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This study investigates, by means of numerical simulations, extreme mechanical force
exerted by a turbulent �ow impinging on a blu� body, and examines the relevance of two
distinct rare-event algorithms to e�ciently sample these events. The drag experienced
by a square obstacle placed in a turbulent channel �ow (in two dimensions) is taken as
a representative case study. Direct sampling shows that extreme �uctuations are closely
related to the presence of a strong vortex blocked in the near wake of the obstacle.
This vortex is responsible for a signi�cant pressure drop between the forebody and the
base of the obstacle, thus yielding a very high value of the drag. Two algorithms are then
considered to speed up the sampling of such �ow scenarii, namely the Adaptive Multilevel
Splitting (AMS) and the Giardina-Kurchan-Tailleur-Lecomte (GKTL) algorithms. The
general idea behind these algorithms is to replace a long simulation by a set of much
shorter ones, running in parallel, with dynamics that are replicated or pruned, according
to some speci�c rules designed to sample large-amplitude events more frequently. These
algorithms have been shown to be relevant for a wide range of problems in statistical
physics, computer science, biochemistry. The present study is the �rst application to a
�uid-structure interaction problem. Practical evidence is given that the fast sweeping time
of turbulent �uid structures past the obstacle has a strong in�uence on the e�ciency of
the rare-event algorithm. While the AMS algorithm does not yield signi�cant run-time
savings as compared to direct sampling, the GKTL algorithm appears to be e�ective
to sample very e�ciently extreme �uctuations of the time-averaged drag and estimate
related statistics such as return times. Software used for simulations and data processing
is available at https://github.com/tlestang/paper_extreme_drag_fluctuations.
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1. Introduction

Turbulent �ows are important in a variety of natural phenomena, industrial and
civil applications. Their characteristic feature is the spontaneous development of intense
and sporadic motions associated with extreme internal forces (Lesieur 2011; Donzis &
Sreenivasan 2010; Yeung et al. 2015). �Extreme� refers here to �uctuations that can
deviate from the mean value by O(10) standard deviations. In engineering, the nature
of such extreme dynamical events and their statistics are of crucial interest to predict
excessive force, which can threaten the structural integrity of embedded structures
(Kanev & van Engelen 2010).

From the viewpoint of chaotic dynamical systems, turbulence in �uids is linked to non-
linearity and strong departure from statistical equilibrium (Kraichnan & Chen 1989).
The use of analytical perturbative methods in identifying resonant interactions (among
degrees of freedom) responsible for extreme �uctuations is unsuccessful. Alternatively,
simulation o�ers a practical approach to gain physical insight into these events, quanti-
fying their intensity and estimating their frequency of occurrence. However, this requires
very long simulations since these extreme events are rare. The computational cost for
sampling a �uctuation of very small probability typically grows as the inverse of this
probability (Wouters & Bouchet 2016). Rare-event sampling refers to a large body of
methods that aim at preferentially exploring regions of phase space corresponding to
events that would otherwise be accessed with a very low probability through a brute-
force direct sampling. In the present work, a computational study of extreme mechanical
force acting on an immersed blu� body is conducted using both very long time-series
(direct sampling) and rare-event sampling techniques.

In �uid turbulence, rare-event sampling has been approached mainly from the per-
spective of simpli�ed dynamics such as the one-dimensional Burgers' equation with a
stochastic forcing (Bec & Khanin 2007). In this case, dynamics can be sampled by
using a Markov chain Monte-Carlo algorithm (Düben et al. 2008; Mesterházy & Jansen
2011; Mesterházy et al. 2013) that provides a framework for rare-event sampling. An
alternative approach is based on instantons (Gurarie & Migdal 1996; Grafke et al. 2015)
and applies to stochastically driven systems in the limit of weak noise. Instantons refer
to the most probable trajectories in phase space that achieve a given rare event (in
the limit of weak noise). Suitable numerical schemes can be used to evaluate instantons
as well as the related probabilities of rare events (Chernykh & Stepanov 2001; Grafke
et al. 2013; Grigorio et al. 2017; Laurie & Bouchet 2015; Bouchet et al. 2014). An
example is the investigation of the physics of rogue waves (Dematteis et al. 2018, 2019).
However, a drawback of the aforementioned approaches is their limitation to simple
and stochastically driven dynamics. Here, a more general approach is considered for
complex, possibly deterministic, dynamical systems. It is based on sampling algorithms
relying on selection rules applied to an ensemble of trajectories of the system. Even
though such ideas date back to the early 1950s, they have received growing interest over
the last twenty years with successful applications in various domains such as chemistry
(van Erp & Bolhuis 2005; Escobedo et al. 2009; Teo et al. 2016), biophysics (Huber
& Kim 1996; Zuckerman & Chong 2017; Bolhuis 2005), nuclear physics (Louvin et al.

