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ABSTRACT 

In lampreys, reticulospinal neurons integrate sensory inputs to adapt their control onto the 

spinal locomotor networks. Whether and how sensory inputs to reticulospinal neurons are 

modulated remains to be determined. We showed recently that cholinergic inputs onto 

reticulospinal neurons play a key role in the initiation of locomotion elicited by stimulation of the 

mesencephalic locomotor region in semi intact lampreys. Here, we investigated the possible role 

of muscarinic acetylcholine receptors in modulating trigeminal inputs to reticulospinal neurons. 

A local application of muscarinic agonists onto an intracellularly recorded reticulospinal cell 

depressed the disynaptic responses to trigeminal stimulation. A depression was also observed 

when agonists were pressure ejected over the brainstem region containing second-order neurons 

relaying trigeminal inputs to reticulospinal neurons. Conversely, muscarinic antagonists 

increased the trigeminal-evoked responses, suggesting that a muscarinic depression of sensory 

inputs to RS neurons is exerted tonically. The muscarinic modulation affected predominantly the 

NMDA component of the trigeminal-evoked responses. Moreover, atropine perfusion facilitated 

the occurrence of sustained depolarizations induced by stimulation of the trigeminal nerve and 

allowed the occurrence of NMDA induced intrinsic oscillations in reticulospinal neurons. The 

functional significance of a muscarinic modulation of a sensory transmission to reticulospinal 

neurons is discussed. 

 

KEYWORDS:  Sensorimotor integration; Reticulospinal neurons; Acetylcholine; NMDA-induced 

oscillations; CAN current 
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INTRODUCTION 

Motor control is based on interactions between centrally generated commands and 

incoming sensory inputs. These interactions occur at all levels of the CNS from motor networks 

located in the spinal cord or in the segmental ganglia (in vertebrates and invertebrates, 

respectively) to the brainstem and forebrain structures (for reviews see Clarac 1991; Rossignol 

1996). Although essential, sensory inputs are nevertheless modulated to shape the information in 

accordance to the state and pattern of activity of the central motor networks as shown in many 

animal species including invertebrates (Sillar and Skorupski 1986; Le Ray and Cattaert 1999), 

lower vertebrates such as lampreys (Bussières and Dubuc 1992; El Manira et al. 1997b) and 

mammals (e.g., cats: Dubuc et al. 1986; Gossard et al. 1989). 

In lampreys, reticulospinal (RS) cells constitute the main descending pathway involved in 

the control of motor behaviors. They activate and control the spinal locomotor networks and 

integrate sensory inputs from different modalities (Rovainen 1982; Orlovsky et al. 1992; Dubuc 

et al. 1993a,b; Deliagina et al. 1995; Viana Di Prisco et al. 1995; Zompa and Dubuc 1996), inputs 

from the spinal locomotor networks themselves (Dubuc and Grillner 1989; Vinay and Grillner 

1993; Vinay et al. 1998), and inputs from higher brain centers (El Manira et al. 1997a). One 

brainstem region projecting to the RS cells is the mesencephalic locomotor region (MLR) 

recently described in lampreys (Sirota et al. 2000; Brocard and Dubuc 2003; Le Ray et al. 2003). 

This region is homologous to a region first described in cats and later in several other vertebrate 

species (for a review see Jordan 1998). We have also shown that the lamprey MLR contains 

cholinergic cells and provides a nicotinic receptor-mediated excitation of the rhombencephalic 

RS neurons that contributes to swimming activity (Le Ray et al. 2003). 
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The presence of cholinergic neurons in the MLR of lampreys has prompted us to 

investigate the possibility that muscarinic receptors also play a role in the control of locomotion. 

These receptors are present in the brainstem of many vertebrate species and modulate neuronal 

and synaptic properties (McCormick 1992; Bal et al. 1994; Klink and Alonso 1997a,b; Segal and 

Auerbach 1997). Interestingly, in several vertebrate species, muscarinic effects of acetylcholine 

were observed in the brainstem reticular formation (Barnes et al. 1987; Imon et al. 1996; 

Baghdoyan and Lydic 1999). Recently, a muscarinic depression of the startle reflex generated by 

RS cells was observed in mammals (Fendt et al. 2001). 

The present study investigated a possible muscarinic modulation of synaptic responses of 

lamprey RS neurons to trigeminal sensory inputs. We show that the disynaptic postsynaptic 

potentials (PSPs) induced by trigeminal nerve stimulation display an atropine-sensitive 

depression after a local application of muscarinic agonists on the recorded RS cell or on 

trigeminal relay. The perfusion of muscarinic receptor antagonists produces an opposite effect, 

suggesting that a tonic muscarinic depression of trigeminal sensory inputs to RS neurons. 

Atropine also reduces the threshold for eliciting depolarizing plateaus in RS cells and increases 

cell discharge. The muscarinic inhibition is directed mainly against the NMDA component of 

glutamatergic responses, and under atropine perfusion intrinsic NMDA-induced oscillations are 

unmasked in RS neurons. 
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MATERIALS AND METHODS 

Experiments were performed in larval (n=41) and young adult (n=17) lampreys, 

Petromyzon marinus. Results from larval and adult animals were combined because no clear 

differences were observed. All procedures conformed to the guidelines of the Canadian Institutes 

for Health Research and were approved by the University Animal Care and Use Committee. 

