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Lipid droplets are ubiquitous cellular structures in eukaryotes and
are required for lipid metabolism. Little is currently known about
plant lipid droplets other than oil bodies. Here, we define dual
roles for chloroplast lipid droplets (plastoglobules) in energy and
prenylquinone metabolism. The prenylquinones—plastoquinone,
plastochromanol-8, phylloquinone (vitamin K1), and tocopherol
(vitamin E)—are partly stored in plastoglobules. This work shows
that NAD(P)H dehydrogenase C1 (NDC1) (At5g08740), a type II
NAD(P)H quinone oxidoreductase, associates with plastoglobules.
NDC1 reduces a plastoquinone analog in vitro and affects the over-
all redox state of the total plastoquinone pool in vivo by reducing
the plastoquinone reservoir of plastoglobules. Finally, NDC1 is re-
quired for normal plastochromanol-8 accumulation and is essential
for vitamin K1 production.

lipidomics | alternative electron flow | high light

Energy production in plants largely relies on oxygenic photo-
synthesis, implicating linear electron flow from water to NAD

(P)H catalyzed by photosystems (PS) I and II. For optimal energy
production, however, plants and algae have additional pathways,
such as chlororespiration and cyclic electron transport around
PSI, allowing the electrons to be recycled into the intersystem
electron transport chain (1–4) (Fig. S1). In angiosperms, those
alternative electron flows are mediated in part by the proton
gradient regulation 5 (PGR5)/PGR5-like 1 (PGRL1) pathway
and in part by a multisubunit NAD(P)H:plastoquinone oxidore-
ductase (NDH) complex with similarity to bacterial and mito-
chondrial Complex I (1, 5). Both the PGR5/PGRL1 pathway and
the NDH complex have the ability to reduce plastoquinone (PQ)
by using ferredoxin as the electron donor (6). A similar activity
exists in the green alga Chlamydomonas reinhardtii, but this or-
ganism does not encode the subunits of the NDH complex (7–9).
Instead, a monomeric type II NAD(P)H:quinone oxidoreductase,
NDA2, takes over the function of the NDH complex in cyclic
electron flow and chlororespiration (10, 11). In Arabidopsis
thaliana, seven such type II NAD(P)H dehydrogenase homologs
are encoded by three subfamilies (12): two NDAs, four NDBs,
and one NDC [termed NAD(P)H dehydrogenase C1 (NDC1)].
Their role, if any, in chloroplast electron pathways is not known.
Interestingly, only NDC1 appears to be of cyanobacterial origin
(12). A study using GFP-fusion proteins initially localized all
seven homologs in mitochondria (12). Later, NDC1 was imported
into isolated mitochondria and also chloroplasts, suggesting
a dual localization (13, 14). Furthermore, NDC1 was identified in
proteomics studies of chloroplast lipid droplets (plastoglobules)
(15, 16). The plastoglobules are a site of both prenylquinone
metabolism and storage. Recently, a large reservoir of PQ, pro-
bably not immediately involved in linear electron transport, was

discovered in plastoglobules (17–19). Tocopherol (vitamin E),
phylloquinone (vitamin K1), and plastochromanol-8 (PC-8), a
chromanol derivative of PQ, are also present in plastoglobules
(15, 18–20) (Fig. S2).
Here, we demonstrate that NDC1 functions in a unique

electron-flow pathway to the plastoglobule PQ reservoir and
thereby determines the overall PQ redox state. Unexpectedly,
NDC1 also plays a key role in plastochromanol accumulation
and promotes the production of phylloquinone beyond its non-
methylated 2-phytyl-1,4-naphthoquinone precursor.

