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ABSTRACT 

In lampreys as in other vertebrates, brainstem centers play a key role in the 

initiation and control of locomotion. One such center, the mesencephalic locomotor 

region (MLR), was identified physiologically at the mesopontine border. Descending 

inputs from the MLR are relayed by reticulospinal neurons in the pons and medulla, but 

the mechanisms by which this is done remain unknown. Because previous studies in 

higher vertebrates and lampreys described cholinergic cells within the MLR region, we 

investigated the putative role of cholinergic agonists in the MLR-controlled locomotion. 

The local application of either acetylcholine or nicotine exerted a direct dose-dependent 

excitation on reticulospinal neurons as well as induced active or fictive locomotion. It 

also accelerated ongoing fictive locomotion. Choline acetyltransferase-immunoreactive 

cells were found in the region identified as the MLR of lampreys and nicotinic 

antagonists depressed, whereas physostigmine enhanced the compound EPSP evoked in 

reticulospinal neurons by electrical stimulation of this region. In addition, cholinergic 

inputs from the MLR to reticulospinal neurons were found to be monosynaptic. When the 

brainstem was perfused with D-tubocurarine, the induction of swimming by MLR 

stimulation was depressed, but not prevented, in a semi-intact preparation. Altogether, the 

results support the hypothesis that cholinergic inputs from the MLR to reticulospinal cells 

play a substantial role in the initiation and the control of locomotion. 
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INTRODUCTION 

Locomotor behaviors include both sensory-evoked locomotion organized at the 

rhombencephalic level and goal-directed locomotion that requires higher brain structures 

(Grillner, 1985; McClellan, 1986). The neural elements responsible for these locomotor 

behaviors are not fully identified, nor are the underlying cellular mechanisms involved. In 

both cases, however, the supraspinal locomotor command is likely to be channeled via 

the reticulospinal (RS) system, which constitutes the main descending system involved in 

the initiation and control of locomotion in lampreys (Brodin et al., 1988; Ohta and 

Grillner, 1989). Reticulospinal neurons directly activate spinal locomotor networks 

(Rovainen, 1974; Buchanan and Cohen, 1982) and receive sensory information from 

various sources (Rovainen, 1982; Bussières & Dubuc, 1992; Dubuc et al., 1993a,b; Viana 

Di Prisco et al., 1995; Deliagina et al., 1995), as well as feedback from the spinal 

locomotor networks (Dubuc & Grillner, 1989). Cells with such input/output 

characteristics have been referred to as “command neurons” (see Frost & Katz, 1996), 

and this role has been proposed for lamprey RS neurons (McClellan & Grillner, 1984; 

McClellan, 1987, 1988). 

Recently, we described a cellular mechanism by which cutaneous inputs are 

transformed into an escape locomotor command through intrinsic properties of RS 

neurons in lampreys (Viana Di Prisco et al., 1997, 2000). Moreover, we established that 

brainstem regions rostral to the rhombencephalon are not essential for escape locomotion 

(Cardin et al., 1999). Goal-directed locomotion on the other hand, has only recently 

attracted significant interest in lampreys (see El Manira et al., 1997), although 

exploratory, food seeking, and attack behaviors are all important for the survival of these 

animals. We have recently shown that lamprey RS cells are controlled by a brainstem 

structure comparable to the mesencephalic locomotor region (MLR; Sirota et al. 2000) 

originally described in mammals (for reviews see: Shik & Orlovsky, 1976; Jordan, 1998). 

Little is known about the mechanisms by which the MLR acts onto RS neurons to 

generate locomotion. The pedunculopontine nucleus (PPN), traditionally associated to the 

physiologically defined MLR (for reviews see: Garcia-Rill & Skinner, 1986; Jordan, 

1998), contains cholinergic neurons that project to the reticular formation of cats and rats 
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(Mesulam et al., 1983; Garcia-Rill & Skinner, 1987a; Skinner et al., 1990; Lai et al., 

1999). Interestingly in mammals and birds, the focal injection of acetylcholine agonists 

within the reticular formation elicits locomotion (Garcia-Rill & Skinner, 1987a; 

Sholomenko et al., 1991). Moreover, cholinergic cells were recently seen in the isthmic 

region of lampreys (Pombal et al., 2001). However, no direct link between a cholinergic 

command originating from the MLR and locomotion was ever reported in any vertebrate 

species. 

We investigated in lampreys, the effects of cholinergic agonists on RS neurons and 

on locomotor behavior. Here, we describe that acetylcholine induces a nicotinic receptor-

mediated depolarization of RS cells and elicits locomotion. We also provide evidence 

supporting our hypothesis that cholinergic inputs play a substantial role in the MLR 

command to RS cells in lampreys. 
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MATERIALS AND METHODS 

Animal preparation 

Experiments were performed on larval (n=59) and adult (n=28 newly transformed, 

and 3 spawning) lampreys, Petromyzon marinus. All procedures conformed to the 

Canadian Medical Research Council guidelines and were approved by the University 

Committee for Animal Care and Use. Under tricaine methanesulphonate (MS 222, 

100 mg/l; Sigma-Aldrich, Oakville, ON) anesthesia, the animals were opened along the 

ventral midline and eviscerated. The dissection and experiments were performed in cold 

oxygenated Ringer’s (9
o
C, pH 7.4) with the following composition (in mM):, 2.1 KCl, 

2.6 CaCl2, 1.8 MgCl2, 4 Hepes, 4 Dextrose, 1 NaHCO3. Some experiments were 

performed in saline with higher divalent cation concentrations, the sodium chloride 

concentration reduced accordingly (in mM): 10.8 CaCl2, 7.2 MgCl2, and 103 NaCl. The 

rostral end of the body was dissected up to the last gill, and the brain and spinal cord 

were isolated in vitro with the underlying cranium and notochord kept for support. The 

spinal cord was cut either at the first spinal segment out of 100 or between segmental 

levels 10 and 20. The responses to the local application of cholinergic agonists were 

similar in either case. 

A semi-intact preparation (n=42) was also used, where the rostral end of the animal 

was dissected out as described above and pinned down to the Sylgard bottom of the 

experimental chamber perfused with Ringer’s. The caudal two thirds of the body and the 

tail were left intact to swim freely behind, and insulated bipolar EMG electrodes were 

inserted into the myotomes with an inter-electrode distance of 3 mm (Teflon coated 

stainless steel wire, diameter 50 m; California Fine Wire Company, Grover Beach, CA). 

Two pairs of EMG electrodes were usually placed between segmental levels 20 and 25, 

one on each side of the body. For decerebration purposes, a complete transection was 

made between the mesencephalon and the diencephalon. However, in experiments where 

locomotion was initiated by local application of a cholinergic agonist, the transection was 

usually performed lower, between the mesencephalon and the rhombencephalon. The 

local application of cholinergic agonists provided similar results whether the 

mesencephalon was kept or not. 
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Electrophysiology and drug application 

The MLR of semi-intact lampreys was electrically stimulated (1-10 A, 1 ms, 

5-10 Hz) with glass-coated tungsten electrodes (5 M with 10 m tip exposure) using a 

pulse generator S88 (Grass Instrument Co, Quincy, MA) connected to a stimulus 

isolation unit (Grass Instrument Co). For later histological identification, an electrolytic 

lesion (n=12) was made at the stimulation site using positive DC current (5 A) applied 

for 10 s at the end of experiments. 