2017), nonlinear dynamical systems (Tailleur & Kurchan 2007) and communication
networks simulation (Villen-Altamirano & Villen-Altamirano 1994). More importantly,
such algorithms have been shown to be useful for the study of rare events in simple
deterministic dynamics (Wouters & Bouchet 2016). Certainly, an original contribution
of our study is to test the application of rare-event sampling algorithms in the context
of far-from-equilibrium dynamics with an irreducible very large number of degrees of
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freedom. Two algorithms that are a priori suitable for such dynamics are considered,
namely, the Adaptive Multilevel Splitting (AMS) algorithm (Cérou & Guyader 2007)
and the Giardina-Kurchan-Tailleur-Lecomte (GKTL) algorithm (Giardinà et al. 2006).
Another problem related to rare events is the estimation of parameters or statistics from a
limited number of samples. Several authors have proposed original strategies (Mohamad
& Sapsis 2018; Blonigan et al. 2019) such as sequential sampling. These approaches
and rare event algorithms could also be considered for applications in wave-structure
problems, ship motion and load acting on o�shore platforms (Belenky et al. 2016). The
paper is organized in two parts. The �rst part highlights the phenomenology of extreme
�uctuations of the drag force acting on a square placed in a two-dimensional turbulent
channel �ow. This study is based on the simulation of the �ow over a very long duration,
made possible by the relative simplicity of the �ow. The motivation for this study is
twofold. Firstly, it provides a detailed description of the statistics and dynamics related
to extreme drag �uctuations. This analysis is informative from the viewpoint of �uid
mechanics and, to the best of our knowledge, has never been reported before. Secondly,
it yields reference results that are required to validate the outputs of rare-event algorithms
and to evaluate the possible computational gain obtained from them. This assessment is
developed in the second part of the paper.
The �ow set-up is introduced and the dynamics related to typical drag �uctuations

is described in section 2. The statistical properties of the drag are then discussed. In
section 3, the phenomenology of extreme drag �uctuations is investigated based on
direct sampling. Both the instantaneous drag and time-averaged drag are considered.
It is found in particular that sampled extreme �uctuations of the instantaneous drag
result from very similar dynamics. Section 4 examines the applicability of both the AMS
and GKTL algorithms to the simulation of extreme drag �uctuations in the same �ow
con�guration. In subsection 4.1, we show that the use of the AMS algorithm is not
successful, or at least not straightforwardly. This di�culty is put in perspective with
the phenomenology of extreme drag �uctuations developed in section 3. Subsection 4.2
presents the computation of extremes of the time-averaged drag by using the GKTL
algorithm. This latter allows for an exceptional reduction of the computational cost
needed to simulate trajectories corresponding to extreme values of the time-averaged
drag. As a speci�c successful application, the GKTL algorithm is used to compute the
return times of extreme �uctuations of the time-averaged drag acting on the immersed
obstacle. Perspectives and conclusion end this work.
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Figure 1: Our case study is a grid-generated turbulent �ow impinging onto a �xed
squared obstacle (of size R) located at the centre of a channel in two dimensions. The
�ow is arti�cially damped near the end of the channel. In the developed �ow, turbulent
eddies have typically the size of the square, which results in strong load �uctuations.
The vorticity is displayed with an arbitrary colour map from blue (negative values) to
red (positive values).

2. Description of the numerical case study

The drag exerted by a grid-generated turbulent �ow onto a �xed squared obstacle is
considered as a representative case study (see Fig. 1). Although real-world applications
would eventually imply three-dimensional dynamics, a simpli�ed two-dimensional setting
has been chosen here to reduce the computational cost and allow for a systematic study.
We believe that this system embeds the characteristic features that make this study both
relevant and challenging for �uid-structure-interaction problems.
Turbulent eddies generated in the near-wake of the grid are carried downstream. They

interact with each other and grow in size as expected for two-dimensional turbulent
dynamics. The dimension of the grid is such that the size of the eddies that hit the
square is comparable to its size, resulting in strong �uctuations of the drag acting
on the square. The �ow dynamics is integrated numerically by the Lattice Boltzmann
Method (LBM) (Krüger et al. 2017). While traditional methods in computational �uid
dynamics rely on a discretization of the Navier-Stokes equations, the LBM considers the
�uid at an underlying mesoscopic level. Capturing the dynamics of collections of �uid
particles moving and colliding on a lattice is here preferred to solving nonlinear Partial
Di�erential Equations (sPDEs). Further details about the LBM are given in Appendix A
and references therein. In our context, this numerical method has been chosen principally
for its computational e�ciency.
The simulated �ow develops in a long plane channel of dimension 513 × 129 mesh

points. The square obstacle has size R = 16 (in mesh units) and is located at the centre
of the channel. The spacing and bar height of the entrance grid are both equal to R/2 (see
Fig. 1). No-slip boundary conditions are enforced on top and bottom walls of the channel
and on the surface of the obstacle by using an halfway bounce-back procedure (Sukop &
Jr 2006). Upstream of the grid, a constant parabolic velocity pro�le and a constant mass
density (equal to unity) are imposed as an inlet condition. The centreline velocity is
0.05 in lattice units, i.e. normalised by ∆x and ∆t referring to the lattice resolution
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Figure 2: Snapshots of the vorticity related to typical drag �uctuations (within one
standard deviation) over a time interval of length τc ' 4T0; τc will later be identi�ed as
the correlation time of the drag signal. The vorticity is given in lattice units.

and the time-step respectively. The initial distributions are imposed at equilibrium
(see Appendix A). In the bulk, the viscosity is adjusted so that grid turbulence is
generated with Reynolds number Regrid = 1200. The reference Mach number is equal
to 0.06 in agreement with the assumption of weak compressibility of the LBM. Near
the end of the channel, the �ow is progressively damped within a sponge zone where the
viscosity is arti�cially enhanced. Finally, the outlet boundary condition relies on a second-
order extrapolation of the velocity and mass density. The extrapolated distributions are
evaluated through a regularization procedure relying on a �nite di�erence estimation
of the local stress tensor, as introduced in (Latt et al. 2008). For more details about
the implementation of the �ow, see the software repository attached to this paper
(https://github.com/tlestang/paper_extreme_drag_fluctuations).