Under tricaine methanesulphonate anesthesia (MS 222, 100 mg/L, Sigma, Milwaukee, USA), the 

animals were incised along the ventral midline and eviscerated. The dissection and subsequent 

experiments were performed in cold Ringer’s with the following composition (in mM): 130 

NaCl, 2.1 KCl, 2.6 CaCl2, 1.8 MgCl2, 4 Hepes, 4 Dextrose, 1 NaHCO3. The rostral end of the 

body up to the last gill was dissected, isolating the brain and spinal cord with the underlying 

cranium and notochord kept for support. The spinal cord was then cut at the level of the first 

segment (Fig. 1A) and the preparation was pinned down to the Sylgard bottom of an experimental 

chamber perfused with oxygenated cold Ringer’s (9ºC; pH 7.4). A semi-intact preparation (n=4) 

was also used, where the rostral end of the animal was dissected out as described above and 

pinned down to the Sylgard bottom of the experimental chamber, whereas the caudal two thirds 

of the body and the tail were left intact to swim freely behind in the Ringer’s solution. For 

decerebration purposes, a complete transection was made either above or below (Fig. 1A) the 

mesencephalon. There was no difference in the responses to the local application of muscarinic 

agonists whether the mesencephalon was kept or not. During the course of the experiments, the 

brainstem was constantly perfused with Ringer’s (2 ml/min). 

RS neurons in the middle (MRRN, n=62) and posterior (PRRN, n=3) rhombencephalic reticular 

nuclei were impaled under visual inspection with sharp glass microelectrodes (4M K-acetate, 

~100 M; Fig. 1A). The recorded cells were the largest reticular neurons in these two reticular 
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nuclei of the lamprey including the Müller cells in the MRRN (see Rovainen 1982). The signals 

were recorded with an Axoclamp 2A (Axon Instruments Inc., Foster City, CA) and directed to a 

computer (sampling rate: 2-10 kHz) through a TL-1 DMA interface (Axon Instruments Inc.). All 

neurons had a resting membrane potential (mean value: -74.6±0.6 mV) that remained constant 

throughout the experiment. The effects of drug applications and trigeminal nerve stimulation 

were all tested at resting potential. Cell input resistance was estimated from the slope of the linear 

regression calculated on I-V curves (current-voltage relationship built by injecting current steps 

of different amplitudes). Repetitive firing properties were studied by injecting depolarizing 

square-pulses (500 msec duration). The peak amplitude of the slow afterhyperpolarization (AHP) 

was measured from the action potential threshold. The area and the maximal amplitude of PSPs 

were measured after filtering the spikes in the few instances where the latter occurred. The area 

was measured from the beginning of the response until the membrane potential returned to the 

resting level. The peak amplitude was the difference between the resting membrane potential and 

the maximum of the depolarization except if specified otherwise (early and late components in 

Fig. 5). Spikes were truncated in Figs. 4, 9 and 10 in order to reduce space.  

Electrical stimulation of either the ipsi- or the contralateral trigeminal sensory root (single 

shocks of 2 ms duration at 0.1 Hz) was performed with a glass-coated tungsten microelectrode 

(4-5 M, either homemade or purchased from Micro Probe Inc., Potomoc, MD) using a Grass 

S88 stimulator (Grass Instrument Co., Quincy, MA). The trigeminal-evoked PSPs were 

monitored several minutes before and after drug applications (e.g., Fig. 1C). All drugs were 

purchased from Sigma-Aldrich (Oakville, ON). Some of the drugs were applied locally: small 

droplets (0.5-10 nL) of acetylcholine (1 mM), pilocarpine (1 mM), muscarine (1 mM), atropine 

(1 mM), scopolamine (1 mM), N-methyl-D-aspartate (NMDA, 1 and 10 mM), or (±)-alpha-
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amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA, 1 mM), dissolved in freshly-

made Ringer's, were pressure-applied locally (on the RS cells or the relay cell region) through a 

glass micropipette using a Picospritzer (General Valve Corporation, Fairfield, NJ; Fig. 1A). The 

inactive dye Fast Green was added to the drug mixture in order to monitor the size of the 

application and the wash out of the drug. Control ejections of Ringer's or Fast Green alone had no 

effects on the evoked PSPs. Atropine (10 M), strychnine (4 µM), tetrodotoxin (1 µM), and 

phosphonovaleric acid (AP5; 200 µM) were dissolved in the Ringer’s solution and bath applied. 

Between each drug application, a wash out period was allowed for complete recovery, from 15 

minutes to more than one hour depending on the drug and the application technique used. 

Data in the text and figures are given as mean ± SEM. The significance of changes in input 

resistance was assessed by the difference between the slopes. The statistical significance for 

differences between means was determined with paired Student’s t-tests, using Origin software 

(OriginLab Corporation, Northampton, MA).  
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RESULTS 

Muscarinic receptor-mediated modulation of the trigeminal inputs to RS neurons 

Under control conditions, single stimulation shocks to the trigeminal sensory root on one 

side (Fig. 1A) evoked large PSPs in RS neurons (see Viana Di Prisco et al. 1995) and the 

amplitude of the responses remained constant from one stimulus to the other. After a local 

pressure-application of acetylcholine (1 mM) onto the recorded RS cell the PSPs were 

significantly depressed (Fig. 1B1). The cumulated data from ten RS neurons show that both the 

peak amplitude (86±5%; p<0.05) and the area (50±6%; p<0.01) of the trigeminal-evoked PSPs 

were reduced (Fig. 1B2). In most cases, the depression lasted for several tens of minutes 

(Fig. 1C). On the other hand, there was no significant long-lasting change in the RS cell input 

resistance (105±2%; p>0.05; n=8), except in two cells where a small but significant persistent 

increase occurred (e.g. Fig. 1C). This suggests that the PSP depression produced by a local 

ejection of acetylcholine does not result from changes in RS neuron conductance. 