Results
Chloroplast Lipid Droplet Localization of NDC1. Earlier studies
suggested either a mitochondrial or dual mitochondrial/chloro-
plast localization for NDC1 (12–14). Two independent proteo-
mics studies identified NDC1 as a chloroplast lipid droplet
(plastoglobule) protein (15, 16). Sucrose-gradient flotation of
total Arabidopsis chloroplast membranes followed by Western
blotting demonstrated cofractionation of NDC1 with the plas-
toglobule markers PGL35 and PGL40 in the low-density frac-
tions as well as the clear separation from the envelope marker
Toc75 and the thylakoid marker LHCB2 (Fig. 1A). Transient
expression of NDC1-YFP in Nicotiana benthamiana protoplasts
resulted in punctate fluorescence mostly inside the chloroplasts
(Fig. 1B). The punctate fluorescence, in most cases, colocalized
with that of the neutral lipid dye Nile Red (Fig. 1D). These
results are consistent with the lipid droplet/plastoglobule locali-
zation of NDC1 indicated by the earlier proteomic studies and
the fractionation experiment (Fig. 1A). Nevertheless, both iso-
lated chloroplasts (Fig. 1F) and mitochondria (Fig. 1G) imported
synthetic, full-length [35S]-labeled pre-NDC1 in vitro, resulting in
protease-protected, mature forms in both cases.

Photosynthetic Parameters of the ndc1 Mutant. We isolated two
homozygous transfer-DNA insertion lines for the NDC1 gene:
Salk_024063 and GABI_614F03, named ndc1-1 and ndc1-3, re-
spectively. Immunoblotting with specific antibodies indicated the
absence of the NDC1 protein and confirmed the homozygous
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knockout nature of the two mutants (Fig. S3A). Neither of the
lines had a visible phenotype (Fig. S3B).
We measured several chlorophyll fluorescence parameters in

WT and ndc1-1 leaves (hereafter called ndc1) and also, for
comparison purposes, in leaves of the ndho mutant (hereafter
called ndh1) lacking the NDH complex (21): the maximal quan-
tum yield of PSII photochemistry (Fv/Fm) was determined in the
dark, whereas the actual PSII quantum yield (ΔF/Fm′) and the
nonphotochemical quenching of chlorophyll fluorescence were
measured at different photon flux densities (PFDs) (Fig. S4 A and
B). None of those parameters differed between WT and the ndc1
mutant. We also analyzed alternative electron flows, which do-
nate electrons from the stroma to the PQ pool, by using meas-
urements of chlorophyll fluorescence (Fig. S4C), P700 redox state
(Fig. S4D), and chlorophyll thermoluminescence (Fig. 2). The
postillumination rise in chlorophyll fluorescence, which is in-
dicative of PQ and primary quinone acceptor (QA) reduction