2.1. The drag force

The incoming turbulent �ow exerts a �uctuating force onto the squared obstacle. The
drag is de�ned as the resulting force in the streamwise x-direction. Formally

fd(t) =

∫
S
τxβ(x, t) dSβ(x), (2.1)

where S is the surface of the obstacle and τ denotes the stress tensor (see Appendix A).
Here, the viscous stress makes a negligible contribution to the drag. The latter therefore
results mostly from pressure forces. Since the pressure on the top and bottom sides of
the square applies in the normal direction, they do not contribute to the drag. As a
consequence, the drag can eventually be expressed as the di�erence

fd(t) = pfb(t)− pbase(t) (2.2)

between the pressure integrated over the upstream side of the obstacle or forebody,
pfb(t), and the downstream side or base pbase(t). Pressure �uctuations are related to
the dynamics of the vorticity �eld. Regions of strong vorticity correspond to strong local
pressure gradients, e.g. as demonstrated analytically with a Rankine vortex.
The typical timescale (turnover time) of drag �uctuations can be estimated from

https://github.com/tlestang/paper_extreme_drag_fluctuations
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Figure 3: Temporal evolution of the drag (in lattice units) acting on the square under
the action of the impinging turbulent �ow. The time has been normalised by the
turnover time related to the mean-�ow velocity and the size of the obstacle, i.e.
T0 = R/U . The return time r(a) is the averaged waiting time between the occurrence of
peak �uctuations of amplitude larger than a. If the threshold a is su�ciently high, one
observes that r(a) is much larger than the correlation time of the signal. The selected
peak �uctuations are therefore well separated.

dimensional analysis as

T0 =
R

U
, (2.3)

where R is the size of the square and U is the averaged velocity in the channel.
Fig. 2 displays the evolution of the vorticity �eld around the obstacle for typical drag
�uctuations. Vorticity is generated along the forebody and eventually carried away by
the �ow. Typical �uctuations of the drag (within one standard deviation) do not result
from some preferred arrangement of the vorticity around the obstacle.

2.2. The drag as a random process

In Fig. 3, the time signal of the drag acting on the square, fd(t), appears unpredictable
in details and exhibits repeated bursts of high amplitude that deviate signi�cantly from
the averaged value. Therefore, it is natural to model the drag as a (scalar) random
process.
Drag �uctuations have been sampled along a simulation of duration Ttot = 4× 106 T0.

This long simulation will be referred to as the control run in the following. It has been
made possible by the relative simplicity of the investigated �ow and the computational
e�ciency of the LBM. The Probability Density Function (PDF) of drag �uctuations is
shown in Fig. 4a. It deviates from a normal law and shows an exponential tail for large
positive �uctuations, i.e. P(fd) ∝ e−`fd . Fig. 4a also displays the PDF of drag �uctuations
acting on a control surface corresponding to the periphery of the obstacle but in the
absence of the obstacle. In that case, the PDF is quasi-symmetric and does not display
exponential tails. This shows that the asymmetry of the PDF and the development of
a positive exponential tail are closely related to the no-slip condition on the obstacle
boundary.
Lastly, the autocorrelation function of the drag C(τ) is shown in Fig. 4b. It is found

that drag �uctuations are correlated over a time interval τc ' 4T0, illustrating that the
drag loses its memory over a time scale corresponding to the sweeping of a few eddies past
the obstacle. This observation is important for the application of rare-event algorithms as
it will be discussed in section 4. In the following, τc will be referred to as the correlation
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(a) PDF of normalised drag
�uctuations

(b) Autocorrelation of drag �uctuations

Figure 4: (a) PDF of normalised drag �uctuations (f̃d = fd − f̄d) where µ = f̄d denotes

the time-averaged value and σ =

√
f̃2d is the standard deviation. The drag is evaluated

both in the presence (blue) and in the absence (red) of the obstacle. (b)

Autocorrelation function of the drag de�ned as C(τ) = f̃d(t+ τ)f̃d(t) / f̃2d . The
correlation time τc ' 4T0 is given by C(τc) = 0.

time of the drag process. The ratio T0/τc may be viewed as a Strouhal number. The
value St = 0.25 is consistent with common observations for �ows past blunt structures
at comparable Reynolds numbers (Rodi 1998).
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Figure 5: Amplitude of drag �uctuations as a function of the corresponding return
time. f̃d denotes the drag with zero mean, i.e. f̃d = fd − fd.

3. Extreme �uctuations of the drag by means of direct sampling

The phenomenology of extreme �uctuations of the drag is �rst investigated through
brute-force direct sampling applied to the control run. Direct sampling is here used as
opposed to approaches involving rare-events algorithms discussed in section 4. It will
provide a trustworthy baseline for the validation of rare-events algorithms.
The waiting times τ are de�ned as the time between two consecutive occurrences of

peak �uctuations with amplitude fd > a, as illustrated in Fig. 3. The mixing time τm is
the time needed for the dynamics to lose the memory of its initial condition. As soon as
the typical waiting times are much larger than the mixing time τm, the occurrences of such
events follow a Poisson process and the distribution of the waiting times is exponential,
i.e. P (τ) = λ(a) exp(−λ(a)τ) where r(a) = 1/λ(a) is the averaged waiting time (Lestang
et al. 2018); r(a) is called the return time of the level a. For systems without multi-
stability, it is common for the mixing time τm to be of the order of the correlation time
τc.
How rare is a �uctuation a is quanti�ed by the return time r(a). We can de�ne extreme

drag �uctuations as rare events in the sense that the return time is much larger than the
correlation time, i.e. r(a)� τc.
If one assumes that r(a) = t(a) / P(fd > a) where the time scale t(a) is of order τc

and varies much more slowly with a than P(fd > a), one might expect that

r(a) ∝
a→∞

exp(`a) (3.1)

where l is the rate describing the positive tail of the PDF of the drag (shown in Fig. 4).
Fig. 5 shows the evolution of the return time r(a) with the amplitude of �uctuation a,
computed from direct sampling of the drag signal fd(t) (Lestang et al. 2018). Consistently,
it is found that the return time r(a) is well approximated by an exponential for large
levels a. Let us also point out some deviation from the exponential law at the largest
levels, which is probably the consequence of under-sampling.

