
HAL Id: hal-02347083
https://hal.science/hal-02347083v1

Submitted on 5 Nov 2019 (v1), last revised 22 Sep 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cognitive impact of Social Robots: How
anthropomorphism boosts performance

Nicolas Spatola, Sophie Monceau, Ludovic Ferrand

To cite this version:
Nicolas Spatola, Sophie Monceau, Ludovic Ferrand. Cognitive impact of Social Robots:
How anthropomorphism boosts performance. IEEE Robotics and Automation Magazine, 2019,
�10.1109/MRA.2019.2928823�. �hal-02347083v1�

https://hal.science/hal-02347083v1
https://hal.archives-ouvertes.fr


IEE
E P

ro
ofAuthor Notes

✔✔ The type has been replaced in your figures; please proof the figures carefully for any errors.

✔✔ The last page contains callouts that might be used in the article, depending on design and spacing 

considerations. Are these callouts appropriate? If not, please provide several alternatives.

✔✔ When the magazine is printed, you will receive courtesy copies of the issue to distribute to your coauthors. 

Please reply with your complete mailing address, including phone number.



IEE
E P

ro
of

2 •  IEEE ROBOTICS & AUTOMATION MAGAZINE  •  MONTH 2019 1070-9932/19©2019IEEE

E
vidence shows that a robotic agent in the presence 
of a human can affect selective attention mechanisms 
in that human in the same way the presence of a 
fellow human can. <AU: Please check whether the 
preceding edited sentence conveys the intended 

meaning.> However, it’s uncertain whether this process stems 
from anthropomorphism attribution. We investigated this 
issue using a selective attention task in a social-presence 
paradigm. One group of participants performed the so-called 
Eriksen Flanker task (EFT) in the presence of a robot after a 
verbal social interaction (i.e., social-robot condition), while 
the other group did the same with a robot that the 
participants only described (i.e., nonsocial-robot condition). 
Results showed that, after social interaction, the robot was 
perceived as having human traits (according to the 
humanization and anthropomorphism scale). Furthermore, 
we found a social-presence effect (i.e., an improvement in 
selective attention performance) only in the presence of the 
social robot but not in the presence of the nonsocial one. 
Finally, this latter effect was mediated by anthropomorphism 

attributions. Our results suggest that the influence of 
the robot’s presence is sociocognitive in nature and that 
anthropomorphism has a role in the robot-presence effect.

Applying Research on Human Presence and 
Attention
<AU: Please check that the edited section heading is appro-
priate.>
Humanoid robots will likely take on increasingly important 
roles the lives of millions of people worldwide [1], [2]. While 
tremendous progress has been made in robotics science, the 
influence that these new humanoid robots may have on human 
cognition itself remains poorly understood. Evidence indicates 
[3]–[6] that the presence of a humanoid robot can lead to 
effects similar to those caused by human presence in terms of 
feelings [7] and task performance [3], [4]. However, this pio-
neering research has overlooked both the interaction between 
attentional processes and the anthropomorphic inferences that 
may be involved in the influence of a robotic presence. Here, we 
take advantage of research on human presence and attention 
and argue that the presence of humanoid robots may, even 
when the robots are passive, affect attentional processes, at least 
when the robot present is anthropomorphized to some extent.
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Social Presence and Social-Robot Presence Effects
<AU: Please check that the edited section heading is  
appropriate.>
A century of research in experimental social psychology has 
shown a tendency for humans to perform differently on a 
myriad of motor and cognitive tasks when in the presence of 
conspecifics—other members of the same species—than 
they do when they are alone. Zajonc [8] was the first to 
notice that the presence of observers or coactors typically 
enhances performance on easy or well-learned tasks and 
impairs performance on difficult or poorly learned tasks. 
Taking this idea further, Baron’s distraction/conflict theory 
suggested an integrative attentional view of this so-called 
social facilitation/inhibition (SFI) effect [9]. The key idea 
was that social presence, when it distracts or diverts atten-
tion from the focal task, can create attentional conflict, spe-
cifically a form of response conflict concerning the 
appropriate attentional response (to pay attention to the 
focal task or to the person present). This conflict, in turn, 
may result in cognitive overload and, ultimately, restrict the 
attentional focus.

Attentional focusing may produce different effects. It may, 
on the one hand, activate dominant responses and improve 
performance. Because fewer cognitive resources are available, 
peripheral stimuli are screened out when the task is simple or 
requires attention to fewer central cues. However, attentional 
focusing might, on the other hand, impair performance by 
causing the neglect of certain crucial stimuli when the task is 
more complex or demands attention to a wide range of cues. 
<AU: Please check whether the preceding edited paragraph 
conveys the intended meaning.>

According to the Ethopoeia concept [10], automatic social 
reactions are triggered by situations that include social cues, 
which need not all originate from other humans [11], [12]. 
This concept also seems to apply to human–robot interac-
tions (HRIs) [3], [5], [7], [10], [13]. For example, it has been 
shown that the modalities of interaction might directly affect 
how humans consider artificial social agents in response to 
the same robot [3], [5], [6].