We previously showed that acetylcholine produces large depolarizations in lamprey RS 

neurons resulting from the activation of nicotinic receptors (Le Ray et al. 2003). However, 

nicotine ejection over RS cells never produced a long-lasting depression of the trigeminal-evoked 

PSPs (not illustrated), suggesting that muscarinic receptors may be involved. To test this, the 

muscarinic agonist pilocarpine (1 mM) was applied locally onto the recorded RS neurons (Fig. 2; 

n=9) and, similarly to acetylcholine, it depressed the trigeminal-evoked PSPs (Fig. 2A1). Both the 

peak amplitude (75±16%; p<0.01) and the area (76±26%; p<0.01) of the synaptic responses were 

reduced (Fig. 2A2). The effects lasted for more than 1 hour after washing out the drug (single 

experiment in Fig. 2B1: p<0.001; cumulated data in Fig. 2B2: p<0.01). In contrast to the effects 
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of acetylcholine, pilocarpine always increased (130±13%; p<0.001; n=4) the input resistance of 

RS neurons (Fig. 2B2 and C2), whereas there was no change in the membrane potential 

(Fig. 2C1), suggesting a possible effect on leak channels. 

We examined whether there was a tonic cholinergic modulation of trigeminal inputs onto 

RS cells. A bath application of the muscarinic antagonist atropine (10 µM; not illustrated) 

increased both the peak amplitude (n=18; p<0.05) and the area (n=18; p<0.05) of trigeminal-

evoked PSPs, but atropine did not affect the input resistance in the nine cells into which it was 

tested. Atropine (1 mM) was then pressure ejected locally onto the recorded RS cell while the 

trigeminal nerve was stimulated. It significantly enhanced the PSPs area in 4 out of 15 RS cells 

(mean area of the 4 cells: 149±17% of the control; p<0.05; Fig. 3A1-2). There were no significant 

changes in the trigeminal-evoked PSPs in the other 11 cells. Neither the resting membrane 

potential nor the input resistance were changed by atropine (p>0.05; Fig. 3B1-3). In preparations 

pre-incubated with atropine (n=2), a local application of acetylcholine failed to produce a 

depression of the trigeminal-evoked responses (not illustrated). 

Because local applications of the muscarinic antagonist produced less reliable effects than 

those of bath applications, we investigated whether there was a muscarinic modulation of the 

trigeminal inputs at the level of the trigeminal relay cell. The interneurons relaying trigeminal 

inputs are located along the descending tract of the trigeminal nerve in the rhombencephalon 

(Northcutt, 1979; G Viana Di Prisco, D Petropoulos, T Boutin, F Brocard and R Dubuc, 

unpublished observations). Acetylcholine was pressure ejected over the region containing the 

relay cells (Fig. 4A1). This resulted in a depression of the trigeminal-evoked PSPs (73±10%; 

p<0.05; n=4; Fig. 4A2, A3). There was no effect in the early part of the PSPs (see detail in 

Fig. 4A2). Similarly, there was a depression of the trigeminal-evoked PSPs without changes of 
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their early part of the response after pressure ejecting either pilocarpine (72±5%; p<0.05; n=3; 

Fig. 4B) or muscarine (61±11%; p<0.05; n=3; not illustrated) in the same region, suggesting that 

muscarinic receptors are involved in the depression. Note that the depression effect of muscarinic 

agonists ejected on trigeminal relay lasted for as long as when the agonists were ejected over RS 

cells. When atropine was applied over the region containing the trigeminal relay cells (Fig. 4C1), 

the area of the PSPs was greatly enhanced (320±50%; p<0.001; n=6; Fig. 4C3) to the point of 

generating multiple action potentials (see Fig. 4C2). However, the early part of the PSP remained 

unaffected (see detail Fig. 4C2). An increase in the area of the trigeminal-evoked PSPs 

(320±29%; p<0.01; n=4) also occurred when scopolamine was substituted for atropine in the 

ejection pipette (not illustrated). The effects of the muscarinic antagonists suggest that 

acetylcholine exerts a tonic depression of trigeminal inputs to RS cells through the activation of 

muscarinic receptors both at the relay site and at the level of RS cells in some cases. 

Cellular target of the muscarinic modulation 

Because trigeminal sensory inputs can consist of both glutamatergic EPSPs and glycinergic 

IPSPs (Viana Di Prisco et al. 1995), the muscarinic effects may have resulted from changes in 

inhibitory transmission. To test this, experiments (n=5) were performed in the presence of 

strychnine (4 µM). Similarly to the results obtained in control saline, atropine markedly increased 

the late part of the trigeminal-evoked EPSPs under strychnine (317±57 %; p<0.01; n=5; 

Fig. 5A1,B1). There was a small increase in the early part of the EPSPs, although this was not 

statistically significant (149±20 %; p>0.05; n=5; Fig. 5A2,B2), suggesting that strychnine could 

unmask an early excitation that is sensitive to muscarinic modulation. We did not pursue this 

further and additional experiments would be needed to test this hypothesis. Pilocarpine ejection 

was also tested on trigeminal-evoked EPSPs. There was a significant decrease in the peak 
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amplitude of the early EPSPs (69±5%; p<0.01; n=3; not shown). These results suggest that there 

is a muscarinic modulation of the glutamatergic component of the trigeminal-evoked synaptic 

responses.  

Atropine seemed to preferentially increase the late part of the trigeminal-evoked PSPs 

(Figs. 3 and 4C). This would be consistent with a modulatory effect on the NMDA component of 

the synaptic potentials. We further examined if the muscarinic modulation was exerted differently 

on the NMDA and the AMPA/kainate glutamatergic components of the trigeminal inputs to RS 

cells. The effects of the muscarinic drugs were thus tested after blocking the NMDA receptors. 

After adding AP5 (200 µM) the area of the PSPs was markedly reduced in all 6 cells tested (18.6 

± 3.8 % p<0.01; Fig. 6A,B), as previously described (Viana Di Prisco et al. 1995). In the presence 

of AP5, atropine did not increase the area of the trigeminal-evoked PSPs (90±30%; p>0.05; n=3; 

Fig. 6A1-2) nor did pilocarpine reduce them significantly (88.8±30%; p>0.05; n=3; Fig. 6B1-2). 