3.1. Extracting extreme drag �uctuations from a very long timeseries

We have extracted the �uctuations of the drag with a return time r(a) greater
than 104τc from the control time-series {fd(t)}06t6Ttot

. This set will be considered as
representative of extreme events in the upcoming study. The choice of this particular
threshold has been driven by the need to collect enough events with large amplitude
and to possibly identify generic features. According to Fig. 5, the related amplitude a is

found equal to 7.6 σ with σ =

√
f̃d

2
being the standard deviation of the drag process,

where f̃d denotes the drag with zero-mean, i.e. f̃d = fd − fd. Precisely, 104 independent
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Figure 6: Relative contributions of the forebody and base pressure variations to
extreme amplitudes of the drag �uctuation f̃d. An extreme event corresponds to an
amplitude f̃?d and a unique pair (p̃?base, p̃

?
fb).

�uctuations with f̃d(t) > 7.6σ have been identi�ed. Each �uctuation is characterized
by its maximal value, f?d , and the time, t?, at which this maximum is reached. In the
following, the phenomenology of extreme drag �uctuations will be examined on the basis
of this set of events.

3.2. Extreme �uctuations of the instantaneous drag

3.2.1. Contribution of forebody and base pressure �uctuations to the overall drag

�uctuation

In section 2, it was pointed out that drag �uctuations within one standard deviation
were not associated with any particular arrangement of the vorticity around the obstacle.
We shall see in the following that the situation is di�erent in the case of extreme drag
�uctuations. Let (t?, f?d ) refer to an extreme-drag event. The (zero-mean) �uctuation
f̃?d = f?d − fd can be decomposed into

f̃?d = ∆p?fb −∆p?base (3.2)

where ∆p?fb and ∆p
?
base denote the variations of the forebody and base pressure, respec-

tively. Fig. 6 displays the relative contributions ∆p?fb/f̃
?
d and −∆p?base/f̃?d to the drag

�uctuation f̃?d . It is found that very large �uctuations of the drag result mainly (∼ 80%)
from a drop in base pressure, whereas the variation of forebody pressure contributes
much less to f̃?d . On the contrary, moderate �uctuations arise from combined variations
of the forebody and base pressures without any particular predominance, which is in
agreement with the previous observations (see Fig.2).

3.2.2. Fluid dynamics related to extreme drag �uctuations

The focus is now on the �ow scenarii that yield extreme values of the drag. Fig. 7
displays the mean pro�le (in time) of the drag signal around extreme events. A peaked
pro�le is observed with a width roughly corresponding to one correlation time τc. This
shows that the duration of extreme events corresponds typically to the sweeping time
of the �ow past the obstacle. Interestingly, the pro�le is also slightly skewed, indicating
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Figure 7: Ensemble average of drag signals centred around extreme �uctuations
occurring at t = t?. The blue line shows the mean pro�le whereas the shaded area
indicates variations (around the mean pro�le) within one standard deviation.
Extreme-drag events exhibit a typical lifetime of one correlation time τc. The pro�le is
slightly skewed indicating that the step up is slower than the return to typical values.

Figure 8: Vorticity �eld (in lattice units) around the obstacle at t = t? for the highest
drag amplitudes recorded in the control run.

that the step up of the drag is slower than the return to typical values past the peak
value. This asymmetry (under time reversal) is closely linked to the symmetry breaking
in what happens before and after the obstacle. To better understand the �ow scenarii
leading to these events, the vorticity �elds around the obstacle are now examined.
Fig. 8 displays the vorticity �eld (in lattice units) around the obstacle for the highest

amplitudes of the drag during the control run. In each case, an intense vortical structure
is visible near the base of the obstacle. The vorticity level of this structure is typically
twice the amplitude of typical vorticity �uctuations observed in Fig. 2. The formation
of this vortex originates from an intense negative (or positive) vorticity layer at the top
(or bottom) boundary of the obstacle. This high vorticity is responsible for a signi�cant
pressure drop at the base of the obstacle and therefore a strong drag. In contrast, nothing
special happens near the forebody of the obstacle during extreme-drag events.
The high pressure drop near the base of the obstacle appears to be closely related to
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Figure 9: Pressure �eld (in lattice units) and velocity streamlines at t = t?. In the near
wake of the square, a (blocking) vortex blocks an intense vortex against the base of the
obstacle.

Figure 10: Snapshots of the vorticity �eld (in lattice units) around t = t?.

the presence of a strong vortex blocked against the base. As illustrated in Fig. 9, this
blockage is enforced by the presence of opposite vorticity in the near wake, which holds
the vortex against the base of the obstacle and prevents it from being swept away for a
while. This scenario is better evidenced by Fig. 10, where the time history of the vorticity
�eld around t = t? for the same event is shown. Before the occurrence of the extreme
event, positive vorticity originating from the bottom boundary layer develops in the near
wake of the square. This positive vorticity prevents the shedding of negative vorticity
and enforces the development of an intense vortex against the base of the square. As the
blocking vortex is in turn advected downstream, the vortex against the base is released.
Consistently, one can argue that the typical duration of this scenario is related to the
sweeping time of the �ow past the obstacle, and is therefore of the order of τc. This is in
full agreement with the typical duration obtained from statistical consideration on the
mean pro�le of large-drag �uctuations in Fig. 7. This scenario is generic and has been
observed for most extreme events sampled in the control run.
Since the occurrence of large drag amplitudes arises from the production of vorticity

along the top or bottom side of the square, it is proposed to characterize the dynamics
of extreme events by their trajectory in the parameter space (fd(t), γ̄(t)) where γ̄(t) is
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Figure 11: Evolution of the (integrated) shear along the top or bottom sides of the
obstacle as a function of the drag for t? − 2τc 6 t 6 t? + 2τc. Each trajectory
corresponds to a single event. The blue line is the mean path averaged over the set of
extreme events sampled in the control run.