For instance, a recent study [5] showed that a robot acting 
positively with participants (e.g., with empathy and consider-
ation) during a question/answer paradigm produced less SFI 
than a robot acting negatively (e.g., with contempt and a lack 
of empathy). In the presence of a “bad” robot, participants 
tended to improve their selective attention performances (i.e., 
the ability to select the pertinent information in a task or a 
context and to ignore the nonrelevant information) on the 
Stroop task (in which individuals must identify the color in 
which a word is printed, while ignoring the word itself). No 
such improvement was observed in the presence of the 
“good” robot. As has also been found in human–human stud-
ies [14], [15], the presence of a robot seems, under certain cir-
cumstances, to improve the selectivity of attention to relevant 
information at the expense of competing cues in easy tasks 
[14]. Indeed, in Spatola et al.’s experiment, the presence of a 
bad social robot had the same impact on selective attention 

performance as the presence of a human [14]. The authors 
suggested that this could have been due either to the unex-
pected activation of behavior from the attribution of anthro-
pomorphic traits (i.e., the attribution of human characteristics 
to a nonhuman) [16] or to the perceived evaluative threat 
associated with the presence of an unpleasant robot [17]. 
However, while Spatola et al.’s study was informative, robots 
designed to live with us are not intended to appear threaten-
ing. Nevertheless, their impact on attentional mechanisms 
and behavior in general may actually depend to a great extent 
on what people come to believe (anthropomorphic infer-
ences) about them. Subsequent research has shown that SFI 
effects may occur following a previous social interaction with 
a robot. This is due to the emergence of anthropomorphiza-
tion processes triggered by the situation [6]. These findings 
run counter to a purely mechanistic approach, which reduces 
the effects of a robot’s presence to the physical, visual, or 
acoustic distraction by an object, sometimes affecting human 
performance [9], and to the role of anthropomorphism. <AU: 
Please check whether the preceding edited paragraph con-
veys the intended meaning.>

However, because of the design used, Spatola et al.’s [5], [6] 
research could not specify the exact role of anthropomorphic 
inferences in the robot SFI on cognitive performance, and the 
nature of the anthropomorphic mediator of SFI effects 
remains unclear. Indeed, anthropomorphism is a complex 
concept that brings together various psychological processes, 
such as social categorization or the modulation of the concep-
tual distance between humans and robots. Finally, this 
research indicates that the presence of a social robot can boost 
attentional focusing even when this process requires the 
deployment of inhibitory control. However, this conclusion is 
limited solely to the task used in the study in question, namely 
the Stroop task.

Regarding the incentive to introduce robots in various 
environments, such as schools [18], it seems of prime impor-
tance to gain a thorough understanding of the impact of robot 
presence on human cognitive processes. One of the basic pro-
cesses for learning is the selective attention process that helps 
filter out incidental, irrelevant information and focus on the 
information and stimuli that demand attention. Here, we 
intended to compare the SFI-mediating role of two major 
psychosocial mechanisms involved in interpersonal percep-
tion and behavior in a new attentional control task, the EFT, 
which measures selective attention performances. <AU: 
Please check that change from “Flanker task” to “EFT” is 
acceptable here and subsequently.> We therefore focused our 
research on the following questions:
1)	�Will robot SFI be found in another gold-standard task of 

response inhibition measuring selective attention? 
2)	�Are SFI effects involving robots due to the use of universal 

social perceptual dimensions that drive social categoriza-
tion (i.e., warmth and competence) by the observer [19]? 

3)	�Are SFI effects involving robots also based on the attri-
bution of concepts uniquely inherent to humans [20] 
and thus responsive to a modulation of the conceptual 
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distance between the robot and the representation of 
what humans are? 

4)	Are these processes mutually exclusive?

The EFT
To generalize the robot SFI, we used the EFT [21], [22]. The 
EFT requires participants to judge the direction of the central 
cue in multicomponent stimuli. The task comprised congru-
ent stimuli (e.g., )S&  and incongruent stimuli (e.g., )2% %  
used to assess the ability to suppress information irrelevant for 
the task to be performed. Response times (RTs) are usually 
longer on incongruent than on congruent trials because of the 
incompatibility between the peripheral items and the central 
cue (i.e., the target). On incongruent trials, the interference 
caused by contradictory and/or irrelevant information requires 
a supplementary inhibition process, which is not present on 
congruent trials. Thus, the EFT specifically makes it possible 
to measure selective attention performance. As in the Stroop 
task, the response inhibition processes involved in the EFT 
are sensitive to the social nature of the context and the pres-
ence of other fellow creatures [22], [23].

The Perception of Social Robots
The computers-are-social-actors theory [24] posits that peo-
ple may understand and relate to machines in a way similar to 
the way they understand and relate to their fellow creatures. 
Humans do indeed tend to apply the same social scripts (spec-
ifying actions to be produced in various social situations [25], 
such as HRIs or human–human interactions [10]). This ten-
dency may be strengthened by the physical presence of the 
artificial agent and its humanoid shape, as this shape provides 
more social cues to the observer [26]–[29].

Interestingly, this process may result in two nonexclusive 
sociocognitive phenomena: 1) the use of universal dimen-
sions of social perception to apply social categorizations to 
artificial agents [30], [31] and 2) the change in the intrinsic 
representation of robots as a modulation of the conceptual 
human–robot distance [6], [20]. Both processes are related 
not only to how people perceive and consider others but also 
to how they behave in the presence of others [32]–[34].

Universal Dimensions of Social Perception to 
Characterize Artificial Agents
<AU: Please check that the edited section heading is  
appropriate.>
According to Fiske, Cuddy, and Glick [19], [35], most inter-
personal impressions are distributed along two main dimen-
sions: warmth (e.g., sincerity, trustworthiness, morality) and 
competence (e.g., ambition, confidence). The warmth dimen-
sion predicts active behaviors, such as helping (high warmth) 
or attacking (low warmth). The competence dimension pre-
dicts passive behaviors, such as association (high compe-
tence) or neglect (low competence). The model is based on 
the notion that people, when interacting with an individual, 
will assess that individual’s intent to either help or harm (i.e., 
warmth dimension) and the individual’s competence/capacity 

to act accordingly (i.e., competence dimension). <AU: Please 
check whether the preceding edited sentence conveys the 
intended meaning.> The results of this evaluation will trigger 
a social categorization process, whereby people are classified 
into groups based on similar characteristics. For example, 
members of social groups stereotyped as warm and compe-
tent are perceived much more positively than members of 
social groups stereotyped as cold and incompetent. Previous 
research indicates that social categorization processes under-
lying the perception of persons can be generalized to robots 
[31], [36]. Inspired by Fiske et al.’s model, Carpinella et al. 
have proposed a questionnaire to assess these dimensions of 
social evaluation with regard to robots [30]. We used this tool 
to evaluate the scope of the mediating role of the warmth and 
competence dimensions in robot SFI.