These results suggest that the NMDA receptor-mediated component of the trigeminal-evoked 

responses in RS cells is the main target of the muscarinic modulation.  

To determine whether the muscarinic modulation of the NMDA component occurred at the 

level of the RS neuron, the effects of atropine (10 µM, bath-applied) were tested on the 

depolarizing responses elicited by local ejections of two glutamatergic agonists onto RS neurons 

(Fig. 7A-B). The non-NMDA agonist AMPA (1 mM) evoked large depolarizations (Fig. 7A1, 

black trace) that were not affected by atropine (gray trace). Neither the peak amplitude (n=12; 

Fig. 7A2; p>0.05) nor the area (p>0.05) of the depolarizing responses were modified, which 

confirmed that muscarinic modulation was not directed against non-NMDA responses. In 

contrast, the depolarizing responses evoked by a local ejection of 1 mM NMDA (Fig. 7B1, black 

trace) were markedly enhanced in the presence of atropine (gray trace) such that both the peak 
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amplitude (167±25%; p<0.01) and the area (220±56%; p<0.05) of the depolarizing responses 

were increased (n=24; Fig. 7B2). This suggests that at least a part of muscarinic modulation is 

exerted postsynaptically on the NMDA component of the excitation elicited in the target RS 

cells. It is noteworthy that the effects varied from one preparation to another. In 8 cases, atropine 

had little or no effect on the NMDA depolarization, whereas in the 16 other cases, there was a 

marked increase that reached a higher statistical significance (p<0.001). These differences could 

result from variable levels of endogenous release of acetylcholine in different preparations. 

Effects of muscarinic receptor activation on plateau potentials in RS cells 

Strong cutaneous stimulation induces depolarizing plateaus in RS neurons that are involved 

in the escape swimming in lampreys (Viana Di Prisco et al. 1997, 2000). We have examined 

whether the depolarizing plateaus were subjected to a muscarinic modulation. In all of the RS 

cells tested (n=5), a bath application of atropine (10 µM, 30-60 min) enhanced the depolarization 

plateaus such that the area of the maximal responses was increased significantly on average to 

544±84% with respect to the control in the 5 animals tested (p<0.01; Fig. 8A1-2). The threshold 

for inducing a depolarization plateau was also reduced to 50±25% of control value (p<0.05; n=5). 

In 4 out of 5 experiments, atropine increased the firing rate for maximal responses to 258±19% of 

control (p<0.05; n=5; Fig. 8A3). Neither the input resistance nor the discharge properties 

measured with intracellular current injections were affected by atropine (Fig. 8B1-2; see also 

Fig. 3C). Moreover, there was no significant change in the peak amplitude of the slow AHP 

(mean values in control: 10.7±1.7 vs. under atropine: 10.1±1.3 mV; p>0.05; n=16; e.g., Fig. 8C). 

It appears therefore that the increase in the firing rate results from an increase in the 

depolarization of the RS cell. 
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Intrinsic NMDA-evoked oscillations unmasked by atropine 

Because depolarizing plateaus largely depend on NMDA receptor activation (Viana Di 

Prisco et al. 1997, 2000) and atropine enhances the occurrence of such depolarizing plateaus (see 

above), we examined the impact of blocking muscarinic receptors on NMDA-induced plateau 

properties. Using a slightly leaking pipette (volume estimated at <1 µL.min
-1

), NMDA (1 mM) 

was applied for several tens of seconds on intracellularly recorded RS neurons (n=5; Fig. 9). In 

control Ringer’s solution, NMDA generated a large amplitude depolarization accompanied by 

sustained firing, which adapted after some 75-100 s (Fig. 9A1). Then, the membrane potential of 

the recorded cell remained depolarized throughout the NMDA application (Fig. 9A1, and see 

detail in A2). When 10 µM atropine was added to the Ringer’s solution (Fig. 9B1, and see detail 

in B2), membrane potential oscillations appeared on top of the NMDA-evoked depolarization, 

and spiking occurred on top of each oscillation during the whole duration of the NMDA-evoked 

oscillatory behavior (compare Fig. 9A1 and 9B1). Moreover, NMDA still induced oscillations 

after adding 1 µM tetrodotoxin to the atropine containing Ringer’s solution (Fig. 9C1, C2), 

whereas NMDA-induced oscillations did not occur in the presence of tetrodotoxin alone 

(Fig. 9D1-2), suggesting that some RS neuron intrinsic properties were unmasked by the 

perfusion of the muscarinic antagonist. 

Interestingly, the presence of oscillations in RS neurons did not require long lasting 

applications of NMDA as described above. Similar oscillations under atropine could also be 

observed in response to a single focal ejection of NMDA (1-10 mM) onto the recorded RS cells 

(n=13; e.g., Fig. 10A). Small oscillations of the membrane potential amplitude occurred when the 

RS neuron began to repolarize after a large NMDA-evoked depolarization (Fig. 10A2, top). There 

was then a slow increase in the amplitude of the oscillations, and action potentials were fired 
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(Fig. 10A2, bottom). Similarly, a high frequency electrical stimulation (15 pulses, 30 Hz) of a 

trigeminal nerve could trigger membrane potential oscillations in RS cells in the presence of 

atropine (e.g., Fig. 10B). Because such oscillations were observed in the isolated 

rhombencephalon (n=6) in which the spinal cord was cut just below the PRRN, they could not 

result from ascending inputs conveyed by spino-reticular inputs from the locomotor networks 

(Dubuc and Grillner 1989; Vinay and Grillner 1993; Vinay et al. 1998). In a few preparations 