the averaged shear along the top or bottom boundary of the square:

γ =
1

R

∫
S‖

∂u(x)

∂y
dx, (3.3)

where R denotes the size of the square, u is the streamwise component of the velocity
�eld and S‖ is the surface of either the top or the bottom boundary. Fig. 11 shows γ(t) as
a function of the instantaneous drag fd(t) for t?− 2τc 6 t 6 t? + 2τc for the 104 sampled
extreme events. Before and after the extremal �uctuation, i.e. for t? − 2τc 6 t 6 t? − τc
and t?+τc 6 t 6 t?+2τc, paths wander in a region related to typical values of both γ and
fd. On the contrary, the drag abruptly varies for t? − τc 6 t 6 t? + τc near the extremal
amplitude. These excursions always go clockwise, that is, γ attains its maximum value
before fd does. This is consistent with an increase of γ acting as a precursor for extreme
drag �uctuations. In this representation, we also observe that the path related to the
increase of the drag is longer than the path related to the return to typical values, which
may be related to the asymmetry of the mean pro�le displayed in Fig. 7.

3.3. Extreme �uctuations of the time-averaged drag

We discussed previously the phenomenology of extreme �uctuations of the instan-

taneous drag, and identi�ed the sweeping time of the �ow past the obstacle as the
characteristic lifetime of these events. In applications, this duration may be much smaller
than the response time of the material structure subject to these �uctuations, justifying
a practical interest in the averaged (in time) drag force. Therefore, another relevant
observable is the time-averaged drag de�ned as

FT (t) =
1

T

∫ t+T

t

fd(t)dt, (3.4)

where fd(t) denotes the instantaneous drag and T is the investigated timescale (response
time). In the following, we shall consider T = 10τc, where τc is the correlation time
of the instantaneous drag. In that case, the PDF of FT is found nearly Gaussian as a
consequence of the Central Limit theorem (see Fig. 13).
During a time interval [t; t + T ], a �uctuation of FT (t) may be roughly viewed as
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Figure 12: Instantaneous drag signals fd(t) corresponding to the highest �uctuations of
the averaged drag FT with a time window T = 10τc; σ and σT denote the standard
deviations of the instantaneous and the averaged drag, respectively.

Figure 13: PDF of the time-averaged drag FT with T = 10τc.

the overall contribution of T/τc independent �uctuations of the instantaneous drag fd.
It is thus legitimate to ask whether a large value of the averaged drag results from a
single outstanding �uctuation of the instantaneous drag (case (1)), or from an unusual
succession of moderate positive �uctuations (case (2)). In the same way as in section
3.1, one can identify extreme �uctuations of FT exceeding some �xed threshold a, and
sample a set of extreme events. Setting a = 5.2σT with σT being the standard deviation
of FT , 84 independent extreme events were sampled. Again, this choice results from a
compromise between the need to consider large deviations from the mean value and the
requirement to sample a su�cient number of events for meaningful statistics. As a rule
of thumb, the threshold has been set so that about one hundred events are sampled.
Fig. 12 displays the time-series {fd(t)}t?6t6t?+T for several extreme �uctuations of

FT occurring at t = t?. Qualitatively, it is found that extreme �uctuations of the time-
averaged drag can neither be reduced to case (1) nor case (2). Indeed, both cases are
featured in Fig. 12; very large value of the averaged-drag appear to result from either a
very large �uctuation, or a signi�cant succession of moderate (positive) �uctuations of
the instantaneous drag.
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4. Rare-event sampling algorithms

In the limit of very rare events and complex dynamics such as turbulent �ows, the
computational cost of direct sampling becomes prohibitive. Indeed, the return time
of �uctuations fd > a scales as r(a) ∝ e`a (` > 0) according to Eq. (3.1). As a
consequence, the computational cost required to sample events of amplitude fd > a
through brute-force sampling diverges typically as e`a. The aim of rare-event sampling
algorithms is therefore to sample extreme �uctuations for a computational cost much
lower than their return time. Rare-event (sampling) algorithms compute an ensemble
of N trajectories {xn(t)}06t6Ta

with n = 1 · · ·N , where {xn(t)}06t6Ta
refers to a

trajectory of duration Ta in the phase space of the system. At each step of the algorithm,
some trajectories are discarded and others are replicated in order to preferably sample
trajectories with extreme �uctuations. The algorithm tracks the ratio of the probability
of the new ensemble with the probability of the previous one, allowing the estimation of
the statistical bias and therefore the inference of the statistics of extreme events.
Di�erent algorithms use di�erent selection rules. The success of the algorithm essen-

tially depends on the quality of the selection rule to detect the precursors of the extreme
event (Rolland & Simonnet 2015). However, with the exception of rare analytical cases,
the optimal selection rules are not a priori known (Lestang et al. 2018). In the following
we consider the Adaptive Multilevel Splitting (AMS) and Giardina-Kurchan-Tailleur-
Lecomte (GKTL) algorithms. They both proved to be e�cient for various dynamics
but adopt opposite strategies: the AMS algorithm uses as a selection rule the value of
a predetermined score function, whereas the GKTL uses a selection rule based on the
increment of a score function. A complete description of these two algorithms and their
operating principles are provided in appendices B and C.
The AMS algorithm (Cérou & Guyader 2007) builds on previous ideas about splitting