specifically mediated by the NDH complex (21), remained un-
changed in ndc1 compared with WT (Fig. S4C). We also mea-
sured the postillumination reduction of oxidized P700, the PSI
reaction center pigment (22). Although a slight increase in the
half life (t½) of P700 reduction was observed in the ndh1 mutant,
indicating a slowdown of the electron donation to P700, the ndc1
mutation had no effect on this parameter (Fig. S4D). Fig. 2A
shows the afterglow thermoluminescence band, induced by far-
red preillumination, that corresponds to a heat-induced back
electron transfer to the PQ pool in the dark (23). In Arabidopsis,
this pathway has been shown to reflect mainly the NDH activity
(24, 25), as confirmed here by the strong reduction of this band in
ndh1. Again, no difference was found between WT and ndc1.
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Fig. 1. NDC1 lipid droplet localization. (A) Western blotting of chloroplast
membrane fractions separated by sucrose-gradient flotation. Toc75 and
LHCB2 are envelope and thylakoid markers, respectively. PGL35 and PGL40
are plastoglobule markers. CP, total chloroplast; St, stroma. (B) NDC1-YFP
under the control of the cauliflower mosaic virus 35S promoter was tran-
siently expressed in tobacco protoplasts. Transformed protoplasts were an-
alyzed by confocal laser microscopy. (C) The neutral lipid dye Nile Red
reveals lipid droplets in chloroplasts (plastoglobules). (D) The first merged
image shows the superposition of NDC1-YFP and Nile Red in white. (E) The
second merged image shows the chlorophyll autofluorescence to visualize
chloroplasts. (F) 35S-labeled pre-NDC1 (lane 1) was incubated with isolated
chloroplasts in vitro in a time-course experiment (0, 2, 5, and 10 min, lanes
2–5). The imported, lower molecular mass NDC1 was resistant to exoge-
nously added thermolysin protease (lane 6). (G) 35S-labeled pre-NDC1 was
incubated with isolated mitochondria in vitro (lane 7). The experiment was
analyzed at the 0- and 30-min time points (lanes 8 and 10). The imported,
lower molecular mass NDC1 was resistant to exogenously added proteinase
K (lanes 9 and 11).
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Fig. 2. Thermoluminescence measurements in WT, ndc1, and ndh1 mutant
leaves of Arabidopsis. (A) Far-red light-induced thermoluminescence signal
in WT Arabidopsis leaves and in mutant leaves (ndc1, ndh1) grown under
standard conditions. The band peaking at temperature >35 °C is the so-
called afterglow band. The shoulder observed at lower temperature (∼20 °C)
is a B band corresponding to the S2/3 QB− charge recombination. The data
are representative traces of at least six separate experiments. (B) Immuno-
detection of NDC1 in total extracts of WT and two ndc1mutant lines (ndc1-1
and ndc1-3) under normal and high-light growth conditions. The upper
band, weakly visible in the WT under low-light conditions and more strongly
under high-light conditions, corresponds to the NDC1 protein. The band is
absent from the ndc1-1 and ndc1-3mutants. The lower band is a nonspecific,
cross-reacting signal. (C) Effects of DPI (15 and 30 μM) on the afterglow
thermoluminescence band of WT and ndh1 mutant leaves acclimated for 7 d
to high light. Data are representative traces of three separate experiments;
(D) Afterglow thermoluminescence band measured in leaves of the ndh1
mutant and the ndc1 ndh1 mutant acclimated for 7 d to high light. Data are
representative traces of at least six separate experiments.
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From those results, we can conclude that NDC1 and NDH do not
fulfill a similar function, and therefore NDC1 is probably not
directly involved in cyclic or chlororespiratory electron flows (Fig.
S1) under standard growth conditions.
We also analyzed plants previously exposed to high-light con-

ditions that induce accumulation of plastoglobules (26) and in-
crease expression of theNDC1 gene in the WT (Fig. 2B) and ndh1
mutant (Fig. S5) (27). In WT, high light shifted the afterglow band
toward lower temperatures compared with low light (Fig. 2 A and
C). This band shift is indicative of an activation of the cyclic elec-
tron pathway: electrons are rapidly transferred to the secondary
quinone acceptor (QB) at room temperature, leading to charge
recombination betweenQB− and the S states and to themerging of
the afterglow bandwith the B band (28, 29). This activation was not
observed in ndh1 mutant leaves. Rather surprisingly, high light
induced the appearance of a unique band in this mutant, peaking at
∼42 °C (Fig. 2 C and D). This band was insensitive to antimycin A
(Fig. S6) but showed a high sensitivity to diphenyleneiodonium
(DPI), a known inhibitor of type II NAD(P)H:quinone oxidor-
eductases (7) (Fig. 2C). Moreover, its amplitude was strongly re-
duced in the ndc1 ndh1 double mutant (Fig. 2D), indicating the
participation of NDC1 in this nonphotochemical electron flow.