(n=3) where the rhombencephalon was isolated from the rest of the CNS, oscillatory behavior in 

the form of repeated bursting could be observed in the absence of atropine, either in response to 

trigeminal sustained stimulation or 'spontaneously' in the presence of strychnine. Interestingly in 

each of these cases, a single focal ejection of pilocarpine (2 mM) onto the recorded RS neuron 

was able to stop abruptly an ongoing burst and increase the time interval before the onset of the 

following bursts ( ~70% increased delay; p<0.05; n=5; not illustrated). The addition of 10 µM 

atropine prevented the effect of the focal ejection of pilocarpine (n=4; not illustrated). 
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DISCUSSION 

Results from the present study show that there is a muscarinic modulation of the synaptic 

responses induced in RS cells by stimulation of trigeminal afferents. Muscarinic agonists 

depressed the trigeminal-evoked PSPs and muscarinic antagonists increased them. Atropine also 

potentiated the depolarizing responses induced by NMDA ejected on the recorded RS cell, but 

not that induced by AMPA. Atropine also unmasked membrane potential oscillations in response 

to either a local application of NMDA or stimulation of trigeminal afferents. 

Muscarinic modulation of the trigeminal glutamatergic sensory inputs 

There is evidence, in different vertebrate nervous systems, for a muscarinic modulation of 

glutamatergic responses (e.g., in rats: Jiang and Dun 1986; in cats: Andre et al. 1995). A 

muscarinic inhibition of glutamatergic responses was described in different regions of the CNS. 

In the spinal cord of neonate rats for example, acetylcholine induces an atropine-sensitive 

reduction of the sensory-evoked responses in motoneurons (Jiang and Dun 1986). Similarly, the 

non-selective cholinergic agonist carbachol produces an atropine-sensitive depression of the 

glutamatergic transmission in neurons (Marks and Roffwarg 1991; Metherate and Ashe 1995; 

Bellingham and Berger 1996; Sim and Griffith 1996). Likewise, muscarinic agonists such as 

oxotremorine (Lin and Phillis 1991) or muscarine, or the acetylcholinesterase inhibitor 

physostigmine (Bellingham and Berger 1996) induce a comparable inhibition of glutamatergic 

inputs in various neuronal structures. The activation of muscarinic receptors by acetylcholine in 

pontine reticular giant neurons was proposed to be responsible for an inhibition of the startle 

reflexes induced by acoustic, visual or tactile stimuli (see Fendt et al. 2001). However, the 

mechanisms by which this inhibition is achieved are not understood.  
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We now show that the trigeminal glutamatergic inputs to RS cells of lampreys are 

subjected to a powerful muscarinic modulation. These inputs are carried by a disynaptic pathway 

from trigeminal afferents to RS cells and thus, the muscarinic modulation could be exerted at 

different locations along the pathway. In the present study, we provide evidence that the 

modulation occurs at the level of both the reticulospinal cell and of the trigeminal relay. A local 

ejection of muscarinic agonists onto RS neurons reduced the trigeminal-evoked PSPs 

significantly. Interestingly, a local ejection of atropine enhances the synaptic responses in some 

of the RS cells, suggesting that, in the isolated brainstem preparation, there is tonic muscarinic 

depression of trigeminal inputs exerted at the level of the RS cell. The failure of atropine to 

potentiate the PSPs in some of these experiments when ejected over the recorded RS cell may 

result from either a variability of endogenous acetylcholine release among preparations or an 

absence of a significant activation of an NMDA component, the main substrate for the atropine-

mediated modulation (see below). Bath application of atropine on the other hand increased the 

trigeminal-evoked PSPs in all the cells tested. This prompted us to examine effects at the first 

synapse within this trigeminal pathway, that is at the level of the trigeminal relay.  

In all cases tested, atropine ejected over the relay cells enhanced markedly the synaptic 

responses to trigeminal stimulation indicating that there was a strong muscarinic modulation also 

present at the level of the trigeminal relay in the brainstem. Local application of acetylcholine or 

selective muscarinic agonists over the trigeminal relay cells depressed the synaptic responses to 

trigeminal stimulation. Whether the modulation occurs presynaptically in primary afferent 

terminals or postsynaptically in the relay cells cannot be established yet. Presynaptic inhibition 

by muscarinic receptors activation was previously shown between primary afferents and lamina 

II neurons of rat spinal cord (see Li et al. 2002).  
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In most of the cases reported in the literature to date, the muscarinic modulation of 

glutamatergic synapses has been found to rely on presynaptic mechanisms (Jiang and Dun 1986; 

Scanziani et al. 1995; Bellingham and Berger 1996; Smolders et al. 1997). We now provide 

evidence that the modulation occurs postsynaptically at least in part of the pathway. The response 

of RS cells to a local application of NMDA was potentiated by atropine perfusion. The increase 

was in the same range to that of the increase of the trigeminal-evoked PSPs by atropine (area: 

+120±56% vs. +101±70%, and peak: +67±25% vs. +40±30%, respectively). Because the 

atropine-induced changes in the response to NMDA local application persist under tetrodotoxin 

perfusion, it is likely that the effects occur postsynaptically at the level of the RS cell.  

There are several lines of evidence, in the present study, indicating that the muscarinic 

modulation is predominantly exerted on the NMDA receptor-mediated component of the 

glutamatergic PSPs elicited by trigeminal stimulation: the depolarizing responses to direct 

application of NMDA onto the recorded RS cells were enhanced by atropine, whereas the 

responses to AMPA application were not; blocking NMDA receptors with AP5, abolished the 

effects of muscarinic agonists and antagonists on the trigeminal-evoked PSPs; muscarinic drug 

applications usually had little effect on the early part of the synaptic responses. Taken together 

these results suggest a predominant effect on the NMDA receptor-mediated component of the 

excitation. Although it is clear that there is a muscarinic modulation that occurs at the trigeminal 

relay, whether there is an effect on the NMDA receptors of the relay cells is not established yet. 