approaches (Kahn & Harris 1951; Glasserman et al. 1999). In recent years, it has allowed
for the computation of rare events in problems involving a large number of degrees of
freedom such as molecular dynamics simulations (Aristo� et al. 2015; Teo et al. 2016)
or stochastic partial di�erential equations for the computation of rare trajectories in the
Allen-Cahn equations (Rolland et al. 2016). More recently it has been applied to rare
events in stochastic models of wall-turbulence (Rolland 2018) and atmospheric dynamics
(Bouchet et al. 2019). A review of the AMS algorithm, its history and applications is
also available in (Cérou et al. 2019).
During the last decade, the main theoretical framework for the study of rare events in

statistical physics has been the theory of large deviations (Touchette 2009). Alongside,
numerical methods have been developed to sample rare events (Del Moral 2004). Among
them the GKTL algorithm (Giardinà et al. 2006) is particularly suitable for estimating
the probability of observables which are temporal integrals over a very long period
(Giardinà et al. 2011; La�argue et al. 2013). Recently the GKTL algorithm has proven
to be extremely e�cient to simulate extreme heat waves in a comprehensive climate
model (Ragone et al. 2018), with a gain of a factor 100 to 1000 for the computation
time. This achievement already represents a signi�cant leap in the applicability of rare-
event sampling to complex dynamical systems. The aim of this part of our work is to
test rare-event algorithms for �uid-structure interaction in a turbulent �ow, which is an
unexplored area of application.

4.1. Extreme instantaneous drag forces with the Adaptive Multilevel Splitting algorithm

The AMS algorithm is here used with trajectories of �xed duration Ta (Lestang et al.

2018). At each iteration, trajectories with the lowest maxima of the score function
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Figure 14: Ensemble of N = 32 trajectories after 181 iterations of the AMS algorithm.
In this experiment, the algorithm is used with the instantaneous drag fd(t) as score
function. Each trajectory has a duration Ta = 5τc where τc is the correlation time of
the instantaneous drag.

ξ(x(t), t) during the time interval 0 6 t 6 Ta are discarded. These trajectories are
re-sampled by branching them from the remaining trajectories. The operating principle
of the AMS algorithm is detailed and sketched in Appendix B. The objective is here to
sample �ow evolutions which exhibit extreme �uctuations of the drag fd(t) acting on the
square obstacle. The observable itself is used as the score function, i.e. ξ(x(t), t) = fd(t).
Since the Navier�Stokes dynamics is deterministic, small random perturbations are
arti�cially introduced at branching points; this procedure is detailed in Appendix D.
The chaotic dynamics then ensures that re-sampled trajectories separate from their
parents over a time interval τL, usually referred to as the Lyapunov timescale. Based
on linear response theory, we expect this small perturbation to have a negligible impact
on the statistics of the sampled rare events. This has been tested by performing a long
simulation of the dynamics and by regularly perturbing the �ow. We checked that the
obtained statistics of the drag were consistent, within an error of the same amplitude as
the perturbation amplitude, with the statistics computed from the (unperturbed) control
simulation (see Appendix D).
In addition to the score function, two important parameters are the number of tra-

jectories N and their duration Ta. The size of the ensemble N governs the statistical
error a�ecting quantities averaged over the sampled set of trajectories. Therefore, N
should be taken as large as possible to reduce these errors with, nevertheless, a practical
limit given by the available computational resources. In this work, we have performed two
numerical simulations with N = 32 and N = 256. The duration Ta should be much larger
than τc (Lestang et al. 2018) but, again, kept small enough to limit the computational
cost. In practice, the duration of the trajectories was eventually set to Ta = 5τc in both
simulations; we checked in particular that larger values of Ta did not improve the results.
Fig. 14 displays the ensemble of drag values after many iterations of the AMS algorithm

with N = 32. Interestingly, one obtains that all trajectories are eventually re-sampled
from the same trajectory displaying the highest maximum in the initial ensemble, and
overlap over most of their duration. The algorithm thus fails to enhance the sampling
of extreme events. This result is also con�rmed by increasing the number of initial
trajectories to N = 256. The maximum drag achieved by the re-sampled trajectories
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Figure 15: Maxima of the instantaneous drag throughout 256 re-sampled trajectories
(vertical axis) as a function of the corresponding computational cost CAMS in
correlation-time unit. The AMS algorithm fails to e�ciently sample rare trajectories
associated to drag �uctuations higher than the largest �uctuation already captured in
the initial ensemble.

is displayed as a function of the computational cost in Fig. 15; the distribution of the
maximal drag for the initial trajectories is also shown. We observe that the trajectories
with the lowest maxima of the score function are discarded after a few iterations, and
new trajectories with higher maxima are re-sampled. However, the re-sampled trajectories
never exceed the amplitude of the highest maximum already attained in the initial set of
trajectories. A phenomenological explanation is developed in the next paragraph.
It takes a time τL (Lyapunov timescale) before a re-sampled trajectory separates from