Reticulospinal neurons in the middle (MRRN, n=113) and posterior (PRRN, n=5) 

rhombencephalic reticular nuclei were impaled under visual guidance with sharp glass 

micropipettes (4M K-acetate, ~100 M). In all experiments, the impaled neurons were 

the largest reticular neurons described by Müller (see Rovainen, 1982) in the brainstem of 

the lamprey, and only cells with a resting membrane potential consistent throughout the 

experiment were considered in this study. The intracellular signals were recorded using 

an Axoclamp 2A (Axon Instruments Inc., Foster City, CA) and directed to a computer via 

a TL-1 DMA interface (Axon Instruments Inc., sampling rate: 1-5 kHz). Suction 

electrodes were used to monitor the activity of ventral roots on each side between 

segmental levels 10 and 20. Acquisition and analysis of RS neuron responses (i.e., peak 

amplitudes, areas, 10-90% slopes) were performed using the pClamp9 pack program 

(Axon Instruments, Inc.). 

Small doses (0.4-10.6 nL) of either acetylcholine (1-5 mM) or nicotine (1-5 mM) 

were pressure-applied locally onto RS neurons through a glass micropipette using a 

Picospritzer (General Valve Corporation, Fairfield, NJ). Dose-response curves were built 

by randomly applying short-duration ejections of the drugs with a minimal time interval 

of 1 min: the random application was used to prevent possible cumulative effects , and 

the 1 min interval was tested by repeating three times the ejection of the same drug 

quantity as the minimal delay required to avoid any possible desensitization of the 

receptors. Fast Green was added in the pipette to monitor the extent of the drug diffusion. 

When only Fast Green and Ringer's were ejected onto RS cells, no cellular responses 

were ever observed. To elicit locomotion, larger volumes (30-50 nL) of either cholinergic 

agonist solutions were ejected over the entire MRRN on both sides. A higher 

concentration of the cholinergic agonists (5 mM) was sometimes used because the ejected 
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solution tended to diffuse in the bathing Ringer's before reaching the RS cells. All other 

drugs were dissolved in fresh Ringer’s and bath applied. These included: 6-cyano-7-

nitroquinoxaline-2,3-dione (CNQX, 10 M), 2-amino-5-phosphonopentanoate (AP-5, 

100 M), dizocilpine (MK-801, 100 M), atropine (10 M), physostigmine (eserine, 

100 M), D-tubocurarine (30-100 M), -bungarotoxin (0.1 M), tetrodotoxin (TTX, 

3 M) and N-methyl-D-aspartate (NMDA, 100 M). In such experiments, a Vaseline 

wall was built just below the rhombencephalon delimiting two distinct, watertight 

perfusion compartments. NMDA was applied in the spinal cord bath, whereas all other 

drugs were applied into the brainstem bath. After each bath application of a drug, a wash 

out period of 15 minutes to more than one hour depending on the drug ejected, was 

allowed for recovery. All drugs were purchased from Sigma-Aldrich. 

Statistical analyses 

Results are expressed as means ± standard errors. The correlation between the 

duration of drug ejection and the size of the induced responses was examined with 

regression analysis. In all cases, linear regressions fitted best the data. The statistical 

significance for differences between means was established with either a paired Student’s 

t-test (comparisons of 2 groups) or an ANOVA test (comparisons of more than 2 groups). 

All statistical analyses were carried out using Origin software (OriginLab Corporation, 

Northampton, MA). 

Anatomical studies 

Procedures: Immunohistochemistry for choline acetyltransferase (ChAT), the last 

enzyme in the synthesis of acetylcholine, was used to study in details the distribution of 

cholinergic neurons in the isthmic region of adult lampreys Petromyzon marinus (n=26). 

The brains were fixed by immersion in 4% paraformaldehyde in 0.1 M phosphate buffer 

(pH 7.4) overnight. After agarose embedding, transverse sections were cut at 50µm 

thickness on a vibratome (TPI, St Louis, MO) and collected in 0.1 M phosphate buffer 

(PB). Free-floating sections were treated with 1% H2O2 in phosphate buffered saline 

(PBS) for 30 minutes to reduce endogenous peroxidase activity. After rinsing in 0.1 M 

PBS, the presence of ChAT was revealed according to a procedure adapted from Marin et 

al. (1997), replacing the peroxidase-antiperoxidase technique by the avidin-biotin one. 
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Briefly, sections were incubated with the following solutions: i)- Purified goat anti-ChAT 

serum (Chemicon, Temecula, CA) diluted 1:100 in 0.1 M PBS with 0.5% Triton X-100, 

15% normal horse serum (Gibco, Burlington, ON) and 2% bovine serum albumin 

(Vector, Burlingame, CA) for 40 hours at 4°C; ii)- 0.1 M PBS (3 x 10 minutes); iii)-

 Biotinylated horse anti-goat serum (Vector) diluted 1:50 in the same buffer for 1 hour at 

room temperature; iv)- 0.1 M PBS (3 x 10 minutes); v)- Avidin-horseradish peroxidase 

reagent (Vectastain, Elite ABC KIT, Vector) diluted as directed by the manufacturer in 

PBS for 1 hour at room temperature in darkness; vi)- 0.1 M PBS (3 x 10 minutes). 

Finally, immunostaining was visualized with the glucose oxidase method of Shu et al. 

(1988). However, in order to achieve a better control on the duration of reaction, all the 

reagent concentrations were halved with respect to the initial procedure described by 

these authors. As a control, the primary antiserum was omitted from a series of sections 

in each experiment, and this resulted in no specific labeling of somata or fibers. 

In some experiments, immunohistochemistry for ChAT was performed on 

brainstems where an electrolytic lesion had previously been made in the MLR at the end 

of electrophysiological experiments (n=12). The fixed brains were frozen and cut at 

20 m thickness on a cryostat (American Optical, Buffalo, NY), and the sections were 

mounted on gelatinized slides and left to dry overnight. Immunocytochemistry for ChAT 

was then performed as described above, but on the mounted sections. 

Analysis: Counts and cell size measurements of labeled neurons were made from 

transverse sections on one side of the brainstem in the rostral rhombencephalon and the 

mesencephalic tegmentum. All ChAT-immunoreactive cells were counted each time they 

disappeared as the focus was changed using an optical dissector method (West et al., 

1991; see also Coggeshall & Lekan, 1996). In one specimen, the soma diameter was 

measured along the longest axis as seen on transverse sections. Photomicrographs were 

acquired with a digital camera (Coolpix 995, Nikon, Japan) custom-fitted on a 

microscope (Optiphot-2, Nikon). All the figures were designed using CorelDraw 9 

software (Corel Corp., Ottawa, ON) and 3-dimensional reconstructions of the distribution 

of ChAT- immunoreactive neurons were made using the Autocad 12 software (Autodesk 

Inc., Montreal, QC). 



 9 

RESULTS 

Cholinergic responses in RS neurons 

The local application of acetylcholine (1 mM) onto RS neurons elicited 

depolarizing responses, the amplitude of which increased linearly with the duration of the 

drug ejection, until spiking threshold was reached (n=34; Fig. 1A1). The responses, 

although reduced, persisted under bath application of 3 µM TTX (n=3), indicating that 

acetylcholine exerted direct excitation of RS neurons. There was a linear increase in the 

responses as the ejection duration increased (Fig. 1B1). The response area, which takes 

into account both the amplitude and the duration of the response, displayed a strong 

positive correlation with the duration of the ejection in normal saline (r=0.97; p<0.001; 

Fig. 1A2) as well as under TTX bath perfusion (r=0.97; p<0.001; Fig. 1B2). With a 

higher concentration (5 mM) of acetylcholine in the ejection pipette, a focalized ejection 

onto a given RS neuron generally produced a complete desensitization of the depolarizing 

response, whereby a second ejection was ineffective, and several minutes were required 

for recovery (n=5; not shown). Most of the RS neurons tested responded similarly to the 

local ejection of acetylcholine. 