To address this issue, it will be necessary to record from the relay cells to examine the effects of 

muscarinic drugs on the monosynaptic response to primary afferent stimulation and on their 

responses to direct application of glutamatergic agonists.  
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The mechanisms by which the activation of muscarinic receptors can modulate NMDA 

receptors remains to be determined in our preparation. Such mechanisms were examined in 

granule cell cultures (Courtney and Nicholls 1992). It was shown that NMDA receptors in 

granule cells are inhibited by phospholipase C-coupled muscarinic receptors. The AMPA/kainate 

receptors are not. The authors identified the second messenger pathway involved revealing a 

muscarinic protein kinase C-mediated inhibition of NMDA receptors. Because we also show a 

muscarinic effect on NMDA receptors and no effect on AMPA/kainate receptors in the lamprey 

system, it is thus possible that similar subcellular mechanisms are involved. Other studies have 

reported a postsynaptic modulation of a glutamatergic pathway by muscarinic receptors affecting 

either exclusively the AMPA/kainate subtype of glutamate receptors (Metherate and Ashe 1995) 

or both NMDA and non-NMDA receptor subtypes (Aramakis et al. 1997). 

Whether the muscarinic modulation is specific to the trigeminal inputs to RS cells in the 

lamprey system remains to be established. Preliminary experiments in our lab indicate that a 

muscarinic modulation is also exerted on vestibular inputs to RS cells (AJOUTER UNE REF, 

unpublished). These results although preliminary, suggest that the modulation could be present in 

other sensory pathways. 

Muscarinic-induced changes of RS cell properties 

Muscarinic inputs were shown to induce oscillatory properties in various species. In the 

lobster for example, their perfusion on the stomatogastric neuronal network transforms passive 

neurons into spontaneously bursting neurons, which display plateau properties that are 

responsible for the neuron oscillatory behavior (Bal et al. 1994). Similarly in the rat, carbachol 

induces in the non-stellate neurons of the entorhinal cortex an atropine-sensitive bursting 

behavior that relies on an increase in intracellular calcium concentration (Klink and Alonso 
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1997a,b), and voltage-dependent plateau properties in subicular neurons (Kawasaki et al. 1999). 

In lamprey RS neurons, intrinsic plateau potential and bursting properties are revealed by the bath 

perfusion of the muscarinic antagonist atropine. This suggests that, in this system, as in dorso-

lateral geniculate neurons of cats and guinea pigs (McCormick 1992), the activation of 

muscarinic receptors would block endogenous bursting properties.  

More than twenty years ago, NMDA-induced oscillations were described in interneurons 

and motoneurons of the lamprey spinal cord (Sigvardt and Grillner 1981; Sigvardt et al. 1985). 

The oscillations were shown to be intrinsic to the spinal neurons, as they persisted in the presence 

of TTX. We show that similar oscillations can occur in brainstem RS cells of lampreys, but only 

after blocking muscarinic receptors. In the absence of muscarinic antagonists, only long-lasting 

depolarization plateaus are evoked by NMDA. The mechanism by which the oscillations occur in 

RS cells is unknown at this stage. If RS cells of lampreys were to display similar mechanisms 

than granules cells (Courtney and Nicholls 1992) it is possible that NMDA receptors would be 

tonically inhibited by muscarinic receptors and that adding the muscarinic antagonist, atropine, 

removes this tonic inhibition. Oscillations could then be unmasked in the presence of NMDA.  

Si je peux me permettre une remarque, cette dernière partie en jaune, c'est un peu du vent. 

Ça n'explique et même ne discute absolument rien, et surtout pas comment les oscillations sont 

générées. C'est évident qu'elles ont dues au NMDA puisqu'elles n'apparaissent que sous 

stimulation NMDA. D'autre part, on a aussi montré que la composante NMDA est sous contrôle 

muscarinique tonique et que l'atropine démasque les oscillations (surtout qu'on le dit texto juste 

en dessous!!!!); donc ça n'a rien d'une hypothèse. Mais enfin, si ça vous convient comme cela... 
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Functional considerations 

The muscarinic antagonist atropine disclosed intrinsic oscillation properties underlying a 

bursting behavior in lamprey RS neurons in response to NMDA stimulation. To our knowledge, 

this is the first demonstration of such a property in RS neurons. The requirement of atropine for 

repetitive bursts to occur in response to a transient NMDA stimulation suggests that those 

oscillatory properties are tonically inhibited. A tonic muscarinic modulation was also reported in 

rat cortical neurons (Metherate and Ashe 1995; Hess and Krawczyk 1996). The origin of this 

tonic modulation remains unknown in lamprey RS cells. Nevertheless, in higher vertebrates (for a 

review see Fendt et al. 2001), cholinergic inputs projecting from both the pedunculopontine 

nucleus and the laterodorsal tegmentum to the reticular formation play a major role in the 

inhibition of startle responses. Because both of these brainstem regions contain cholinergic 

neurons and were recently described as part of the functionally defined  MLR of lampreys 

(Pombal et al. 2001; Le Ray et al. 2003), the MLR could thus be the origin of the muscarinic 

modulation of RS cells. 