In Vitro Activity of NDC1. NDC1 is a predicted NADH/NADPH:
quinone reductase, and the thermoluminescence experiments
supported such a role in vivo. For in vitro experimentation, purified
recombinant NDC1 protein was incubated with NADPH as the
electron donor and decyl-PQ (Fig. 3A). The decyl derivative is
more soluble because of the replacement of the highly hydrophobic
isoprenoid chain. We tracked the reactions by recording the oxi-

dation ofNAD(P)H at 340 nm. For decyl-PQ, wemeasuredKm= 9
μMandVmax = 46 μmol/mg per min (Fig. 3A). DPI inhibited decyl-
PQ reduction in the presence of NAD(P)H with a half-maximal
inhibition at ∼2.5 μM (Fig. 3B). Isolated plastoglobules (Fig. 3C)
and decyl-ubiquinone (with NADH as the electron donor) (Fig.
3D) also functioned as NDC1 substrates in vitro.
To determine how NDC1 affects prenyllipid levels in leaf

extracts, we targeted PQ (Fig. 3 E and F), its derivative PC-8
(Fig. 3G), and α-tocopherol (Fig. 3H) for quantification by using
HPLC coupled with UV and fluorescence detection systems.
Neither tocopherol nor PQ were diminished in ndc1 relative to
WT. Interestingly, the PQ pool was substantially more oxidized
in ndc1 (50% oxidation) compared with WT (30% oxidation)
(Fig. 3 E and F). Another striking result was the strong decrease
of PC-8 in ndc1 leaves (Fig. 3G). In contrast, the ndh1 mutant
did not show any significant change in the PQ redox state or in
the PC-8 concentration.

Untargeted Lipidomic Analysis of the ndc1Mutant. To determine the
more general role of NDC1 in chloroplast metabolism, we carried
out untargeted lipidomics analyses (Fig. 4). Total lipid extracts of
WT, ndc1 (both ndc1-1 and ndc1-3), ndh1 single mutants, and the
ndc1 ndh1 doublemutant were prepared and injected into an ultra
HPLC–quadrupole time-of-flight mass spectrometer (UHPLC-
QTOFMS). The data obtained were subjected to multivariate
analysis to determine differences in lipid content between samples
(Fig. 4A). Using principal component analysis, we observed two
distinct groups (Fig. 4A): one containingWT and the ndh1mutant
and the other containing the ndc1 and ndc1 ndh1 mutants. Prin-
cipal component analysis loadings were then investigated and
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revealed that two variables were mostly contributive to the dis-
crimination between both groups: m/z 450.3494 at 4.99 min for
WT and ndh1 and m/z 436.3336 at 4.64 min for ndc1 and ndc1
ndh1 (Fig. 4B and Table S1). The ion at m/z 450.3494 was asso-
ciated to the molecular formula C31H46O2 (error = 0.9 ppm). A
high-resolution MS/MS experiment gave a main fragment at m/z
185.0604, corresponding to the raw formula C12H9O2 (error = 0.5
ppm) and a smaller fragment at m/z 225.0910 (C15H13O2, error
2.7 = ppm). These molecular and fragment ions were typical of
phylloquinone, a finding that was further confirmed by the in-
jection of a standard compound that yielded identical mass
spectra and eluted at identical retention times (Fig. S7). The ion
atm/z 436.3336 corresponded to themolecular formula C30H44O2
(error = 1.1 ppm) and could be caused by the demethylated form
of phylloquinone (2-phytyl-1,4-naphthoquinone). The loss of
a methyl group was confirmed byMS/MS, which generated amain
fragment at m/z 171.0446 (C11H7O2, error = 0.0 ppm) together

with a smaller fragment at m/z 211.0760 (C14H11O2, error = 0.5
ppm). No standard compound was available for this molecule, and
the ion atm/z 436.3336 was thus tentatively annotated as 2-phytyl-
1,4-naphthoquinone. The latter was further confirmed by using
the AtmenG mutant known to accumulate 2-phytyl-1,4-naph-
thoquinone instead of phylloquinone (20): as in ndc1, the peak at
m/z 436.3336 was present, whereas phylloquinone was almost
absent (Fig. S7). Phylloquinone levels in the whole plant were
statistically similar inWT and ndh1mutant with 2.76 and 3.23 μg/g
of fresh weight (FW), respectively, whereas 2-phytyl-1,4-naph-
thoquinone was almost completely absent from both lines (0.07
and 0.06 μg/g of FW inWT and ndh1, respectively). Conversely, in
ndc1 and ndc1 ndh1 mutants, concentrations of phylloquinone
were very low (0.02 and 0.05 μg/g of FW, respectively) and those
of 2-phytyl-1,4-naphthoquinone were much higher, with 2.82 and
2.83 μg/g of FW, respectively. Interestingly, the levels of 2-phytyl-
1,4-naphthoquinone in ndc1 and ndc1 ndh1 mutants were similar
to those of phylloquinone in WT and ndh1 mutant (Fig. 4C).