The bath perfusion of the nicotinic antagonist D-tubocurarine completely blocked 

the depolarizing response to acetylcholine (n=3; Fig. 1C1), suggesting that the latter 

resulted exclusively from the activation of nicotinic receptors. In contrast, bath-

application of either atropine (n=5; Fig. 1C2), or a combination of both NMDA and non-

NMDA glutamatergic antagonists, AP5 (n=4) or MK-801 (n=3) and CNQX (n=7) 

respectively (not shown), did not alter the subthreshold response of RS neurons to 

acetylcholine. This indicated that the small amplitude depolarizations induced by 

acetylcholine, in the absence of any network influences, were mediated exclusively by 

nicotinic receptors. 

Properties of the nicotinic responses 

When nicotine (1-2 mM) was substituted for acetylcholine in the ejection pipette, 

RS neurons from either the MRRN or the PRRN displayed dose-dependent 

depolarizations similar to those elicited by acetylcholine (n=14; Fig. 2A). Short-duration 
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ejection evoked a small depolarization, and the area of the responses increased with the 

duration of the ejection. The best fit of this relation was obtained with a linear regression 

(r=0.97, p<0.001; Fig. 2B). Similarly to acetylcholine, nicotine induced depolarizing 

responses, the largest of which reached spiking threshold (Fig. 2A). Here again, repeated 

local applications of a high concentration (5 mM) of nicotine induced a complete 

desensitization of the response, requiring several minutes for recovery (n=3; not shown). 

In contrast, repeated pressure-applications of a low concentration (1 mM) of nicotine 

unmasked interesting properties of the RS neuron responses: when a subsequent nicotine 

ejection was performed before the membrane potential had returned to its resting value, 

summation occurred in all of the tested RS cells (Fig. 2C; n=5). The membrane potential 

of the RS neurons depolarized until spiking threshold was reached and sustained firing of 

action potentials occurred. Thereafter, additional applications of nicotine did not 

depolarize the cell membrane further. The temporal summation of responses may be an 

important factor in the recruitment of RS cell activity by the MLR (see below).  

Initiation of swimming by cholinergic agonists 

Because acetylcholine and nicotine evoked sustained firing in the RS neurons of 

both MRRN and PRRN, we investigated the possibility that the drugs could also induce 

swimming in a semi-intact preparation (n=17). Repeated pressure applications of 

acetylcholine (1 or 5 mM) into the 4th ventricle over most of the MRRN on both sides 

evoked a long-lasting depolarization in RS neurons accompanied by an increase in EMG 

activity recorded bilaterally from the body and followed by the onset of swimming 

(Fig. 3A). Swimming (EMG bursts) developed after spiking occurred in the recorded RS 

cell and lasted for as long as the cell remained depolarized. The quality of swimming was 

variable from one experiment to another, and the excitability of the preparation appeared 

to be critical. Indeed, about half of the acetylcholine applications resulted in only a tonic 

increase in EMG activity on both sides (not shown). We found no clear relation between 

the occurrence of this tonic activity and the state of the preparation, suggesting that some 

yet unknown and uncontrolled factors intrinsic to the RS system might be involved. In 

contrast, in the other half of the trials, swimming that could last for several minutes was 

elicited and displayed alternate activity in the right and left side EMGs (Fig. 3B, 3C). The 

body movements were then comparable to those occurring in intact animals with a wave 
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of lateral displacement propagating smoothly from the rostral part of the body to the tail 

region (not illustrated). Similar results were obtained when nicotine was substituted for 

acetylcholine in the ejection pipette (n=4; not shown), or when either drugs were ejected 

over RS cells in the PRRN (n=2; not shown). 

Cholinergic control of the swimming activity 

Similar experiments were carried out in the in vitro isolated brainstem-spinal cord 

preparation where acetylcholine (1 or 5 mM) was locally applied onto the whole MRRN 

in the absence of prior locomotor activity (n=12). Fictive locomotion that could last for 

several minutes (Fig. 4A) was then elicited and ventral root discharges alternated on both 

sides (Fig. 4B). Nicotine (1 mM; n=6), ejected either on the MRRN or on the PRRN 

under the same conditions, also triggered fictive locomotion (not shown). 

To study the effects of cholinergic agonists on ongoing fictive locomotion, a double 

bath paradigm was used where the spinal cord was perfused with Ringer’s containing 

100 µM NMDA to activate the spinal locomotor networks, whereas the brainstem was 

perfused with normal Ringer’s (Fig. 5A). In these experiments (n=9), the ventral root 

discharges (Fig. 5B left part) initially showed an unstable rhythmic activity immediately 

after adding NMDA to the spinal bath. This progressively evolved into a fast and stable 

locomotor rhythm, some 7-10 min later (diamonds in Fig. 5C). The effects of a single 

local ejection of acetylcholine (1 or 5 mM) onto the whole MRRN (n=12) differed 

whether studied on the early unstable or the later stable fictive locomotor rhythm. When 

ejected early after the NMDA application, acetylcholine produced, with a delay of 

30-60 s, a significant increase in the frequency of the ventral root bursts. This is 

illustrated in figure 5B where there is a 86.7±0.6% (mean over 8 experiments: 

38.4  8.7%) reduction in period and a 89.1±0.6% (mean: 38.6  9.9%) reduction in burst 

duration. Cumulative data from 12 experiments (Fig. 5C) indicate that acetylcholine 

consistently speeded up the early locomotor rhythm as compared to when NMDA was 

applied alone to the spinal cord bath (compare squares with diamonds in Fig. 5C). The 

inset shows the early part of the graph with an expanded time base. Figure 5D shows that 

the cycle duration for the first 30 cycles after application of acetylcholine (black bars) 

was significantly shorter (p<0.001) than under control conditions (gray bars). The 

reduction was less pronounced for the following 30 cycles, with no significant difference 
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afterwards. In contrast, when the fictive locomotor rhythm had already stabilized after 

NMDA perfusion (n=7), pressure-ejection of acetylcholine onto RS cells did not elicit 

any changes in the period nor the burst duration (empty bars in Fig. 5D). This was also 

true for the five experiments in which acetylcholine was ejected after a previous ejection 

of the drug had already accelerated the fictive locomotor rhythm (included in the empty 

bars of Fig. 5D). 

ChAT-immunoreactive neurons 

The results described above suggest that acetylcholine receptors are present on 

lamprey RS neurons and that their activation elicits locomotion. In order to locate the 

brainstem cholinergic cells that may possibly innervate RS cells, immunohistochemistry 

directed against ChAT was used (n=26). Amongst the brainstem populations of ChAT-

immunoreactive neurons, which included also various groups of motoneurons (see also 

Pombal et al., 2001), two distinct groups of ChAT-immunoreactive neurons were 

observed in the tegmentum at the mesopontine border, in an area that included the 

isthmus and the caudal mesencephalon. The first group was located at the rostrocaudal 

level of the trochlear nucleus, and ChAT-immunoreactive cells were clustered medially 

in the periaqueductal gray (Fig. 6A, B). Cell counts varied from 545 to 781 with a median 

of 628 (n=6). Some of these strongly ChAT-immunoreactive cells were in close 

proximity with the conspicuous isthmic Müller cell I1 (nomenclature of Rovainen, 1982) 

in the anterior rhombencephalic reticular nucleus (Fig. 6B). Another group of ChAT-

immunoreactive cells, i.e. rostral and lateral to the trochlear nucleus, consisted of small 

ovoid cells that were sparsely distributed in the tegmentum (Fig. 6C, D). Cell counts 

ranged from 253 to 403 with a median of 352 (n=5). The cells were significantly less 

numerous than in the caudal group (p<0.01). The mean size of cell body in the rostral 

group of ChAT-reactive neurons (10.7±0.2 µm) was also significantly smaller (p<0.01) 

than in the caudal group (11.8±0.2 µm). A 3-D representation illustrating the location of 

ChAT-immunoreactive neurons within this area of the brainstem (Fig. 7) revealed how 

the caudal group of ChAT-immunoreactive neurons (Yellow spheres) tightly surrounded 

the isthmic Müller cell I1 (Green sphere; Fig. 7B,C). More rostrally, the cells from this 

group tended to be less compact and were more ventral. There was then a transition 
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between this group of cells and the rostro-lateral group of ChAT-labeled neurons (Red 

spheres), which occupied a more dorsal location further rostrally (Fig. 7C). 