The Change in the Intrinsic Representation of Robots
The theory of dehumanization describes a disposition 
toward others in which the observer deprives the other of 
social or fundamental human characteristics. The dehuman-
ization process, theorized by Haslam [20], refers to perceiv-
ing or treating people as less than human. <AU: Please check 
whether the preceding edited sentence conveys the intend-
ed meaning.> This process consists of two bidimensional 
negative/positive constructs illustrating the human essence: 
1) animalistic dehumanization opposed to human unique-
ness (e.g., amorality/moral sensibility), which distinguishes 
humans from other animals on typical socially learned char-
acteristics, and 2) mechanistic dehumanization opposed to 
human nature (e.g., rigidity/cognitive openness), which rep-
resents fundamental characteristics of human beings and the 
gap between machines and humans. Interestingly, these 
dimensions echo the warmth/competence concepts. Howev-
er, the dehumanization process is based on a modulation of 
the distance between the representation of what defines the 
concept of human and the representation of the other [34], 
[37], [38], rather than on a stereotyping process [39]. Harris 
and colleagues suggested that dehumanization occurs due to 
the decrease of neural activity toward the target [40]. Inter-
estingly, this difference in neural activity is also observed in 
the comparison between human–human interactions and 
HRIs [41], [42]. This idea is supported by functional mag-
netic resonance imaging results showing that HRI is under-
pinned by human–human neurosocial mechanisms 
[42]–[44].

Regarding HRI, this process seems to be both bottom-up 
and top-down. First, perception (i.e., a bottom-up process) 
activates a motor resonance process. By providing a motor 
representation of the observed action through which the 
observer’s motor system enters a state of direct resonance with 
that of the agent [45]–[47], motor resonance makes it possible 
to directly and immediately understand an action performed 
by others. In the same way that we cannot refrain from recog-
nizing a face or a word when we perceive it, we cannot help 
but represent in motor terms the actions we perceive. During 
interactions with humans, the information that leads to this 
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activity is integrated automatically [48], [49] and is resistant 
to modulation by context [50], [51]. This system could be 
used to anticipate other people’s actions [52]. In the case of 
robots, this automatic need to anticipate is still present [53]. 

However, the resonance would naturally be weaker and 
more context-dependent [54]. The reason could lie in the fact 
that it is more difficult to match the representation of a specific 
human action with the robot’s actual action than it is to match 
it with another human’s actual action [55]. If the context 
requires the system to interpret the movements of the robot in 
terms of human characteristics, then the system could act 
more forcefully to transform a weak bottom-up signal into a 
valid representation at the level of motor resonance by using 
top-down inferences concerning robots (i.e., social scripts, 
anthropomorphic inferences) [53], [56]. Due to these bottom-
up/top-down processes, robots could trigger the same effect as 
humans do [3], [5] simply by being present and could, for 
example, activate “humanization” processes (i.e., attributing to 
them intentions, emotions, or mental states comparable to 
those of humans) [44], [57]–[59]. In other words, the process 
might represent the opposite of dehumanization. Further-
more, because in HRI this process is sensitive to contextual 
pressures, a particular robot will not be considered to be the 
same in different contexts (e.g., social versus nonsocial con-
text) and will produce different sociocognitive effects [6].

The Present Study

Objective
In this study, our aim was to evaluate the mediating role of the 
universal social perceptual dimensions of warmth and compe-
tence on SFI as well as the role of the intrinsic representation of 
robots activated within a social HRI compared to a nonsocial 
HRI. To do so, we used a verbal social-interaction paradigm 
with a simple humanoid robot without any facial expression to 
control for emotional priming effects. Verbal social HRI is 
thought to increase the likelihood of human characteristics 
being attributed to the robot because of the activation of auto-
matic social scripts that we use in human–human interactions 
[10]. This design should therefore maximize anthropomor-
phic inferences in only one of two robotic conditions [6]. After 
the HRI induction, the participants performed a selective 
attention task in the passive presence of the robot.

Hypotheses
First, we hypothesized that, after a social HRI, robots should 
trigger the same SFI on selective attention as humans do; that 
is to say that robots should prompt an improvement in 
response inhibition performances [3], [5], [14], [15]. Because 
the inhibition process is similar in both the Stroop task and 
the EFT, we hypothesized that, in the presence of the social 
robot, participants should produce better performances than 
in the presence of the nonsocial robot. The presence of the 
social robot should result in the attentional focus being nar-
rowed to the central cue at the expense of the peripheral cues, 
thereby reducing the response conflict [6], [9].

Second, we expected to observe an increased level of attri-
bution on the universal dimensions of both warmth and 
competence. We also expected an increase in the intrinsic rep-
resentation of robots on essential human dimensions. More spe-
cifically, we expected the robot in the social-robot condition to 
be attributed a higher level of warmth due to the social nature of 
the experience, as well as to be attributed more competence due 
to the more complex HRI in the social condition compared to 
the simple description required in the nonsocial condition. 
Regarding the intrinsic representation of robots, we expected the 
participants to perceive the robots as sharing more human-
nature traits in the social than in the nonsocial condition.