its parent. In our situation, this �memory e�ect� is related to the fact that the score
function is of dimension much smaller (one) than the dimension of the phase space or, in
other words, that the score function results from the contribution of a very large number
of degrees of freedom. As shown in section 3.2.2, extreme drag �uctuations have a lifetime
τc related to the timescale over which a vortex remains trapped against the base of the
obstacle. After τc, the vortex is swept away by the �ow and further large �uctuations
of the drag can only result from the trapping of new vortices. Fig. 14 shows that τc
is shorter than the Lyapunov's timescale τL. Therefore, the re-sampling of a trajectory
branched close to t = t? (when the maximum drag occurs) cannot lead to larger values
at t? 6 t 6 t? + τL. For t − t? > τL, the drag process has lost the memory of the drag
�uctuations on which the re-sampling was based and, thus, the probability of observing
a new extreme �uctuation is also very low.
The di�erence between the typical duration of drag �uctuations τc and the Lyapunov

timescale τL may be heuristically associated with the so-called turbulence rate (Frisch
1995). As discussed previously, the duration of extreme �uctuations of the drag is closely
related to the sweeping time of the �ow past the obstacle, and consequently to the mean-
�ow velocity U . On the contrary, the Lyapunov timescale is rather associated with the
intrinsic evolution of turbulent �uctuations in the reference frame of the mean �ow, i.e.
with the root mean square velocity urms. The ratio urms/U (turbulence rate) is much
lower than one in our case of grid-generated turbulence, which thus justi�es that τL > τc.
In summary, a straightforward application of the AMS algorithm with the score

function being the drag itself does not allow us to e�ciently sample extreme �uctuations.
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This behaviour is independent of the choice of N and Ta. Increasing the size of the initial
ensemble, or the duration of each trajectory, can only increase the amplitude of the global
maximum reached initially but does not solve the issue of overlapping trajectories.

4.2. Extreme time-averaged drag forces with the Giardina-Kurchan-Tailleur-Lecomte

algorithm

The sampling of extreme �uctuations of the time-averaged drag FT is now examined.
The AMS algorithm could be used in the same way as before by taking the time-averaged
observable itself as the score function. However, this would lead to similar unsatisfactory
results. For a time-averaged observable, an alternative approach is provided by the
Giardina-Kurchan-Tailleur-Lecomte (GKTL) algorithm (Giardinà et al. 2006; Tailleur &
Kurchan 2007; Giardinà et al. 2011). Similar to the AMS algorithm, the GKTL algorithm
relies on the simulation of an ensemble of trajectories. At regular time intervals, some
elements of the ensemble are killed and others are cloned according to a weight that
depends on the history of the element itself. The weights are chosen so that, after several
iterations of the algorithm, the trajectories in the ensemble are distributed according to a
biased probability distribution that favors trajectories related to large values of the time
average of the observable. The GKTL algorithm belongs to a family of algorithms known
as �go-with-the-winners� (Aldous & Vazirani 1994; Grassberger 2002). Similar ideas have
already been applied in a wide range of �elds such as polymer physics (Grassberger
et al. 1998), out of equilibrium statistical physics (Nemoto et al. 2017), computer sci-
ence (Aldous & Vazirani 1994), dynamical systems (Tailleur & Kurchan 2007), quantum
mechanics (Kosztin et al. 1996). The application of a go-with-the-winners approach to
the computation of large deviations in non-equilibrium systems has �rst been proposed
in (Giardinà et al. 2006). Over the last ten years, it has been successfully applied to
investigate rare events in both stochastic (Giardinà et al. 2006; Lecomte & Tailleur 2007;
Garrahan et al. 2007) and deterministic systems (Giardinà et al. 2006; Tailleur & Kurchan
2007). The operating principle of the GKTL algorithm is developed in Appendix C.
The application of the GKTL algorithm is considered for the �ow dynamics introduced

in section 2. The purpose is to speed-up the sampling of trajectories with extreme
�uctuations of the time-averaged drag, FT . Our observable of interest is therefore the
drag fd(t) and the duration Ta of each trajectory corresponds to the period of averaging,
i.e. Ta = T . In a nutshell, trajectories are �rst evolved in time independently up to t = τ ,
with τ < Ta referring to a cloning period. Then, the selection (and cloning) rules apply
according to the average of the observable of interest, here fd(t), over the interval [0, τ ].
This procedure is repeated n−1 times over the intervals [τ, 2τ ], ..., [(n−1)τ, nτ = Ta]. As
a result, the resampled trajectories are distributed according to a probability distribution
that is tilted towards large values of the averaged observable. Further details are provided
in Appendix C.
The algorithm depends on three parameters: the cloning strength k, the number of

trajectories N and the resampling period τ . The higher k, the larger is the bias involved
in the statistical resampling. Similar to the AMS algorithm, N governs the error a�ecting
the averaged quantities evaluated from the biased ensemble of trajectories, and should
be chosen as high as possible. The cloning period τ determines how often the resampling
is performed. A small cloning period can result in a loss of information if the clones do
not separate from their parents between two cloning steps. On the contrary, choosing τ
much higher than τc results in insu�cient cloning steps. As a result, a rule of thumb is
τ ≈ τc.
In the following experiments, N = 1024 and Ta = 10τc, which yields a computational

cost Cgktl = N ×Ta ≈ 104τc. We �xed τ = τc/2 as a satisfactory compromise in order to
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Figure 16: Rare-event sampling of the (zero-mean) time-averaged drag F̃T = FT − FT
with T = 10τc; τc is the correlation time of the instantaneous drag. The shaded PDFs
are estimated from the biased ensemble resulting from the GKTL algorithm applied to
N = 1024 trajectories of duration Ta = T with the cloning period τ = τc/2. The dashed
line refers to the unbiased PDF of F̃T , i.e. obtained from direct sampling or with k = 0
(no bias) in the GKTL algorithm.