AtMENG Expression in the ndc1 Mutant. The absence of phylloqui-
none and its apparent replacement by the demethyl form in the
ndc1 mutant lines is surprising. It is known that AtMENG is re-
quired for the final methylation step of phylloquinone bio-
synthesis (20). We used RT-PCR to determine whether AtMENG
is still expressed in the ndc1 and ndc1 ndh1mutants (Fig. S8). We
detected no significant differences in the AtMENG expression
levels between the WT and the ndc1, ndh1, and ndc1 ndh1
mutants, indicating that AtMENG is normally expressed in the
mutant background and strongly suggesting that the active en-
zyme is also present.

Discussion
This study supports the function of NDC1 in chloroplasts. In
chloroplast fractionation experiments, NDC1 was almost exclu-
sively detected in low-density plastoglobule-containing fractions
(Fig. 1A). Moreover, NDC1-YFP fluorescence colocalized with
Nile Red staining (mostly in chloroplasts), emphasizing its asso-
ciation with lipid droplets (Fig. 1D). Nevertheless, this study also
confirms in vitro import into both chloroplasts and mitochondria
(Fig. 1 F and G) and does not exclude the dual localization of
NDC1. A possible explanation for these apparently disparate
findings is that NDC1 accumulates predominantly in chloroplasts
and only at lower levels in mitochondria. A potential function in
mitochondria was supported by the ability of purified, recombi-
nant NDC1 to use decyl-ubiquinone together with NADH as a
substrate (Fig. 3D). Overall, our observations favor the function
of NDC1 in chloroplasts: although no effect on linear or cyclic
electron transfer in chloroplasts was observed (Fig. S4), a unique
afterglow thermoluminescence band (indicative of electron flow
to PQ) appeared after highlight treatment of the ndh1 mutant
(Fig. 2). Its characteristics (insensitivity to antimycin A, sensitivity
to DPI, and disappearance in the ndc1 ndh1 double mutant) in-
dicate that NDC1 functions in the chloroplast in a unique path-
way of nonphotochemical PQ reduction parallel to cyclic and
chlororespiratory electron flow (Fig. S1). Likely, this pathway
corresponds to NDC1-catalyzed electron flow toward the PQ
contained in the plastoglobules (17, 18) (Fig. S1). In support of
this hypothesis, purified plastoglobules functioned as a quinone-
containing substrate and accepted electrons from NADPH and
the recombinant NDC1 enzyme in vitro (Fig. 3C). In agreement
with this data, the PQ pool was significantly more oxidized in the
ndc1 mutant than in the WT (Fig. 3 E and F).
Decyl-PQ functioned as an in vitro substrate of recombinant

NDC1 using NADPH as the electron donor (Fig. 3A). The ability
of NDC1 to also use purified plastoglobules as a substrate was
probably attributable to the PQ contained inside plastoglobules.
This reaction may therefore reflect an in vivo scenario in which
NDC1 binds to the plastoglobule surface thereby gaining access
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Fig. 4. Untargeted lipidomics of ndc1 mutants. (A) Methanolic extracts
from leaves of ndc1, ndh1, and ndc1 ndh1 (dk) mutants lines were analyzed
with UHPLC-QTOFMS. (A) Principal component analysis score plots (PC1 ×
PC2) with their percentages of explained variance, based on normalized data
from negative ion UHPLC-QTOFMS analyses. (B) Corresponding loading plot
showing the most relevant variables responsible for the separation found in
the score plot (436.3336 on far left corresponds to 2-phytyl-1,4-naph-
thoquinone; 450.3494 on far right corresponds to phylloquinone). (C)
Quantification of phylloquinone and 2-phytyl-1,4-naphthoquinone in WT
(Col0) and ndc1, ndh1, and ndc1 ndh1 mutant plants obtained from a stan-
dard solution of phylloquinone. Data represent the mean of two in-
dependent experiments (n = 3 each).
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to and reducing the PQ substrate inside and resulting in a higher
overall reduction of the PQ pool in leaves.
This interpretation is in good agreement with the results of