The MLR is involved in goal-directed locomotion (for a review see Jordan 1998) and a 

muscarinic control originating from that region could provide a fine tuning of the weight of 

sensory inputs to the RS system during complex motor behaviors. This would prevent inadequate 

reflex responses to perturb the MLR locomotor command. Such a muscarinic modulation of 

sensorimotor integration originating from the MLR exerts a prepulse inhibition of startle reflexes 

in pontine reticulospinal cells (see Fendt et al. 2001). Furthermore, goal-directed locomotion 

requires a fine control from higher structures on RS command neurons that may be incompatible 

with a strong RS neuron activity such as a self-generated oscillatory behavior. Then, we can 

hypothesize that the MLR would silence such sensory-triggered intrinsic properties, and this 
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through the activation of muscarinic receptors on RS neurons (and probably also on relay 

interneurons). In contrast, sensory-evoked locomotor activity (such as an escape reaction) does 

not require higher brain centers (Cardin et al. 1999). In this case, an oscillatory behavior 

generated at the RS level may, first, allow a sustained command onto spinal CPGs (since the 

oscillations permit a stronger firing than a single long duration plateau) and, second, reinforce the 

spinal-generated rhythm. This would presume the presence of mechanisms that regulate the 

cholinergic inputs from the MLR to RS cells in different behavioral contexts.  

In lampreys, we recently demonstrated the role of nicotinic receptor-mediated cholinergic 

inputs to RS neurons in the initiation and the control of the MLR-evoked locomotion (Le Ray et 

al. 2003). In the light of these results and the present ones, we propose that the MLR could send a 

dual cholinergic "command" to RS neurons. Firstly, an excitatory command, mediated by 

nicotinic receptors would activate precisely the RS system and trigger complex motor behaviors 

(such as exploratory behavior or prey attack). Secondly, an inhibitory command mediated by 

muscarinic receptors would be sent in parallel to reduce sensory transmission both at the first 

relay and at the level of RS cells. The cholinergic inputs would thus be responsible for a shift of 

RS neurons from a "reflex locomotor command" to "goal-directed locomotor command" state. 
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FIGURE LEGENDS 

Figure 1: Effects of acetylcholine on the trigeminal-evoked PSPs in RS neurons. A: Diagram of 

the in vitro rhombencephalic preparation. Electrical stimulation was applied to a sensory root of a 

trigeminal nerve (Trig. St) and acetylcholine (ACh, 1 mM) was locally ejected onto an 

intracellularly recorded RS neuron (here in the MRRN). B1: Superimposition of mean trigeminal-

evoked EPSPs (averages of three traces each) in control (black) and after acetylcholine local 

application (gray) at RS neuron resting potential (VR=-75 mV). B2: Relative decrease in the 

EPSP peak amplitude (two bars in the left) and area (two bars in the right) after single 

acetylcholine ejection. *: p<0.05; **: p<0.01, data cumulated from 10 neurons. C: Time course 

(relative to control value) of the EPSP area (squares) and cell input resistance (circles) after a 

single acetylcholine ejection. Single experiment. The p value indicates the significance of the 

difference between control and test EPSPs. The significant changes in input resistance were 

evaluated on I-V curve slopes and are indicated by stars: *** p<0.001 and ** p<0.01. 

 

Figure 2: Effects of pilocarpine on the trigeminal-evoked PSPs in RS neurons. A1: 

Superimposition of trigeminal-evoked (Trig. St) mean EPSPs (averages of three traces each) in an 

RS neuron in control (black) and after single local application of 1 mM pilocarpine (Pilo; gray) 

onto the recorded RS cell (VR=-75 mV). A2: Relative decrease of the EPSP peak amplitude and 

area after single pilocarpine ejection (gray bars). **: p<0.01, data cumulated from 9 neurons. B1: 

Time course (relative to control value) of the EPSP area in a single experiment after single 

pilocarpine ejection. B2: cumulated results (n=4) showing both the EPSP area (squares) and the 

input resistance (circles) after single pilocarpine ejection. The significance of differences between 
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control and test mean values are given by the corresponding p values. C1: Pilocarpine local 

pressure ejections failed to evoke responses from an RS neuron at resting potential (VR=-76 mV). 

C2:Current-voltage relationship before (empty circles) and after (filled circles) application of 

pilocarpine.  

Figure 3: Effect of atropine on trigeminal-evoked PSPs at the RS cell level. A: Atropine enhances 

the trigeminal-evoked EPSP in RS neurons. A1: Superimposed trigeminal-evoked (Trig. St) mean 

EPSPs (averages of three traces each) recorded from an RS neuron (VR=-75 mV) in control 

(black) and after local application of 1 mM atropine (gray) onto the recorded RS cell. A2: 

Histogram of the mean area of the sensory-evoked EPSPs in control (black bars) and under 

atropine (gray bars). * p0.05, data cumulated from four neurons. B: Lack of effect of atropine 

on RS neuron input resistance. B1: Sample recordings of voltage deviation in response to current 

intracellular injection in control (left) and after atropine local ejection (right). B2: Current-voltage 

relationship in control (black) and under atropine (gray). B3: Cumulated histogram illustrating 

the lack of effect of either a local ejection (n=4) or a bath application (n=9) of atropine (gray bar) 

on RS neurons input resistance. *: p<0.05. 

 

Figure 4: Effects of acetylcholine, pilocarpine and atropine on trigeminal-evoked PSPs at the 

second-order trigeminal neurons level. A: Pressure ejection of 1mM acetylcholine over the 

trigeminal relay cells reduced the sensory-evoked EPSPs. A1: The size of the ejection is 

illustrated on a schematized brainstem. A2: Superimposition of mean trigeminal-evoked EPSPs 

(averages of three traces each) in control (black) and after acetylcholine application (gray), 

VR=-76 mV. The peak amplitude of early EPSP (arrowhead and detail) was not affected. A3: 
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Relative decrease of the EPSP area after acetylcholine ejection (gray bars, n= 4 cells). B: Pressure 

ejection of 1mM pilocarpine over the trigeminal relay cells reduced the sensory-evoked EPSPs. 