Effects of nicotinic antagonists on the RS neuron response to MLR electrical stimulation 

The electrophysiological observations above indicated a role of acetylcholine in the 

initiation and the control of locomotion in lampreys. The immunohistochemical 

experiments confirmed the presence of cholinergic cells at the mesopontine border in the 

lamprey MLR defined by Sirota et al. (2000). We investigated whether these cells could 

be a source of cholinergic input to rhombencephalic RS neurons by performing electrical 

stimulation of the MLR and recording intracellularly from RS neurons. The 

neurotransmitters involved in the MLR-RS synapses were first investigated: the effects of 

the nicotinic antagonists D-tubocurarine (30-100 M) or -bungarotoxin (0.1 M) were 

tested on the EPSPs evoked by single electrical stimulation of the MLR (Fig. 8A1). There 

was a significant decrease in the EPSP amplitude (~25 %; n=23; p<0.001; Fig. 8A2) and 

slope (~23 %; n=23; p<0.05; not shown). Conversely, a bath application of the 

acetylcholinesterase inhibitor physostigmine (100 M), which prevents the degradation 

of acetylcholine in the synaptic cleft, dramatically increased both the amplitude (~62 %; 

n=3; p<0.05) and the slope (~56 %; n=3; p<0.05) of the response evoked by single MLR 

electrical stimulation (Fig. 8B1-2). Because D-tubocurarine did not produce a complete 

block of the response to MLR stimulation, we investigated the possibility that glutamate 

might also mediate a part of the MLR input to RS neurons in the lamprey (Fig. 8C). A 

mixture of NMDA and non-NMDA receptor antagonists (200 µM AP5 and 25 µM 

CNQX, respectively) was bath applied, and the MLR was stimulated electrically. Single 

EPSPs were dramatically reduced (~39%; n=2; p<0.05; Fig. 8C1) but a substantial 

depolarizing response persisted. This AP5- and CNQX-insensitive component remained 

constant in high calcium-high magnesium saline and was able to follow a frequency of 

stimulation of 25 Hz with no changes in latency and amplitude (Fig. 8C2). This clearly 

demonstrated that the non-glutamate component was monosynaptic. Interestingly, the 

addition of D-tubocurarine (30 µM) to the glutamate antagonists mixture did not 

completely suppress the MLR-evoked response, and a small EPSP remained (Fig. 8C1). 

Although our pharmacological experiments indicated the involvement of various 

neurotransmitters in the MLR-evoked EPSP in lamprey RS neurons, they nevertheless 
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confirmed that cholinergic inputs are present. Furthermore, electrolytic lesions were 

performed at the stimulation site within the MLR and ChAT-immunohistochemistry was 

carried out on the brainstem sections (Fig. 9). ChAT-labeled neurons were found around 

the coagulation site close to the ventricular surface (Fig. 9A,C), corresponding to the 

more caudal group of cholinergic cells (Fig. 9B). 

The implication of the cholinergic component from the MLR to RS neurons was 

thereafter investigated on locomotor activity in a semi-intact preparation (n=8). The MLR 

was stimulated at 5 Hz and EPSPs were evoked in RS cells which displayed a buildup of 

depolarization until the threshold for spiking was reached and swimming activity 

followed (Fig. 10A1; see also Sirota et al., 2000). Consistently, after selectively adding 

the nicotinic antagonist D-tubocurarine (30-50 M; n=5) to the brainstem bath, the 

membrane potential of RS neurons remained mostly below spiking threshold and 

swimming did not occur (compare Fig. 10A1 and A2). There was a significant decline of 

both the peak and the area of the MLR-evoked compound EPSPs (p<0.001; Fig. 10B1-2). 

The depolarization resulting from the summation of EPSPs induced by repetitive MLR 

stimulation was decreased (compare traces in control, black, and under D-tubocurarine 

bath perfusion, gray, in Fig. 10B2; compare also gray circles from control, black circle in 

Fig. 10B3). Opposite effects were observed when the selective cholinesterase inhibitor 

physostigmine (100 µM) was applied to the brainstem bath: the EPSPs evoked by single 

electrical stimulation of the MLR were increased in both amplitude and duration (p<0.05, 

n=3; not shown, but see Fig. 8B for single MLR stimulation), and the depolarization 

resulting from the 5 Hz stimulation of the MLR was substantially increased (Fig. 10B3, 

empty circles) when compared to control (Fig. 10B3, black circle). This resulted in the 

occurrence of swimming (not shown). It is noteworthy that swimming could still be 

evoked under D-tubocurarine, but only with higher stimulation intensities (generally, a 

30-40% increase was required; not illustrated). These results indicate that the locomotor 

input from the MLR to RS cells of lampreys is, at least, partly cholinergic. 
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DISCUSSION 

The present study is in accordance with an important role of cholinergic inputs onto 

rhombencephalic RS neurons in the initiation and control of MLR-evoked locomotion in 

a vertebrate. Acetylcholine elicited a nicotinic receptor-mediated depolarization in RS 

cells, accompanied by action potential firing that induced swimming in a semi-intact 

preparation. In addition, the cholinergic stimulation of RS neurons accelerated ongoing 

locomotor activity induced pharmacologically by NMDA. Anatomical experiments 

confirmed the existence of two populations of isthmic cholinergic neurons located in the 

MLR, the electrical stimulation of which induced locomotion. Furthermore, the perfusion 

of a nicotinic antagonist dramatically depressed the MLR-evoked locomotor command, 

preventing the occurrence of swimming at the same stimulation strength. 

Cholinergic inputs from the MLR to RS neurons in lamprey 

Two distinct groups of ChAT-immunoreactive cell bodies were present in the 

mesopontine tegmentum of lampreys, as previously observed by Pombal et al. (2001). 

The first group consisted of densely clustered cells in the periaqueductal gray, and the 

second, at a more rostral level, comprised fewer cells that were loosely distributed more 

laterally within the tegmentum. Comparison with immunohistochemical data from other 

species (cats: Mitani et al., 1988; rats: Jones, 1990; and amphibians: Marin et al., 1997) 

suggests that the medially clustered cells corresponds to the laterodorsal tegmental 

nucleus (LDT), and the more laterally located group of cells to the PPN. 

The MLR is a functionally defined brain structure that does not correspond to any 

single nucleus. Several lines of evidence suggest that cholinergic neurons of the PPN may 

be part of the MLR in mammals (Garcia-Rill et al., 1983; Garcia-Rill & Skinner, 1987a; 

Garcia-Rill et al., 1987; Rye et al., 1987; Coles et al., 1989; Skinner et al., 1990). 

