigned all

the edge weights in the affinity graph. It could be shown that the
affinity graph constructed this way satisfies triangle inequality.

After that, we set k = q. Now, the reduction is complete. Notice
that X3C ≤P AffD. There exists a solution to the X3C problem if
and only if a solution to our instance of AffD problem exists with
the total diameter value q (or k). This completes the proof. □

8.1.6 Proof of Theorem 6.

Proof. (sketch) Without loss of generality, let us assume a worst
case scenario of 3 groups as shown in Figure 8, where members
p1,p2,p3 dictate the AffC score of these three groups that are
centered around c2,c3,c1, respectively. Because of the greedy assign-
ment, p1 is assigned to the center c2, p2 is assigned to c3, but at
the end because of the size constraints p3 gets a really bad assign-
ment of c1. Distance between p1 and c2, i.e., d (p1, c2) = α1, simi-
larly d (p2, c3) = α2, and d (p3, c1) = α3. The optimal assignment
would have given rise to a different assignment though (as shown
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Figure 8: Upper bound of approximation factor

in the dotted line), where p1 ∈ c1,p2 ∈ c2,p3 ∈ c3. d (p1, c1) =
β1,d (p2, c2) = β2, and d (p3, c3) = β3. Let OPT denote the op-
timum AffC value, such that OPT = β1 + β2 + β3. Of course,
α1 + α2 + α3 ≥ β1 + β2 + β3. But it is easy to notice that

α3 ≤ (α1 + β1 + α2 + β2 + β3) (8)
α3 ≤ (2β1 + 2β2 + β3) (9)

Because of the triangle inequality, this is indeed true, α1 + β1 ≤
2β1 (because α1 ≤ β1 what the greedy algorithm GrAffC-LpD will
ensure. Therefore, we can write that,

α1 + α2 + α3 ≤ (3β1 + 3β2 + β3) (10)
≤ 3(β1 + β2 + β3) (11)

≤ 3 ×OPT (12)

It is easy to notice that this argument easily extends to an arbi-
trary number of groups. Hence the proof. □

8.1.7 Proof of Theorem 8.

Proof. (sketch:) Consider a solution to AffC. Consider that for
a group дi , the distance from the center ci to the farthest member
is αi . Assume thatwi is the member with this distance equal to αi .
Based on the triangle inequality, we can easily show that in the
worst case, there is another member w j ∈ дi where d (wi ,w j ) <
d (wi , ci ) + d (w j , ci ) < 2 × αi . Hence, any algorithm that solves
AffC also solves AffD with a 2 approximation factor. □

8.2 Additional Experimental Details

8.2.1 Real Data Experiment Design and Setup. In order to replicate
our real data experiments in Section 5.1, we present additional
information here.

Experimental design. One of our fact-checking tasks is about
the British royal family. These experiments are run in three different
stages. We first run a pre-task skill test to assess the skills of each
worker using 8 true/false questions for which we know the true
answer. We set questionnaires for that purpose. Next stage, we
set up a collaborative document that contains 5 facts about the
royal family and where workers in the same group can collaborate,
comment, and edit. Workers are asked to discuss if these facts are
true, and provide further evidence that support their answer. Finally,
each worker takes a post-task completion skill test that is again 8
true/false questions on the royal family. We also explicitly ask each
worker what they have learned by completing that task. We design
similar studies for fact-learning, where workers have to actually
propose facts with supporting evidence. To keep this experiment
tractable, we form groups of size 3 and run 3 different samples of
the same experiment. This also allows us to analyze results with
statistical significance. We pay each worker $2, if all three stages
are completed. Each experiment must run over a window of 24
hours to account for differences in time.

Affinity calculation. For simplicity, we capture affinity as the
Euclidean distance between their socio-demographic data (specif-
ically, age, country, education) obtained from AMT. There exists
other sophisticated measures such as MBTI tests for project-based
learning [17]. We nevertheless note that the simple measures that
we have used have been shown to be useful affinity indicators [18].

8.2.2 ILP Formulation of Optimal Algorithm in Section 5.2.1. We
formalize the ILP solution using the below formulation. It’s easy to
implement this formulation in any Linear Programming software.
For this experiments we use PuLP, a popular python based ILP
package.

optimize
G

k∑
i=1

Aff-*(дi )

s.t.
k∑
i=1

LP (дi ) ≥ Lp-*

Aff-*(дi ) =
n∑
j=1

n∑
m=1

xi, j ∗ xi,m ∗ Aff(w j ,wm ),∀i = 1 . . .k

n∑
j=1

xi, j = n/k,∀i = 1 . . .k

xi, j = 0/1 (i = 1...k & j = 1 . . .n)
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