Kruk and coworkers (18, 30) who reported a large PQ reservoir
that is not immediately implicated in photosynthesis and may be
located in plastoglobules. Moreover, they proposed that this PQ
reservoir plays a role as a lipid antioxidant in the thylakoid
membrane. In such a scenario, NDC1 may function in the re-
generation of reduced PQ upon oxidation, which would require
the diffusion of PQ between plastoglobules and the thylakoid
membrane, the compartment where PQ would likely function as
an antioxidant in addition to its role as an electron carrier in
photosynthesis. The diffusion of lipid compounds between plas-
toglobules and the thylakoid membranes has been proposed ear-
lier, and physical connections between the outer lipid leaflet of the
thylakoid membrane and the plastoglobule polar lipid monolayer
were observed (17, 18, 26, 31).
UsingHPLC andUHPLC-QTOFMS, we observed that the PC-

8 concentration was strongly diminished in ndc1 mutants (Fig.
3G). PC-8 is derived from PQ by the activity of VTE1, the to-
copherol cyclase, present in the plastoglobule (18, 19, 32). For the
cyclase to close the chromanol ring in dimethylphytylquinone (the
precursor of γ-tocopherol) or in PQ, the quinol groups must
preferentially be present in the reduced form (33). Thus, the re-
duction of PC-8 levels may reflect the redox state of the plasto-
globule PQ reservoir, which is more oxidized than in WT.
Interestingly, α-tocopherol was present at WT levels in the ndc1
mutant, indicating that NDC1 is not required for its accumulation.
The untargeted lipidomics experiments led to unexpected dis-

coveries (Fig. 4). The most prominent differences between WT
and the ndc1 mutants via UHPLC-MS were the almost complete
absence of phylloquinone and the appearance of an additional
peak corresponding in mass to the 2-phytyl-1,4-naphthoquinone,
precursor of phylloquinone, in ndc1 mutants. It is known that the
complete absence of phylloquinone in Arabidopsis causes a lethal
albino phenotype (34). However, in the AtmenG mutant (like in
ndc1), its immediate precursor, 2-phytyl-1,4-naphthoquinone, still
accumulates (20). Surprisingly, the AtmenGmutant has no visible
phenotype, and it is therefore plausible that the 2-phytyl-1,4-
naphthoquinone precursor functionally replaces phylloquinone.
It is unclear why phylloquinone does not accumulate in the ndc1
mutant. In RT-PCR experiments, AtMENG was expressed at the
same level in both ndc1 mutants and WT, suggesting that the
enzyme is still present. However, AtMENG activity may be down-
regulated at the enzyme level, for instance, by the PQ redox state
of the plastoglobules. Another possibility would be that, in the
absence of NDC1, AtMENG is no longer correctly recruited to
the site of its activity, which may implicate plastoglobules.
There are some indications that plastoglobules play a role in

phylloquinone metabolism. A fraction of the total phylloquinone
pool is present in the plastoglobules. In the AtmenGmutant, the 2-
phytyl-1,4-naphthoquinone precursor of phylloquinone accumu-
lated to a large extent in plastoglobules (20). Both the multiactivity
protein PHYLLO andAtMENGgave punctate fluorescence when
transiently expressed as GFP-fusion proteins in Arabidopsis pro-
toplasts, suggesting a plastoglobule localization (20, 35).
In conclusion, NDC1 represents a unique electron input device

for PQ. Unlike C. reinhardtii NDA2 (10, 11), it does not seem to
be directly implicated in cyclic/chlororespiratory electron flows in
thylakoids, but rather it plays a role in electron transfer to the
plastoglobule PQ pool—a role that appears to be essential for
prenylquinone metabolism.