However, no direct relationship has yet been provided. Here, we demonstrate that the 

electrical stimulation of the mesopontine region containing cholinergic cells, defined as 

the MLR of lampreys (Sirota et al., 2000) evokes swimming in a semi-intact preparation, 

the occurrence of which is depressed by exposing RS neurons to the nicotinic antagonist 

D-tubocurarine. Moreover, previous studies in mammals indicate that some of the 

mesopontine cholinergic neurons project to the reticular formation (Garcia-Rill & 
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Skinner, 1987a; Rye et al., 1988). For example, cholinergic neurons of the PPN and the 

LDT project specifically to the ventromedial medulla in rats (Skinner et al., 1990). In our 

study, the slope of the responses to MLR stimulation was affected by the nicotinic drugs 

D-tubocurarine, -bungarotoxin and physostigmine, supporting the hypothesis that the 

cholinergic input acts directly on RS neurons. Moreover, we found that the non-glutamate 

component of the MLR-evoked EPSP followed without any changes in amplitude nor 

delay a 25 Hz frequency of stimulation. Furthermore, we have previously shown that 

cells in the MLR region are retrogradely labeled from injections of cobalt-lysine in the 

rhombencephalic reticular formation (Sirota et al., 2000). Hence, although we cannot 

exclude the possibility of another synapse intercalated between the MLR and RS cells, 

altogether our findings strongly support a monosynaptic cholinergic input from the MLR 

to RS cells in lampreys. Double labeling techniques (retrograde tracing with dextran-

amines and ChAT immunofluorescence) will thus be useful to confirm a projection from 

the MLR cholinergic cells to the rhombencephalic reticular formation. 

In addition to the cholinergic component of MLR input to RS neurons, 

pharmacological studies showed the existence of a large glutamatergic component. This 

raised the possibility that both glutamate and acetylcholine cooperate to the MLR 

command. Indeed, we did not investigate this hypothesis further, and experiments are 

now performed to analyze both the source of glutamate (co-release or release by two 

distinct MLR neuronal populations) and possible cooperative effects of glutamate and 

acetylcholine. 

Cholinergic responses in RS neurons 

In vertebrates, RS neurons respond to cholinergic agonists. Acetylcholine produces 

either depolarizing, hyperpolarizing, or biphasic responses in RS cells of the cat medial 

pontine reticular formation, affecting the cell firing frequency in response to glutamate 

bath perfusion (Greene & Carpenter, 1981, 1985). Kungel et al. (1994) reported mixed 

effects of cholinergic agonists onto the discharge pattern of neurons in the caudal pontine 

reticular nucleus of rats. An injection of atropine within the nucleus reticularis pontis 

oralis produced a decrease in the rate of discharge in RS cells (Takakusaki et al., 1994). 

In birds, an injection of carbachol in the ventral division of the central nucleus medulla, 

an area containing RS cells, induces atropine-sensitive walking, running or flight 
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(Sholomenko et al., 1991; Webster & Steeves, 1988). However, the drug is not effective 

when injected in the pontine reticular formation. The present study in lamprey RS 

neurons revealed dose-dependent nicotinic receptor-mediated depolarizations in response 

to a focal ejection of acetylcholine. These responses persisted under TTX (although 

reduced), suggesting a direct effect, but possibly associated with some network 

amplification. Surprisingly, Matthews & Wickelgren (1979) reported that acetylcholine 

had no effects on RS cells of the MRRN. However, because the drug was bath-applied in 

their study, a desensitization of the responses may have occurred as reported here. We 

also found that the local ejection of either nicotinic agonists did not always elicit 

consistent responses in RS neurons. In some cases, the local application of a nicotinic 

agonist evoked no response or only subthreshold depolarizations from the RS neuron (not 

illustrated). However, this was temporary, and a longer delay or changing the agonist 

solution was usually sufficient to observe a cholinergic response. It is possible that some 

receptor desensitization occurs due to uncontrolled spontaneous cholinergic activity. 

Supporting this hypothesis is the observation that adding the selective cholinesterase 

inhibitor physostigmine alone was sufficient to unmask spontaneous acetylcholine-

mediated depolarizations (n=5; not illustrated).  

Acetylcholine and MLR-controlled swimming 

As in mammals (Garcia-Rill & Skinner, 1987b; Iwakiri et al., 1995), MLR inputs in 

lampreys are relayed to the spinal cord by the rhombencephalic RS neurons (Sirota et al., 

2000). Swimming evoked in response to MLR stimulation generally needs several 

seconds of repeated stimulation to develop, due to a slow buildup of depolarization in the 

RS cells; the onset delay of swimming decreases as the intensity or frequency of 

stimulation increases (Sirota et al., 2000). Here, we report that MLR inputs to RS neurons 

are partly mediated by acetylcholine, and that nicotinic responses show summation 

properties. The latter may participate to the slow buildup of depolarization and the 

delayed swimming onset that occur at low stimulation intensities. According to this 

assumption, the buildup of the response to a 5 Hz stimulation of the MLR was 

dramatically reduced in the presence of a nicotinic antagonist and largely increased in the 

presence of physostigmine, which resulted in the blockade or the facilitation of the 

initiation of swimming activity, respectively. In such a view, higher stimulation 
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frequencies would result in a faster depolarization in RS cells and a shorter onset delay 

for swimming. Of course, other neurotransmitters may be involved (see Fig. 8C1) and 

increasing the intensity of stimulation reversed the blocking of swimming induced with a 

nicotinic antagonist, presumably through the activation of other non-cholinergic neurons 

in the MLR. Nevertheless, our results emphasize an important role of acetylcholine in the 

initiation of locomotion by MLR stimulation. 

The local application of nicotinic agonists onto rhombencephalic RS neurons 

generally produced an increase of the locomotor output. In the absence of prior activity, 

nicotinic agonists triggered swimming in a semi-intact preparation. When fictive 

locomotion was induced by perfusion of NMDA onto the spinal cord, the nicotinic 

activation of RS neurons accelerated the ongoing locomotor rhythm. This acceleration is 

likely to result from an increase in the excitatory amino acid drive onto the spinal 

locomotor networks as RS neurons are excited by acetylcholine. This accelerating effect 

was nevertheless limited, perhaps due to gating of descending inputs during NMDA-

induced swimming or to intrinsic limits of the spinal locomotor networks themselves. It 

was shown previously that vestibular inputs to RS neurons are depressed by adding 

NMDA to the Ringer’s (Bussières & Dubuc, 1992; Alford & Dubuc, 1993). Wannier and 

collaborators (1998) demonstrated that lamprey RS neurons have differential effects on 

locomotion, including both excitatory and inhibitory influences. In our hands, nicotinic 

stimulation of the rhombencephalic RS neurons only induced an acceleration of the 

locomotor rhythm, suggesting that excitatory RS neurons are the main cholinergic 

targets. 

Functional considerations 

The MLR-evoked locomotor behavior is established on a slow, graded 

depolarization of the RS neurons (Sirota et al., 2000). The present study indicates that 

this graded command seems to be mediated, at least in part, by acetylcholine. In contrast, 

sensory-evoked escape swimming relies on the occurrence of a fast, large and long-

lasting depolarizing plateau in RS cells in response to a single high intensity stimulus 

(Viana Di Prisco et al., 1997, 2000). The plateaus require the activation of NMDA 

receptors. This could result from a different function of either command to RS neurons. 

The latter produces a fast behavioral response that needs to last long enough (the plateau) 
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to guarantee the safety of the animal, such as for example in the case of a predator attack. 

In contrast, the MLR command generates a locomotor behavior that has to be fully 

adapted (gradual depolarization) and goal-directed compatible with exploratory and 

appetitive behaviors, which have been proposed to be channeled through the MLR in 

mammals (Sinnamon, 1993; for a review see Jordan, 1998). 