B1: The size of the ejection is illustrated on a schematized brainstem. B2: Superimposition of 

mean trigeminal-evoked EPSPs (averages of three traces each) in control (black) and after 

pilocarpine (Pilo) application (gray), VR=-77 mV. The peak amplitude of early EPSP (arrowhead 

and detail) was not affected. B3: Relative decrease of the EPSP area after pilocarpine ejection 

(gray bars, n= 3 cells). C: Pressure ejection of 1mM atropine over the trigeminal relay cells 

enhanced the sensory-evoked EPSPs. C1: The size of the ejection is illustrated on a schematized 

brainstem. C2: Superimposition of mean trigeminal-evoked EPSPs (averages of trhee traces each) 

in control (black) and after pilocarpine application (gray), VR=-74 mV. The peak amplitude of 

early EPSP (arrowhead and detail) was not affected. Because under atropine the neuron usually 

developed a plateau that lasted several tens of seconds, the trace has been truncated for reason of 

space. C3: Relative increased of the EPSP area after atropine ejection (gray bars, n= 6 cells). 

*: p<0.05; ***: p<0.001. 

 

Figure 5: Effect of atropine on trigeminal-evoked EPSPs, after a blockade of the glycinergic 

synaptic transmission by strychnine. A1: Superimposition of trigeminal-evoked EPSPs in 

strychnine Ringers (black) and in strychnine after adding atropine (gray) at resting potential 

(VR=-74 mV). A2: Expanded time scale of A1 illustrating the changes occurring in the peak of the 

early component of the EPSP (arrowhead) measured 150 ms after the trigeminal stimulation. B1: 

Cumulative histograms of the relative amplitude of the late part of the EPSP in strychnine (black 

bars) and in strychnine after adding atropine (gray bars). ** p<0.01, data cumulated from 5 
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neurons. B2: Same as B1 but with the amplitude of the early response (measured 150 ms after the 

trigeminal stimulation). 

 

Figure 6: Effects of atropine and pilocarpine on trigeminal-evoked EPSP, after a blockade of 

NMDA receptors with AP5. A1 and B1: Superimposition of mean trigeminal-evoked EPSPs in 

three conditions: control, in the presence of AP5 alone and in the presence of AP5 with atropine 

(A1) or pilocarpine (B1). Shaded area in B1 indicate parts of the recordings shown at a higher 

magnification in the inset. Pharmacological isolation of the early EPSP with AP5 revealed no 

effect of atropine or pilocarpine. A2 and B2: Histograms depicting the mean area of the EPSP in 

control, in the presence of AP5 alone and in the presence of AP5 with atropine (A1) or 

pilocarpine (B1). Areas were normalized to those in the control superfusate. *: p<0.05; ***: 

p<0.001. 

La légende ne correspond pas à la figure que j'ai mais je suppose que vous l'avez changée... 

Figure 7: Effects of a muscarinic receptor antagonist on the local ejection of glutamatergic 

agonists. A: Lack of effect of atropine on AMPA-evoked depolarization. A1:Superimposition of 

1 mM AMPA-evoked depolarizations in control (black) and in the presence of 10 M atropine 

(gray) at resting potential (VR=-75 mV). A2: Cumulative histograms of the peak amplitude and 

area of the AMPA-evoked depolarization in control (black bar) and under atropine bath perfusion 

(gray bar). Data cumulated from 12 neurons. B: Atropine enhances depolarization evoked by 

NMDA local application. B1: Superimposition of 1 mM NMDA-evoked depolarizations in 

control (black) and in the presence of atropine (gray) at resting potential (VR=-75 mV). B2: 

Cumulative histograms of the peak amplitude and area of the NMDA-evoked depolarization in 
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control (black bar) and under atropine bath perfusion (gray bar). *: p<0.05; **: p<0.01, data 

cumulated from 24 neurons. 

Figure 8: Facilitation of sustained depolarizations by atropine. A1: Responses in RS neuron 

(VR=-75 mV) to trigeminal nerve stimulation delivered at two distinct intensities in control and in 

the presence of atropine (10 µM). Note that in control, stronger stimulation induced plateau 

potential sometimes accompanied by locomotor-related EPSPs (arrowheads) in a semi-intact 

preparation. A1: Plot of the stimulus intensity-response area relationship in a representative RS 

cell before (squares) and during bath perfusion of atropine (gray triangles). A2: Mean firing rate, 

determined from instantaneous frequency spikes during plateau potential in control (black) and 

under atropine (gray), in five RS cells from five experiments. **: p<0.01; ***: p<0.001. B1: Lack 

of effect of atropine on spike-frequency discharge (VR=-74 mV). B2: Spiking was examined by 

injecting 500 ms current pulses of increasing intensity. C: Lack of effect of atropine on the slow 

AHP recorded at resting potential (VR=-73 mV). 

Figure 9: Atropine disclosed NMDA-induced oscillations. A1: RS neuron response to a 

continuous application of a small quantity of 1 mM NMDA in normal Ringer’s. A2: Detail of the 

boxed area in A1. B1: RS neuron response to the same NMDA stimulation in 10 µM atropine 

bath perfusion. B2: Detail of the boxed area in B1. C1: RS neuron response of the same NMDA 

stimulation during the bath perfusion of 10 µM atropine and 1 µM tetrodotoxin. C2: Detail of the 

boxed area in C1. A, B, C: same cell (VR=-70 mV). D1: Under tetrodotoxin alone, no NMDA 

oscillations were observed. D2: Detail of boxed area in D1. 

D: Ça non plus je ne l'ai pas. 
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Figure 10: Variability of the NMDA-induced oscillations under atropine bath perfusion. A1: 

Response to single NMDA application under atropine (VR=-80 mV). A2: Detailed view of the 

boxed areas in A1 showing the initial oscillatory rhythm (top) and the later established oscillatory 

behavior that allowed prolonged spike firing (bottom).  

Il faudrait alors transformer les parties en A et B au lieu de A1 et A2. 
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