Third, the SFI effect in the social condition should be 
mediated by the inferences made about the robot. Indeed, 
according to previous research showing that social interaction 
promotes the attribution of human traits [6], [60], we hypoth-
esized that the more highly the participants perceived the 
robot on the universal dimensions of warmth and compe-
tence used in social categorization, the more sensitive they 
should be to its passive presence, thus resulting in a higher 
SFI. The same phenomenon should occur as a function of the 
level of perceived shared human traits.

We conducted an exploratory analysis to compare the 
hypothetical mediation factor of SFI. The purpose was to iden-
tify the main determinant of this sociocognitive phenomenon.

Method

Participants
The participants were 80 French students at Université Cler-
mont Auvergne [median age, 19.32 years; standard deviation 
(SD), 2.05; 68 females; 12 males] with normal or corrected-to-
normal vision (27 in the alone condition, 27 in the nonsocial-
robot condition, and 26 in the social-robot condition). 
Sample size was determined—as recommended by Tabach-
nick and Fidell [61]—on the basis of the desired power (0.80), 
alpha level (0.05), number of groups (three in the main analy-
sis), and anticipated effect size based on human-presence 
effects (using between-subjects design) in a Stroop paradigm 
( . ;0 40p

2
h =  [23]). Using G )Power 3.1 [62], the minimum 

required sample size was calculated as 66.

Procedure
The participants performed the EFT twice (Session 1, Ses-
sion 2). First (Session 1), all of the participants performed the 
task alone (the experimenter left the room). The first session 
was used as a control to ensure that the different groups per-
formed equally on the EFT without any experimental induc-
tion. It also made it possible to ensure that all participants had 
comparable knowledge and skill with regard to the task. At 
the end of the first session, the participants were randomly 
assigned to one of the three conditions:
1)	�In the alone condition, they had to describe a picture of 

Central Park. This task was used as a distractor task to 
maintain the reliability of group comparisons at the level of 
intersession activities.
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2)	�In the nonsocial-robot condition, they had to describe the 
design of the robot that the experimenter brought into 
the room.

3)	�In the social-robot condition, they were asked to interact 
verbally with the same robot in (unknown to them) a 
“Wizard of Oz paradigm” [63]. The robot was presented as 
a work in progress. The robot was the same in both the 
social and nonsocial conditions.

The social and nonsocial conditions had been pretested [6]. 
<AU: Please check whether the preceding edited sentence 
conveys the intended meaning.>

The participants were asked whether they agreed to 
describe or to interact with the robot, according to the experi-
mental condition. They were told that the purpose of the 
study was to collect their impressions of the robot to improve 
it. The tasks took the same amount of time.

After a break, all of the participants performed the EFT 
again, either alone (as before) or in the presence of the 
robot. In the two robot-presence conditions, the robot 
was positioned in front of the participants and watched 
them for 60% of the time (for a similar procedure with 
human presence, see [14] and [15]). The interaction always 
followed the same preestablished script [see supplementary 
materials at Open Science Framework (OSF): https://osf.io/
kfvd8/) (Figure 1).

Wizard of Oz
A smartphone with a Bluetooth connection controlled the 
robot, a Meccanoid G15 KS. A Motorola Moto G 4G smart-
phone controlled the movements. <AU: Please check wheth-
er the preceding edited sentence conveys the intended 
meaning.> The operator produced the robot’s speech using a 
modified voice. The voice was designed using the Pixie voice 
module on Voxal from NCH Software. A hidden control 
camera was used to ensure correct control of movements and 
responses in the Wizard of Oz paradigm [5], [63].

EFT
Each session (Sessions 1 and 2) consisted of 220 trials, i.e., 
110 congruent ( )55 ` _R%  and )55 ` _S&  and 110 incon-
gruent (55 ` 2 _% %  and )55 ` 1 _% %  trials. The Flanker 
interference was computed by subtracting the RTs of congru-
ent trials from the RTs of incongruent trials (in milliseconds). 
The higher the score, the less efficient was the selective atten-
tion performance.

Before the experimental trials in the first session, the par-
ticipants responded to 20 samples to enable them to learn the 
response keys ( ## ## ,` 1 _  ## ## ) .` 2 _

Anthropomorphic Inferences
At the end of the experiment, the participants completed the 
Robotic Social Attribute Scale [30]. This scale makes it possible 
to evaluate robots on the dimensions of warmth (e.g., “emo-
tional”), competence (e.g., “interactive”), and discomfort (i.e., “I 
find this robot scary”). This scale has been standardized to 
measure the social perception of robots based on their appear-
ance. For each dimension, the participants had to indicate 
whether they thought the different characteristics fitted the pre-
sented robot (from 1, “does not fit at all,” to 5, “totally fits”).

The participants also completed the humanness scale based 
on Haslam’s dehumanization taxonomy [20], which consists of 
four dimensions: human uniqueness (e.g., moral sensibility), 
animalistic dehumanization (e.g., irrationality), human nature 
(e.g., interpersonal warmth), and mechanistic dehumanization 
(e.g., inertness). Once again, for each dimension, the partici-
pants rated (on a scale from 1 to 5) whether or not they would 
attribute the related characteristics to the robot present with 
them. For a similar use of these questionnaires, see [5].

We presented the scale at the end of the study to avoid any 
priming effect due to questionnaires. However, the anthropo-
morphic inferences in conditions with and without robot 
interaction had been evaluated in a pretest [6].