Materials and Methods
Plant Materials and Growth Conditions. Arabidopsis plants were grown on soil
(Ricoter) or in vitro on 0.8% phyto agar (Duchefa) containing 0.5× Mura-
shige and Skoog medium (Duchefa) under short-day conditions (8 h light, 16
h dark, 150 μmol·m−2·s−1). For high-light experiments, plants aged 4 wk were

acclimated for 7 d by increasing PFD to 750 μmol·m−2·s−1. Pea (Pisum sat-
ivum) seeds were germinated on soil after one night in water and grown in
a chamber for 2 wk under a long-day conditions (16 h light, 8 h dark). Ni-
cotiana tabacum cv. petit Havana plants used for protoplast isolation were
grown for 4–5 wk on 0.5× Murashige and Skoog medium under long-
day conditions.

Chlorophyll Fluorescence and Thermoluminescence. Chlorophyll fluorescence
emission from attached leaves was measured with a PAM-2000 fluorometer
(Walz) as previously described (21, 36). Thermoluminescence measurements
were performed on leaf discs (1 cm in diameter) with a custom-made ap-
paratus that has been described previously (24). The sample was cooled at
1 °C for 40 s, then it was illuminated for 30 s with far-red light (>715 nm,
3 W·m−2). Immediately after interrupting far-red illumination, temperature
was increased from 1 °C to 70 °C at a rate of 0.5 °C·s−1, and luminescence was
measured during heating with a photomultiplier tube.

Prenyllipid Quantification. Tocopherols, PQ (reduced and oxidized), and PC-8
were extracted, separated, and quantified by HPLC using the method de-
scribed in refs. 18 and 30. The HPLC column was a Phenomenex C18 reverse-
phase column (Kinetex, 2.6 μm, 100 × 4.6 mm).

P700 Redox Changes. The redox state of P700, the reaction center of PSI, was
measured in attached leaves using a dual-wavelength emitter/detector ED-
P700DW-E (Walz) connected to a PAM-101 unit, as previously described (8).
P700 was oxidized by illuminating the leaf with far-red light (>715 nm,
25 W·m−2), and the rate of P700 reduction was measured in the dark after
switching off the far-red light.

Chloroplast Fractionation and Western Blot Analysis. Chloroplast fractionation
was carried out as described in ref. 14. Western blot analysis was carried out
as described in ref. 14. Anti-NDC1 serum was used at 1/1,000 dilution on
5% milk/TBS.

In Vivo Targeting. Transient transformation of protoplasts was done by using
the polyethylene glycol method (37, 38) with reduced cellulase (1%) and
macerozyme (0.25%; Serva). Then, 20 μg of pEarlyGate101-NDC1-YFP was
used to transform 500,000 tobacco protoplasts. Fluorescence was monitored
with a Leica TCS SP5 confocal microscope at 48–80 h after transformation.
Nile Red was used at 10 μg/mL (38).

In Vitro Import into Isolated Mitochondria and Chloroplasts. The radioactive
full-length NDC1 protein was produced in a coupled transcription–translation
system (TNT T7 Quick Coupled Transcription/Translation System; Promega)
using pET21-NDC1-H6 vector according to the manufacturer’s instructions.
Import of [35S]-labeled fusion protein into purified pea mitochondria was
performed according to ref. 39. Import into purified Arabidopsis chloroplasts
was performed according to ref. 40. All experiments were resolved by SDS/
PAGE and analyzed by PhosphorImaging.

Production of Anti-AtNDC1 Antibody. Full-length recombinant NDC1-H6 pro-
tein was purified under denaturing conditions by nickel nitrilotriacetic acid
affinity chromatography (Qiagen) according to the manufacturer’s recom-
mendations. Polyclonal antibodies were produced in rabbit (Eurogentec)
and were affinity-purified against NDC1-H6 coupled to Affi-Gel 10 (Bio-Rad)
according to the supplier’s recommendations.