In this study, we focused on the nicotinic component of the cholinergic inputs to RS 

cells. Muscarinic effects could also be present, although atropine had no effects on 

acetylcholine-evoked small amplitude depolarizations of RS neurons. We have recently 

reported that acetylcholine, through muscarinic receptors, modulates the RS cell 

responses to glutamate, suggesting a role in the control of locomotion (Le Ray et al., in 

prep). Similarly, anatomical studies showed that numerous neurons in the MLR remained 

unstained after ChAT-immunohistochemistry, and the MLR-evoked EPSPs in RS 

neurons were affected only partly by nicotinic antagonists and partly by glutamate 

antagonists. Taken together, these results demonstrate that the initiation and the control of 

locomotion require complex mechanisms and that acetylcholine is not the only 

neurotransmitter involved in the MLR command in lampreys. Rather, goal-directed 

locomotion may result from the co-activation (cooperation?) of several excitatory 

commands originating in the MLR including cholinergic and glutamatergic inputs. 

Experiments are underway to test this hypothesis. 
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ABBREVIATIONS 

Drugs 

AP-5 : 2-amino-5-phosphonopentanoate 

CNQX : 6-cyano-7-nitroquinoxaline-2,3-dione 

MK-801 : Dizocilpine 

NMDA : N-methyl-D-aspartate 

TTX : Tetrodotoxin 

Others 

ChAT : Choline acetyltransferase 

EMG : Electromyograms 

EPSP : Excitatory postsynaptic potential 

LDT : Laterodorsal tegmental nucleus 

MLR : Mesencephalic locomotor region 

MRRN : Middle rhombencephalic reticular nuclei 

PPN : Pedunculopontine nucleus 

PRRN : Posterior rhombencephalic reticular nuclei 

RS : Reticulospinal 



 22 

REFERENCES 

Alford, S. & Dubuc, R. (1993) Glutamate metabotropic receptor mediated depression of 

synaptic inputs to lamprey reticulospinal neurones. Brain Res., 605, 175-179. 

Brodin, L., Grillner, S., Dubuc, R., Ohta, Y., Kasicki, S. & Hokfelt, T. (1988) 

Reticulospinal neurons in lamprey: transmitters, synaptic interactions and their role 

during locomotion. Arch. Ital. Biol., 126, 317-345. 

Buchanan, J.T. & Cohen, A.H. (1982) Activities of identified interneurons, motoneurons, 

and muscle fibers during fictive swimming in the lamprey and effects of 

reticulospinal and dorsal cell stimulation. J. Neurophysiol., 47, 948-960. 

Bussières, N. & Dubuc, R. (1992) Phasic modulation of transmission from vestibular 

inputs to reticulospinal neurons during fictive locomotion in lampreys. Brain Res., 

582, 147-153. 

Cardin, S., Le Ray, D., Robitaille, R. & Dubuc, R. (1999) Motor responses elicited by 

skin stimulation in lampreys. Soc. Neurosci. Abstr., 25(2), p. 1906. 

Coggeshall, R.E. & Lekan, H.A. (1996) Methods for determining numbers of cells and 

synapses: a case for more uniform standards of review. J. Comp. Neurol., 364, 6-15. 

Coles, S.K., Iles, J.F. & Nicolopoulos-Stournaras, S. (1989) The mesencephalic centre 

controlling locomotion in the rat. Neuroscience, 28, 149-157. 

Deliagina, T., Ullén, F., Gonzalez, M., Ehrsson, H., Orlovsky, G. & Grillner, S. (1995) 

Initiation of locomotion by lateral line photoreceptors in lamprey: behavioural and 

neurophysiological studies. J. Exp. Biol., 198, 2581-2591. 

Dubuc, R., Bongianni, F., Ohta, Y. & Grillner, S. (1993a) Anatomical and physiological 

study of brainstem nuclei relaying dorsal column inputs in lampreys. J. Comp. 

Neurol., 327, 260-270. 

Dubuc, R., Bongianni, F., Ohta, Y. & Grillner, S. (1993b) Dorsal root and dorsal column 

mediated synaptic inputs to reticulospinal neurons in lampreys: involvement of 



 23 

glutamatergic, glycinergic, and GABAergic transmission. J. Comp. Neurol., 327, 

251-269. 

Dubuc, R. & Grillner, S. (1989) The role of spinal cord inputs in modulating the activity 

of reticulospinal neurons during fictive locomotion in the lamprey. Brain Res., 483, 

196-200. 

El Manira, A., Pombal, M.A. & Grillner, S. (1997) Diencephalic projection to 

reticulospinal neurons involved in the initiation of locomotion in adult lampreys 

Lampetra fluviatilis. J. Comp. Neurol., 389, 603-616. 

Frost, W.N. & Katz, P.S. (1996) Single neuron control over a complex motor program. 

Proc. Natl. Acad. Sci. USA, 93, 422-426. 

Garcia-Rill, E., Houser, C.R., Skinner, R.D., Smith, W. & Woodward, D.J. (1987) 

Locomotion-inducing sites in the vicinity of the pedunculopontine nucleus. Brain 

Res. Bull., 18, 731-738. 

Garcia-Rill, E., Skinner, R.D. & Fitzgerald, J.A. (1983) Activity in the mesencephalic 

locomotor region during locomotion. Exp. Neurol., 82, 609-622. 

Garcia-Rill, E. & Skinner, R.D. (1986) The basal ganglia and the mesencephalic 

locomotor region. In Grillner, S., Stein, P.S.G., Stuart, D.G., Forssberg, H. & 

Herman, R.M. (eds), Neurobiology of vertebrate locomotion. Macmillan Press Ltd, 

London, pp. 77-103. 

Garcia-Rill, E. & Skinner, R.D. (1987a) The mesencephalic locomotor region. I. 

Activation of a medullary projection site. Brain Res, 411, 1-12. 

Garcia-Rill, E. & Skinner, R.D. (1987b) The mesencephalic locomotor region. II. 

Projections to reticulospinal neurons. Brain Res, 411, 13-20. 

Greene, R.W. & Carpenter, D.O. (1981) Biphasic responses to acetylcholine in 

mammalian reticulospinal neurons. Cell Mol. Neurobiol., 1, 401-405. 



 24 

Greene, R.W. & Carpenter, D.O. (1985) Actions of neurotransmitters on pontine medical 

reticular formation neurons of the cat. J. Neurophysiol., 54, 520-531. 

Grillner, S. (1985) Neurobiological bases of rhythmic motor acts in vertebrates. Science, 

228, 143-149. 

Iwakiri, H., Oka, T., Takakusaki, K. & Mori, S. (1995) Stimulus effects of the medial 

pontine reticular formation and the mesencephalic locomotor region upon medullary 

reticulospinal neurons in acute decerebrate cats. Neurosci. Res., 23, 47-53. 

Jones, B.E. (1990) Immunohistochemical study of choline acetyltransferase-

immunoreactive processes and cells innervating the pontomedullary reticular 

formation in the rat. J. Comp. Neurol., 295, 485-514. 

Jordan, L.M. (1998) Initiation of locomotion in mammals. Ann. NY Acad. Sci., 860, 83-

93. 

Lai, Y.Y., Clements, J.R., Wu, X.Y., Shalita, T., Wu, J.P., Kuo, J.S. & Siegel, J.M. 

(1999) Brainstem projections to the ventromedial medulla in cat: retrograde transport 

horseradish peroxidase and immunohistochemical studies. J. Comp. Neurol., 408, 

419-436. 

Kungel, M., Ebert, U., Herbert, H. & Ostwald, J. (1994) Substance P and other putative 

transmitters modulate the activity of reticular pontine neurons: an 

electrophysiological and immunohistochemical study. Brain Res., 643, 29-39. 