Results

Preliminary Analyses
The data from three participants were excluded from the analy-
sis because of technical problems (i.e., robot disconnection, 
program crash). In addition, the data from participants with an 
accuracy rate lower than 70% were discarded because we could 
not be sure they performed the task conscientiously (seven par-
ticipants). The results obtained from the remaining participants 
are summarized in Table 1. Errors occurred on 8.83% of the tri-
als and were analyzed independently. Correct trials with RTs 
more than 2.5 SD above or below the mean in each condition 
and for each participant were considered outliers and removed 
from the RT analyses. These amounted to 771 of 26,805 trials 
(2.87% of the trials). This filtering procedure has the advantage 
of excluding extreme values without specifically affecting the 
data of any one condition or any one participant (raw data are 
available on OSF: https://osf.io/kfvd8/). The analyses were con-
ducted using SPSS 24 and the mediation analyses using the 
Process plug-in.

Control
Camera

Robot
Voice

Control
Movement

Control

Operator’s Room

Experimenter’s Room

Participant

1.
5 

m

60
 c

m3 
m

30°

3.65 m

Figure 1. A diagram showing the experimental setting.
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Control Session
To ensure that all of the groups were comparable, we con-
ducted two repeated-measures analyses of variance (ANO-
VAs) on both errors and RTs in Session 1, including the type 
of stimulus (congruent versus incongruent) as the within-
subjects factor and the experimental condition as the 
between-subjects factor. Results showed no significant inter-
action between experimental condition and type of stimulus 
on either errors [ ( , ) . ,F 2 67 1 25=  . ,p 0 293=  . ]0 04p

2
h =  or 

RTs [ ( , ) . ,F 2 67 0 021=  . ,p 0 979=  . ] .0 01p
21h  However, the 

participants were more accurate on congruent trials than 
incongruent trials [ ( , ) . ,F 1 67 41 84=  . ,p 0 0011  . ,0 38p

2
h =  

95% confidence interval (CI) (0.07; 0.14), <AU: For consis-
tency, the square brackets that included the CI values were 
changed to parentheses. Please confirm that this is accept-
able.>] and responses on congruent trials were faster than on 
incongruent trials [ ( , ) . ,F 1 67 71 82=  . ,p 0 0011  . ,0 52p

2
h =  

95% CI (68.99; 111.49)].

Experimental Session
We again conducted a repeated-measures ANOVA on Ses-
sion 2 errors and RTs, including the type of stimulus (congru-
ent versus incongruent) as the within-subjects factor and 
experimental conditions as the between-subjects factor. The 
results showed no interaction effect on errors between the type 
of stimulus and the experimental condition [ ( , ) . ,F 2 67 1 65=  

. ,p 0 201=  . ].0 05p
2
h =  However, the main effect of the type 

of stimulus was significant [ ( , ) . ,F 1 67 54 70=  . ,p 0 0011  
. ,0 45p

2
h =  95% CI (0.07; 0.12)]. The same effect was present 
on RTs [ ( , ) . ,F 1 67 219 05=  . ,p 0 0011  . ,0 77p

2
h =  95% CI 

(60.10; 78.84)]. Interestingly, we found a type of stimulus by 
experimental condition interaction on RTs [ ( , ) . ,F 2 67 3 82=  

. ,p 0 027=  . ,0 10p
2
h =  95% CI (0.07; 0.12)] (Figure 2). To test 

our hypothesis, we conducted a planned comparison analysis. 

This type of analysis reduces the risk of making a type-II 
error. Results showed that there was no significant difference 
between the alone and the nonsocial-robot experimental con-
ditions [ ( ) . ,t 67 0 39=  . ,p 0 697=  . ],0 01p

21h  while the par-
ticipants in the social-robot condition achieved higher selective 
attention performances than the average of those in the other 
two conditions [ ( ) . ,t 67 2 74=  . ,p 0 008=  . ].0 14p

2
h =  This 

confirms our robot SFI effect hypothesis. The main effect of 
group <AU: Please specify what is meant by “of group.”> on 
RTs (without taking account of the type of stimulus) was not 
significant [ ( , ) . ,F 2 67 0 24=  . ,p 0 789=  . ].0 01p

2
h =

Anthropomorphic and Humanization Attributions
If we consider the experimental conditions (social ver-
sus nonsocial), a multivariate ANOVA including the 
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Figure 2. Eriksen Flanker interference (RTs on congruent 
trials minus RTs on incongruent trials) as a function of the 
experimental session (alone, nonsocial robot, social robot): 
the less positive the value, the better is the selective attention 
performance. Error bars represent one standard error. **: <AU: 
Please explain what ** indicates. Note that y-axis has been 
changed to “Flanker interference in Session 2: Congruent RTs 
minus incongruent RTs, in milliseconds”. Please confirm if 
this edit conveys the intended meaning.> 

Table 1. Mean correct RTs (in milliseconds), standard errors (in parentheses), accuracy, and error rates as a 
function of the type of stimulus, Flanker session, and experimental condition. 
<AU: In Table 1, Please check whether edits to table and caption convey the intended meaning. Please 
ensure that rows properly line up in correct categories. Row alignment of original table is unclear.>

Alone Nonsocial Robot Social Robot

Session 1 Session 2 Session 1 Session 2 Session 1 Session 2

Congruent RT 246.61 (13.21) 220.36 (12.14) 275.72 (13.21) 229.22 (14.96) 247.72 (13.80) 231.72 (12.69)

Accuracy 0.95 (0.01) 0.97 (0.01) 0.96 (0.01) 0.98 (0.01) 0.95 (0.01) 0.95 (0.01)

Incongruent RT 351.86 (22.57) 296.83 (14.96) 368.05 (22.57) 310.11 (14.96) 338.85 (23.57) 287.76 (15.62)

Accuracy 0.87 (0.03) 0.91 (0.02) 0.87 (0.01) 0.88 (0.02) 0.81 (0.03) 0.83 (0.02)

RT 87.25 (18.17) 76.47 (8.01) 92.34 (18.17) 80.98 (8.01) 91.12 (18.98) 51.04 (8.37)