NDC1 Enzyme Assay. Activity was measured in 1 mL of 50 mM Hepes buffer
[+KOH (pH 7.2)] containing 200 μM NADH and decyl-prenylquinone con-
centrations from 0.5 and 750 μM. The reaction was started by the addition of
18 μg of nickel nitrilotriacetic acid affinity-purified mature NDC1-H6, and
NADPH absorbance decay was measured at 340 nm.

Extraction and LC/MS Analysis. Plants (6-wk-old, n = 6) were ground to a fine
powder under liquid nitrogen. Samples (100 mg) were extracted in 500 μL of
MeOH for 2 min in a bead mill (MM 200; Retsch) and centrifuged (4 min at
14,000 × g), and the supernatant was recovered. The untargeted analysis of
lipids was carried out with an Acquity UPLC system from Waters coupled to
a Synapt G2 MS QTOF from Waters equipped with an atmospheric pressure
chemical ionization source. The separation was performed at 60 °C on an
Acquity BEH C18 column (50 × 2.1 mm, 1.7 μm) at a flow rate of 500 μL/min
under the following conditions (A, water; B, MeOH): 80–100% B for 6 min,
holding at 100% B for 3 min, followed by reequilibration at 80% for 2
min. The QTOF was operated at a resolution of 20,000 FWHM in MS positive
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and negative ion modes over an m/z range of 225–1,200 in centroid mode.
Scan time was 0.5 s. The corona current was set to 12 μA, and the cone
voltage was set to 40 V. The source temperature was maintained at 120 °C,
the atmospheric pressure chemical ionization probe was at 370 °C, and
desolvation and cone gas flows were set to 800 L/hr and 20 L/hr, respectively.
Accurate mass measurements (< 2 ppm) were obtained by infusing a solu-
tion of leucin-enkephalin at 400 ng/mL at a flow rate of 10 μL/min through
the Lock Spray probe (internal calibration). MS/MS product ion spectra were
obtained for phylloquinone and its demethylated form by using precursor
ions at m/z 450.3 and 436.3, respectively. The collision energy was set to 25
eV, and argon was used as collision gas at a flow rate of 2.1 mL/min.

Absolute quantification of phylloquinone and 2-phytyl-1,4-naph-
thoquinone was performed with calibration curves obtained from standard
solutions of phylloquinone at 100 ng/mL, 250 ng/mL, 1,000 ng/mL, and
2,500 ng/mL

Data Preprocessing and Multivariate Analysis. Peak picking and data pro-
cessing including multivariate analysis were performed with MarkerLynx XS
software (Waters), enabling the generation of a list of variables characterized
by their m/z, retention time, and intensity. Peak areas of the extracted

variables were normalized by dividing them by the sum of the intensities
of all detected variables in each sample. Normalized variables were then
Pareto-scaled and analyzed by principal component analysis.

Real-Time RT-PCR. Total RNA was extracted from Col0 control plants and
mutant lines with the RNeasy Mini Kit (Qiagen). Then, 1 μg of total DNase-
treated RNA was reverse-transcribed with the M-MLV reverse transcriptase
(Promega). Real-time PCR was performed with SYBR Green (Thermo Scien-
tific) on an iCycler with ACT2 as a reference. Specific primers to respective
genes were as follows: ACT2 forward, 5′-TGGAATCCACGAGACAACCTA-3′
and reverse, 5′-TTCTGTGAACG ATTCCTGGAC-3′); AtMENG forward, 5′- ATT-
CGATGCGGTTACGATGG-3′ and reverse, 5′- ACTCCTTTGCAAGATCATAAAC-3′;
and NDC1 forward, 5′-AGCTTGATTGGTGAAATGCC-3′ and reverse, 5′-CTGC-
GGTTATGCAGGAGTAG-3′.
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