Marin O., Gonzalez A. (1999) Origin of tectal cholinergic projections in amphibians: a 

combined study of choline acetyltransferase immunohistochemistry and retrograde 

transport of dextran amines. Vis. Neurosci., 16, 271-283. 

Marin, O., Smeets, W.J. & Gonzalez, A. (1997) Distribution of choline acetyltransferase 

immunoreactivity in the brain of anuran (Rana perezi, Xenopus laevis) and urodele 

(Pleurodeles waltl) amphibians. J. Comp. Neurol., 382, 499-534. 

Matthews, G. & Wickelgren, W.O. (1979) Glycine, GABA and synaptic inhibition of 

reticulospinal neurones of lamprey. J. Physiol. (Lond), 293, 393-415. 



 25 

McClellan, A.D. (1986) Command systems for initiating locomotion in fish and 

amphibians: parallels to initiation systems in mammals. In Grillner, S., Stein, P.S.G., 

Stuart, D.G., Forssberg, H. & Herman, R.M. (eds), Neurobiology of vertebrate 

locomotion. Macmillan Press Ltd, London, pp. 3-20. 

McClellan, A.D. (1987) In vitro CNS preparations: unique approaches to the study of 

command and pattern generation systems in motor control. J. Neurosci. Meth., 21, 

251-264. 

McClellan, A.D. (1988) Brainstem command systems for locomotion in the lamprey: 

localization of descending pathways in the spinal cord. Brain Res., 457, 338-349. 

McClellan, A.D. & Grillner, S. (1984) Activation of 'fictive swimming' by electrical 

microstimulation of brainstem locomotor regions in an in vitro preparation of the 

lamprey central nervous system. Brain Res., 300, 357-361. 

Mesulam, M.M., Mufson, E.J., Wainer, B.H. & Levey, A.I. (1983) Central cholinergic 

pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). 

Neuroscience, 10, 1185-1201. 

Mitani, A., Ito, K., Hallanger, A.E., Wainer, B.H., Kataoka, K. & McCarley, R.W. (1988) 

Cholinergic projections from the laterodorsal and pedunculopontine tegmental nuclei 

to the pontine gigantocellular tegmental field in the cat. Brain Res., 451, 397-402. 

Ohta, Y. & Grillner, S. (1989) Monosynaptic excitatory amino acid transmission from the 

posterior rhombencephalic reticular nucleus to spinal neurons involved in the control 

of locomotion in lamprey. J. Neurophysiol., 62, 1079-1089. 

Pombal, M.A., Marin, O. & Gonzalez, A. (2001) Distribution of choline 

acetyltransferase-immunoreactive structures in the lamprey brain. J. Comp. Neurol., 

431, 105-126. 

Rovainen, C.M. (1974) Synaptic interactions of reticulospinal neurons and nerve cells in 

the spinal cord of the sea lamprey. J. Comp. Neurol., 154, 207-223. 



 26 

Rovainen, C.M. (1982) Neurophysiology. In Hardisty, M.W. & Potter, I.C. (eds), The 

Biology of Lampreys, volume 4A. Academic Press, London, pp. 1-136. 

Rye, D.B., Saper, C.B., Lee, H.J. & Wainer, B.H. (1987) Pedunculopontine tegmental 

nucleus of the rat: cytoarchitecture, cytochemistry, and some extrapyramidal 

connections of the mesopontine tegmentum. J. Comp. Neurol., 259, 483-528. 

Rye, D.B., Lee, H.J., Saper, C.B. & Wainer, B.H. (1988) Medullary and spinal efferents 

of the pedunculopontine tegmental nucleus and adjacent mesopontine tegmentum in 

the rat. J. Comp. Neurol., 269, 315-341. 

Shik, M.L. & Orlovsky, G.N. (1976) Neurophysiology of locomotor automatism. Physiol. 

Rev., 56, 465-501. 

Sholomenko, G.N., Funk, G.D. & Steeves, J.D. (1991) Avian locomotion activated by 

brainstem infusion of neurotransmitter agonists and antagonists. I. Acetylcholine, 

excitatory amino acids and substance P. Exp. Brain Res., 85, 659-673. 

Sinnamon, H.M. (1993) Preoptic and hypothalamic neurons and the initiation of 

locomotion in the anesthetized rat. Prog. Neurobiol., 41, 323-344. 

Sirota, M.G., Viana Di Prisco, G. & Dubuc, R. (2000) Stimulation of the mesencephalic 

locomotor region elicits controlled swimming in semi-intact lampreys. Eur. J. 

Neurosci., 12, 4081-4092. 

Skinner, R.D., Kinjo, N., Ishikawa, Y., Biedermann, J.A. & Garcia-Rill, E. (1990) 

Locomotor projections from the pedunculopontine nucleus to the medioventral 

medulla. Neuroreport, 1, 207-210. 

Shu, S.Y., Ju, G. & Fan, L.Z. (1988) The glucose oxidase-DAB-nickel method in 

peroxidase histochemistry of the nervous system. Neurosci. Lett., 85, 169-171. 

Takakusaki, K., Shimoda, N., Matsuyama, K. & Mori, S. (1994) Discharge properties of 

medullary reticulospinal neurons during postural changes induced by intrapontine 

injections of carbachol, atropine and serotonin, and their functional linkages to 

hindlimb motoneurons in cats. Exp. Brain Res., 99, 361-374. 



 27 

Viana Di Prisco, G., Ohta, Y., Bongianni, F., Grillner, S. & Dubuc, R. (1995) Trigeminal 

inputs to reticulospinal neurones in lampreys are mediated by excitatory and 

inhibitory amino acids. Brain Res., 695, 76-80. 

Viana Di Prisco, G., Pearlstein, E., Robitaille, R. & Dubuc, R. (1997) Role of sensory-

evoked NMDA plateau potentials in the initiation of locomotion. Science, 278, 1122-

1125. 

Viana Di Prisco, G., Pearlstein, E., Le Ray, D., Robitaille, R. & Dubuc, R. (2000) A 

cellular mechanism for the transformation of a sensory input into a motor command. 

J. Neurosci., 20, 8169-8176. 

Wannier, T., Deliagina; T.G., Orlovsky, G.N. & Grillner, S. (1998) Differential effects of 

the reticulospinal system on locomotion in lamprey. J. Neurophysiol., 80, 103-112. 

Webster, D.M. & Steeves, J.D. (1988) Origins of brainstem-spinal projections in the duck 

and goose. J. Comp. Neurol., 273, 573-583. 

West, M.J., Slomianka, L. & Gundersen, H.J. (1991) Unbiased stereological estimation of 

the total number of neurons in the subdivisions of the rat hippocampus using the 

optical fractionator. Anat. Rec., 231, 482-497. 



 28 

FIGURE LEGENDS 

Figure 1: Acetylcholine-evoked responses in reticulospinal neurons. A: Local ejections of 

acetylcholine (1 mM) of increasing duration (50, 100, 150, 200 and 600 ms, ACh) elicit 

dose-dependent depolarizations in an intracellularly recorded RS neuron of the MRRN 

(A1). The relationship between the duration of the acetylcholine ejection and the area of 

the RS response is linear (A2). B: The perfusion of 3 µM tetrodotoxin reduces the 

response to acetylcholine local ejection, but a fast depolarization persists (B1). The 

relationship between the duration of acetylcholine ejection and the RS response shows a 

strong linear correlation (B2). C: The depolarization evoked by a 100 ms ejection of 

acetylcholine is suppressed by the superfusion of D-tubocurarine (30-100 M, C1) but is 

unaffected by the superfusion of atropine (10 M, C2). Thick lines: control; thin lines: 

under perfusion of the antagonist. 