Interference Results .p 0 0011 .p 0 0011 .p 0 0011 .p 0 0011 .p 0 0011 .p 0 0011

.0 26p
2h = .0 58p

2h = .0 28p
2h = .0 60p

2h = .0 26p
2h = .0 36p

2h =

Error rates 0.08 (0.03) 0.06 (0.02) 0.10 (0.03) 0.10 (0.02) 0.14 (0.03) 0.12 (0.02)

Results .p 0 007= .p 0 004= .p 0 001= .p 0 0011 .p 0 0011 .p 0 0011

.0 11p
2h = .0 12p

2h = .0 16p
2h = .0 23p

2h = .0 26p
2h = .0 30p

2h =
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anthropomorphism (i.e., warmth, . ;0 82a =  competence, 
. ;0 88a =  discomfort, . )0 77a =  and humanization (i.e., 

human uniqueness, . ;0 88a =  animal dehumanization, 
. ;0 60a =  human nature, . ;0 77a =  mechanistic dehuman-

ization, . )0 67a =  attribution scores showed that the partici-
pants in the social-robot condition perceived the robot as 
having more uniquely human traits [e.g., maturity, logic; 

( , ) . ,F 1 44 4 33=  . ,p 0 043=  . ,0 09p
2
h =  95% CI (0.04; 2.29)], 

traits relating to human nature [e.g., cognitive openness; 
( , ) . ,F 1 44 6 70=  . ,p 0 013=  . ,0 13p

2
h =  95% CI (0.28; 2.24)], 

and warmth traits [e.g., happiness; ( , ) . ,F 1 44 4 33=  
. ,p 0 012=  . ,0 13p

2
h =  95% CI (0.27; 2.12)] than those in the 

nonsocial-robot condition. This finding validates our second 
hypothesis about the impact of social interaction on robot 
perception.

Human Uniqueness
We conducted a first mediation analysis including experi-
mental conditions, human-uniqueness attribution (mediator), 
and selective attention performance in the second session in a 
model [ . ,R 0 392 =  ( , ) . ,F 2 43 13 46=  . .]p 0 0011  The results 
showed that the participants attributed more human-unique-
ness traits to the robots in the social than in the nonsocial 
condition [( )a1  ( ) . ,t 44 2 08=  . ,p 0 043=  95% CI (0.036; 
2.29)]. When the effect of human-uniqueness attribution on 
selective attention performance was controlled for [( )b1  

( ) . ,t 44 4 39=-  . ,p 0 0011  95% CI ( . ;18 64-  . )],6 91-  the 
direct effect of experimental conditions on selective attention 
performance [(c) ( ) . ,t 44 2 33=-  . ,p 0 025=  95% CI 
( . ;55 72-  . )]3 98-  became nonsignificant [(c’) ( ) . ,t 44 1 33=-  

. ,p 0 192=  95% CI ( . ;37 80-  7.80)]. This suggests that media-
tion took place. In sum, in the social-robot condition, partici-
pants attributed more human-uniqueness traits to the robot 
than they did in the nonsocial-robot condition. After the 
social interaction, the more uniquely human characteristics 
they perceived the robot possessing, the greater was the per-
formance improvement generated by the presence of the 
robot [ . ,b 0 33=-  95% CI ( . ;0 64-  . )]0 01-  (Figure 3).

Human Nature
The second mediation analysis differs only in that human-
nature attribution replaces human-uniqueness attribution as a 
mediator in the model [ . ,R 0 302 =  ( , ) . ,F 2 43 9 33=  

. ] .p 0 0011  In confirmation of our hypothesis, the analysis 
showed that the participants attributed more human-nature 
traits to the robot in the social HRI condition [( )a1  

( ) . ,t 44 2 59=  . ,p 0 013=  95% CI (0.28; 2.24)]. When the 
effect of human-nature attribution on selective attention per-
formance [( )b1  ( ) . ,t 44 12 29=-  . ,p 0 0011  95% CI ( . ;19 47-  

. )]5 11-  was controlled for, the direct effect of experimental 
condition on selective attention performance [(c) 

( ) . ,t 44 2 33=-  . ,p 0 025=  95% CI ( . ;55 72-  . )]3 98-  became 
nonsignificant [(c’) ( ) . ,t 44 1 17=-  . ,p 0 250=  95% CI 
( . ;39 24-  10.50)], thus suggesting that mediation occurred. 
Once again, the participants in the social-robot condition 
attributed more human-uniqueness traits to the robot than 
those in the nonsocial-robot condition. After the social inter-
action, the more human-nature traits (e.g., cognitive openness) 
they perceived the robot possessing, the greater was the per-
formance improvement brought about by the presence of the 
robot [ . ,b 0 34=-  95% CI ( . ;0 69-  . )]0 08-  (Figure 4).

Warmth
The final analysis introduced the warmth dimension as a 
mediator in the model [ . ,R 0 192 =  ( , ) . ,F 2 43 5 11=  

. ] .p 0 011  As shown by the ANOVA, the participants attrib-
uted more warmth traits to the robot after the social HRI than 
after the nonsocial HRI [( )a1  ( ) . ,t 44 2 61=  . ,p 0 012=  95% 
CI (0.27; 2.12)]. When the effect of warmth attribution on 
selective attention performance [( )b1  ( ) . ,t 44 2 10=-  

. ,p 0 0411  95% CI ( . ;16 78-  . )]0 33-  was controlled for, the 
direct effect of the experimental conditions on selective atten-
tion performance [(c) ( ) . ,t 44 2 33=-  . ,p 0 025=  95% CI 
( . ;55 72-  . )]3 98-  became nonsignificant [(c’) ( ) . ,t 44 1 48=-  

. ,p 0 147=  95% CI ( . ;46 43-  7.17)], thus suggesting that 
mediation occurred. In sum, the participants in the social-
robot condition attributed more human-uniqueness traits to 
the robot than those in the nonsocial-robot condition. After 
the social interaction, the more uniquely human characteris-
tics they perceived the robot possessing, the greater was the 
performance improvement generated by the presence of the 
robot [ . ,b 0 22=-  95% CI ( . ;0 50-  . )]0 01-  (Figure 5).

Human
Nature

Attribution

Selective
Attention

Performance

Experimental
Condition

b1 = –12.29∗∗∗

c ′ = –14.37
(c = –29.85)∗

a1 = 1.26∗

Figure 4. A diagram showing mediation of the robot-presence 
effect on standard selective attention performance by human-
nature inferences. *: . ***: . <AU: Please explain what * and *** 
indicate in Figure 4.>

Human
Uniqueness
Attribution

Selective
Attention

Performance

Experimental
Condition

b1 = –12.78∗∗∗

c ′ = –15.10
(c = –29.85)∗

a1 = 1.16∗

Figure 3. A diagram showing the mediation of the robot-presence 
effect on standard selective attention performance by human-
uniqueness inferences. *: . ***: . <AU: Please explain what * and 
*** indicate in Figure 3.>
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The Best Predictor of Performance Improvement
We conducted a regression analysis on selective attention per-
formance in the second session, including the scores on the 
three anthropomorphism dimensions and the four human-
ization dimensions. This analysis makes it possible to evaluate 
the unitary effect of each variable to extract the best predictor, 
while controlling for collinearity. When all of the other 
dimensions were controlled for, the results showed that only 
the attribution of human-uniqueness traits had a significant 
predictive effect on selective attention performance 
[ . ,b 0 63=-  ( ) . ,t 45 2 80=-  . ,p 0 008=  . ,0 17p

2
h =  95% CI 

( . ;25 29-  . )] .4 07-  The more uniquely human traits the par-
ticipants considered the robot to possess, the better they per-
formed in the second session. We also found a statistical trend 
toward a significant effect of discomfort attribution: the more 
the participants described the robot as having discomfort 
traits (e.g., awkward), the lower the interference due to incon-
gruence in the EFT during the second session [ . ,b 0 25=-  

( ) . ,t 45 1 75=-  . ,p 0 089=  . ,0 07p
2
h =  95% CI ( . ;23 75-  

1.75)]. These results were confirmed by the mediation com-
parison analysis, including all dimensions as independent 
mediators in a global mediation model [ . ,R 0 472 =  

( , ) . ,F 2 43 4 17=  . ].p 0 011  Again, only mediation by human 
uniqueness was significant [ ,b 37=-  95% CI ( . ;0 50-  

. )],0 01-  thereby validating the third hypothesis concerning 
the modulation of the robot–human conceptual distance as a 
mediator of SFI effects.

Discussion
In the future, robots are likely to be more common in the 
everyday human environment. It seems crucial to understand 
today how their presence may affect human cognitive pro-
cesses. The aim of this study was to evaluate how the passive 
presence of a robot affects human cognitive performance. 
<AU: Please check whether the preceding edited sentence 
conveys the intended meaning.>

First, we demonstrated that social interaction changed 
how participants considered the robot in terms of human-
uniqueness (e.g., cognitive openness), human-nature, and 
warmth traits compared to a simple description. This result 
confirmed that the nature of the HRI influences how humans 
represent the nearby robot [64]. It is important to note that 
social interaction only boosted positive attributions (i.e., more 
human-uniqueness, human-nature, and warmth traits), while 
negative attributions (i.e., animal-dehumanization, mechanis-
tic-dehumanization, and discomfort traits) remained stable.

These results could point to two phenomena. First, negative 
attribution does not change because, unlike humans, robots 
seem to be considered objects. In contrast to a human being, 
who can be dehumanized, a robot cannot be deanthropomor-
phized. One can only assign new human constructs [65]–[67] 
or social traits [30] to the robot, as if this social agent were a 
“blank page.” However, it seems likely that this process applies 
only to new HRI. In the same way as for humans, it is be possi-
ble that, once a robot has been anthropomorphized, subsequent 
HRI might modulate these inferences. However, the question of 

whether long-term HRI might increase, stabilize, or reduce this 
type of anthropomorphism process remains unclear [68].

Second, these anthropomorphic inferences occur only in 
specific contexts that require such inferences to be made. 
The scientific literature shows that there are automatic neuroso-
ciocognitive perceptual processes, such as face recognition 
(automatically activated during simple perception, even with 
nonhumans) [69], [70]. In the case of HRI, it seems likely that 
the perception of and interaction with robots are based on such 
processes. However, this “hijacking” of human–human interac-
tions, together with the automatic neurosocial processes they 
involve and that result from the social evolution of our species, 
is not enough to cause the attribution of social constructs [44]. 
In other words, the strength of bottom-up inputs is not enough 
in itself. To create anthropomorphic inferences, it is necessary 
for the context to reinforce these bottom-up inputs through 
top-down processes activated by the context (e.g., the type of 
HRI, the robot’s behavior). For example, in both experimental 
conditions in this study, the robot was perceived in the same 
way before the interaction. The robot was not seen as more 
“mechanical” in one condition than in the other as a function of 
the stability of the negative attributions. In other words, the 
robot started with a certain quantity of mechanical (e.g., super-
ficial) and animal (e.g., amoral) traits, and this quantity 
remained stable, even after the experimental induction. How-
ever, we suggest that the activation of social scripts during the 
social interaction would have led to the attribution of a more 
anthropomorphic perception of the robot [7], [13], [71]. The 
reason could be that when we interact with creatures (even 
nonhumans), processes (e.g., mentalization) occur that allow us 
to attribute intentionality and mental activity to the other to 
understand and predict that other’s behavior [44], [72].