Figure 2: Nicotine-evoked responses in reticulospinal neurons. A: Local ejections of 

nicotine (1 mM) of increasing duration (50, 150, 250, 300 and 350 ms, Nico) elicit dose-

dependent depolarizations in an intracellularly recorded RS neuron. B: Linear 

relationship between the duration of the nicotine ejection and the area of the RS response. 

C: A single local ejection of nicotine (150 ms; Nico) evokes a transient depolarization in 

an RS neuron (left). The depolarizations sum up when the ejections are repeated within a 

short time interval (right). A and B: same cell. 

Figure 3: Acetylcholine induced active swimming in a semi-intact preparation. A: Four 

repeated local ejections (300 ms) of acetylcholine (1 mM, ACh) were made onto the 

MRRN covering the entire nucleus on both sides without spreading to other 

rhombencephalic reticular nuclei. A slow depolarization with spiking occurs in a MRRN 

neuron and is followed by swimming (rEMG and lEMG on the right and the left side, 

respectively). B, C: The EMG activity can last several minutes (in B, trace cut after 30 s) 

and shows clear left and right alternation (C). C shows on a faster time base the traces in 

the gray area in B. 
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Figure 4: Acetylcholine induces fictive locomotion. Three repeated local ejections 

(300 ms) of acetylcholine (1 mM, ACh) trigger a fictive locomotor bout in ventral roots 

on the right and left sides of the spinal cord (rVR and lVR, respectively). Fictive 

locomotion lasts several minutes (A) and shows clear right and left alternation (B). B 

shows on a faster time base the traces in the gray area in A. 

Figure 5: Acetylcholine accelerates the NMDA-induced locomotor rhythm. A: 

Experimental design. A Vaseline wall was built to separate the brainstem from the spinal 

cord allowing the selective perfusion of the latter with NMDA (100 µM) to elicit fictive 

swimming. B: Three local ejections (200 ms) of 1 mM acetylcholine onto the MRRN 

accelerate the ongoing rhythm previously induced by selective bath perfusion of the 

spinal cord with NMDA (trace discontinued during 30 s). C: Mean period of NMDA-

induced bursts as a function of time with (arrow, black squares) and without (gray 

diamonds) a local application of acetylcholine (n=12). Inset displays an expanded 

representation of the first 200 s. D: Changes in burst mean period as a function of the 

number of cycles of fictive swimming in the absence (gray bars) or in the presence (black 

bars) of acetylcholine local ejection (n=12). Empty bars include examples where 

acetylcholine was ejected after the NMDA rhythm had already stabilized (i.e., >90 min 

after NMDA superfusion on the spinal cord) or after a previous injection of acetylcholine 

had already been made. Note the absence of change in the cycle duration. ***: p<0.001, 

*: p<0.05, ns: non significant. 

Figure 6: ChAT-immunoreactive neurons at the mesopontine border. A: Photomicrograph 

from a transverse section showing clustered ChAT-immunoreactive neurons in the caudal 

group. B: Magnification of the boxed area in A illustrating ChAT-immunoreactive cells 

surrounding the large isthmic Müller cell (I1) in the anterior rhombencephalic reticular 

nucleus. C: Photomicrograph from a transverse section showing ChAT-immunoreactive 

neurons sparsely distributed in the rostral lateral group. D: Magnification of the boxed 

area in C. Scale bars: 200 µm in A and C, 50 µm in B and D. mlf: medial longitudinal 

fasciculus; I1: first isthmic Müller cell of the anterior rhombencephalic reticular nucleus; 

MT: mesencephalic tectum; IV: trochlear nucleus. 
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Figure 7: Three-dimensional representation of the position of ChAT-immunoreactive 

cells in the isthmic region. Each sphere represents a ChAT-immunoreactive neuron. For 

clarity, the diameter of the spheres was doubled as compared to the true diameter of the 

cells. A: 3-D reconstruction from 29 transverse sections (20m-thickness) showing the 

clustered periventricular group (yellow spheres) surrounding the large isthmic Müller cell 

I1 (green sphere) and the more lateral and rostral group in the mesencephalic tegmentum 

(red spheres). The two neuronal populations are shown at high magnification in 

transverse view (B) and sagittal view (C). Two orthogonal planes were added for a 

perspective view. In B, caudal is toward the observer and in C, lateral is toward the 

observer. Scale bars: 400 m in A and 200 m in B and C. V: ventral; R: rostral; C: 

caudal; L: lateral. 

Figure 8: Effects of cholinergic drugs on synaptic responses evoked in RS neurons by 

single stimuli delivered to the MLR. A1: Depressed MLR-evoked EPSP in RS neurons 

under D-tubocurarine (D-tubo, 30 µM) perfusion. A2: Histograms of the single EPSP 

mean peak amplitude and slope in control (filled bars) and under bath perfusion of 

D-tubocurarine (30-50 µM, empty bars). B1: Enhanced MLR-evoked EPSP under 

physostigmine (Physo, 100 µM) perfusion. B2: Histograms of single EPSP mean peak 

amplitude and slope in control (filled bars) and under physostigmine bath perfusion 

(empty bars). C1: MLR-evoked EPSPs are reduced but not completely blocked by CNQX 

(25 µM) and AP5 (200 µM). The EPSP component insensitive to glutamate antagonists 

was further reduced by D-tubocurarine (30 µM), but not abolished. C2: The glutamate 

antagonists-resistant EPSP followed with a constant latency the MLR high frequency 

stimulation in a solution of high divalent cations (superposition of 10 consecutive traces). 

In each condition, mean traces depicted in this figure are averages of three to five 

responses. ***: p<0.001, *: p<0.05. 

Figure 9: ChAT-immunoreactive cells in and around the MLR-coagulation site in one 

larval lamprey. A: Photomicrograph from a transverse section at the isthmic level 

showing the intact side (on the left) and the caudal part of the coagulation site (on the 

right). B: Schematic representation from the transverse section showing the location of 

ChAT-immunoreactive cells and the extent of the coagulation site (gray area) drawn from 
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this section and more rostral serial sections. C: Magnification of the boxed area in B 

showing some of the ChAT-immunoreactive cells in the periaqueductal gray of the intact 

side. D: Same as in C, but on the side of the coagulation site. Scale bars: 100 µm in A and 

B, 50 µm in C and D. 

Figure 10: D-tubocurarine effects on MLR-evoked locomotion. A1: Control response 

elicited by a 5 Hz stimulation of the MLR (MLR St). The spiking activity induced in the 

RS neuron by the stimulation of the MLR precedes the onset of swimming characterized 

by alternate EMG activities on both right and left sides of the body (rEMG and lEMG, 

respectively). A2: The bath perfusion of D-tubocurarine (30-50 M) dramatically reduces 

spiking in RS neurons and swimming does not occur, even when the stimulation is 

maintained for a longer duration. B1: Histograms illustrating the changes in the mean 

peak and mean area of the compound EPSPs under bath perfusion of D-tubocurarine as 

compared to control (normalized values). ***: p<0.001. B2: Superimposition of the 

EPSPs evoked by the 5 Hz stimulation of the MLR in control (black) and under the bath 

perfusion of D-tubocurarine (gray). B3: Plot of the relative cell depolarization as a 

function of the relative mean area of the MLR-evoked EPSP. The depolarization 

corresponding to a mean area in control (black circle) is centered on 100%-area and 

100%-depolarization. The perfusion of D-tubocurarine (gray circles) reduces both the 

EPSP area and the depolarization, whereas perfusion of physostigmine (empty circles) 

increases both the EPSP area and cell depolarization. 
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