We found the same effect for the “warmth” dimension of the 
“warmth and competence” dyad, which is considered to repre-
sent universal dimensions of social perception [19]. This result 
is interesting in that it suggests that, when people spontane-
ously interpret their impressions of others, these two dimen-
sions account for almost all of the variance (≈82%) [73]–[75]. 
Given the universal qualities of the warmth and competence 
dimensions, it might be asked why we found no such results 
for competence attribution. Warmth judgments are primary; 
that is to say, they are made before competence judgments. 

Warmth
Attribution

Selective
Attention

Performance

Experimental
Condition

b1 = –8.56∗

c ′ = –19.63
(c = –29.85)∗

a1 = 1.19∗

Figure 5. A diagram showing mediation of the robot-presence 
effect on standard selective attention performance by warmth 
inferences. *: . <AU: Please explain what * indicates in Figure 5.>
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In addition, warmth also carries more weight in affective and 
behavioral reactions. This also accounts for traits relating to 
dehumanization dimensions. For example, the attribution of 
morality traits from the human-uniqueness dimension 
(which is strongly correlated with the warmth dimension) 
determines approach–avoidance tendencies that require each 
to evaluate the other (i.e., positively or negatively) [76]. This 
information is more cognitively accessible and more predic-
tive. Competence is related more to the modulation of 
impression (e.g., how positive or how negative). The fact that 
the HRI induction in our experiment lasted only three min-
utes suggests that the participants might have gained only a 
general impression of the robot. Further research should 
focus on the evolution of these attributes in long-term HRI as 
compared to human–human interaction.

Furthermore, according to our results, anthropomorphic 
attributions seem to mediate the effect of the presence of a 
social robot on selective-attention-performance improvement. 
Again, these results are in line with research on robots [43], 
intentional stance perception (i.e., the attribution of mental 
properties) [77], and the mentalization process (i.e., attribution 
of mental activity) [72]. In our experiment, after the social 
HRI, the robot could have been perceived by the participants 
as more conscious and similar to a fellow creature, thus result-
ing in a social-presence effect [14]. Indeed, anthropomorphic 
inferences are needed if the improvement in performance is to 
occur in the presence of the robot. Importantly, the passive 
presence of the nonsocial robot during the EFT in the second 
session did not influence performance compared to the con-
trol alone condition. Together, these findings run counter to a 
purely mechanistic, nonsocial approach that reduces the 
effects caused by the presence of humanoid robots on atten-
tion to the action of physical distraction or interference. 
Indeed, with regard to the role of top-down inference, anthro-
pomorphism is at the center of the robot SFI processes when 
mechanistic distraction is controlled for.

There is evidence that, when a focal task demands atten-
tional resources, perceptual (nonsocial) sources of distraction 
can induce a conflict between the need to pay attention to the 
focal task (i.e., the central stimulus in the EFT) and the inter-
fering cues (i.e., the peripheral stimuli). This conflict may 
result in cognitive overload and, ultimately, restrict the use of 
the available cues (e.g., [9]). This restriction directs the avail-
able attentional resources toward the task that is to be per-
formed at the expense of peripheral cues (e.g., by focusing 
more exclusively on the central stimulus than on peripheral 
interfering cues). According to this view, however, both 
experimental conditions should have elicited the same effects, 
which was not the case, even though the robot behaved in a 
similar way during the task. Considering the mediating role 
of anthropomorphic inferences, we can reasonably assume 
that the effects of social-robot presence on attention were 
indeed social in nature and cannot be trivialized or reduced to 
the action of any other nonsocial sources of distraction.

Finally, some limits have to be addressed. First, we specifi-
cally chose a mechanical humanoid robot to control for 

anthropomorphic bottom-up inferences. It is therefore not yet 
possible to conclude that top-down reinforcement is neces-
sary for all situations and for all types of robots. It is possible 
that a sufficiently human-like robot, with fluid movements, 
could stimulate anthropomorphic inferences on the basis of 
perceptual stimuli alone [55] as a condition to avoid the 
“uncanny valley” phenomenon (i.e., the theory that the more 
similar an android robot is to a human being, the more mon-
strous its imperfections seem to the human observer) [55], 
[78]–[80]. <AU: Please check whether the preceding edited 
sentence conveys the intended meaning.> The more human-
like a robot is, the less interaction should be needed to stimu-
late anthropomorphism and thus social-presence effects [10], 
[26]. The relative compatibility between the advanced techno-
logical shape and the level of perceived capacities of a robot 
could also play an important role [42]. Second, the social-
presence effect may degrade cognitive performances (i.e., 
social inhibition) when the number of attentional resources 
needed to complete the task and the number of attentional 
resources allocated to the other being present exceed an indi-
vidual’s reserve of cognitive resources [9]. To fully assess 
whether the social-presence effect with robots is similar to 
that observed in the presence of humans, the same paradigm 
should be implemented with a complex task.

In conclusion, the fact that the presence of social robots 
can affect processes as fundamental as selective attention pro-
vides another reason to pay particular attention to the psy-
chological, sociological, and philosophical impact of HRIs. 
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Humanoid robots will 

likely take on increasingly 

important roles the lives 

of millions of people 

worldwide

According to the Ethopoeia 

concept, automatic social 

reactions are triggered 

by situations that include 

social cues, which need 

not all originate from other 

humans.

Previous research indicates 

that social categorization 

processes underlying the 

perception of persons can 

be generalized to robots.

Attentional focusing may 

produce different effects.

The EFT requires 

participants to judge the 

direction of the central cue 

in multicomponent stimuli.

The more human-like 

a robot is, the less 

interaction should be 

needed to stimulate 

anthropomorphism and 

thus social-presence 

effects.