ensure an e�cient sampling (Lestang 2018). Three numerical experiments corresponding
to three di�erent values of the strength parameter k have been carried out. Fig. 16
shows the histograms of the (zero-mean) time-averaged drag for the three ensembles of
trajectories, in addition to the unbiased histogram based on a gaussian approximation
of the PDF of the time-averaged drag. As expected, the algorithm samples preferentially
trajectories with a higher value of the averaged drag. Furthermore, the higher k, the
stronger the bias. Nevertheless, it should be mentioned that for a given number N of
trajectories, there is necessarily an upper limit kmax of the strength parameter over which
the �nite number of trajectories becomes detrimental to the e�ciency and accuracy of
the selection procedure. For k & kmax, the re-sampling relies only on a small number of
�independent trajectories� and most of the trajectories in the biased ensemble overlap.
This e�ect is highlighted in Fig. 16 where the histogram corresponding to k = 0.03
becomes arti�cially peaked. In the present simulations with N = 1024 trajectories, one
can empirically estimate that k should be kept smaller than kmax ≈ 0.03 to ensure
the independence of the trajectories in the biased ensemble. Fig. 17 displays the drag
signal for the extreme trajectories sampled by the GKTL algorithm. In addition, Fig. 18
displays the vorticity �eld related to the maximum of the drag in sampled trajectories.
One observes that the extreme events are consistent with the picture of strong vorticity
being trapped in the vicinity of the base of the obstacle, as pointed out in section 3.2.
Qualitatively, the related drag signals are also found very similar to those obtained from
direct sampling. However, it should be stressed that the computational cost for sampling
the events shown in Fig. 17 and Fig. 18 is roughly one hundred time lower than the
computational cost required to capture by direct sampling the events displayed in Fig. 8
and Fig. 12.

4.2.1. Computation of return times

Importantly, the GKTL algorithm provides an ensemble of trajectories over which
statistics of rare events can be evaluated. In this section, we show in particular that this
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Figure 17: Drag timeseries corresponding to the highest �uctuations of the averaged
drag in the ensemble of trajectories sampled by the GKTL algorithm. The algorithm
was applied with N = 1024, τ = τc/2 and k = 0.03.

Figure 18: Vorticity �eld associated with the maximum of the instantaneous drag fd in
trajectories sampled by the GKTL algorithm.

ensemble allows for the estimate of return times for �uctuation amplitudes that would
be unreachable by direct sampling (with the same computational cost). The method for
estimating return times is described in Appendix C.2.
Fig. 19 displays the return times for extreme �uctuations of the time-averaged drag

obtained by using the GKTL algorithm with two di�erent values of the strength param-
eter k. Both estimates have been obtained with the same computational cost N × Ta.
An estimate given by direct sampling with a time-series of the same e�ective duration
Ttot = N × Ta is also shown. Whilst a direct approach cannot access (by de�nition)
events with a return time greater than Ttot, the GKTL algorithm allows us to estimate
the statistics of time-averaged drag �uctuations having a return time several orders
of magnitude above Ttot. Alternatively, for a �xed target return time, the use of the
GKTL algorithm can reduce the computational cost of the estimation by several orders
of magnitude. This is obviously a major advantage of this rare-event sampling algorithm.
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Figure 19: Return times for the time-averaged drag acting on the square obstacle. F̃T
denotes the time-averaged drag with zero mean. The blue and red lines are obtained
from the biased ensemble of trajectories generated by the GKTL algorithm with
N = 1024, Ta = 30τc and a cloning period τ = τc/2. The green line is the return times
obtained from a single timeseries of duration equal to the computational cost of both
GKTL experiments. Uncertainty ranges for the GKTL estimates are computed as the
standard deviation over a set of 10 independent experiments. Uncertainty ranges for the
direct estimation are computed as the standard deviation over a ensemble of direct
estimates resulting from 60 independent timeseries.
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5. Conclusion

The dynamics and statistics of extreme �uctuations of the drag acting on a squared
obstacle mounted in a turbulent channel �ow (in two dimensions) have been investigated
numerically through both direct and rare-event sampling methods. By means of direct
sampling based on a very long simulation, it was �rst observed that such extreme events
are generically related to the trapping of a strong vortex against the base of the obstacle
by a streamline cap. This arrangement does not persist over time, however, since the
main �ow eventually sweeps away the surrounding �uid structures responsible for this
trapping. Therefore, the lifetime of extreme drag �uctuations is found of the order of the
sweeping time of the �ow past the obstacle, and the corresponding drag signal is very
peaked around extreme �uctuations. In addition, it was found that extreme �uctuations
of the time-averaged drag do not preferentially result from a small number of very large
�uctuations or an exceptional succession of moderate �uctuations that pile up to yield
a large value of the average; both con�gurations are observed. A second part of this
study has been dedicated to the application of two representative rare-event algorithms,
namely the Adaptive Multilevel Splitting and the Giardina-Kurchan-Tailleur-Lecomte
algorithms, to our �uid-mechanical problem. These algorithms rely on selection rules
that determine how an initial ensemble of trajectories is evolved to possibly enhance
the sampling of extreme �uctuations. On the one hand, the AMS algorithm fails (for
this speci�c application) to generate trajectories exhibiting extreme events at a better
rate than a direct sampling. This result can be related to the phenomenology of extreme
drag �uctuations, whose lifetime is shorter than the timescale over which the replicated
trajectories manage to separate from their duplicate. Therefore, the algorithm is unable
to bene�t from the precursors of extreme �uctuations to enhance the realization of new
rare-event trajectories. On the other hand, the GKTL algorithm leads to a computational
gain of several orders of magnitude. The latter is based on the cumulative evolution of the
system rather than its instantaneous behaviour, as opposed to the AMS algorithm. The
downside is that the algorithm provides only statistics of extreme values of the time-
averaged �uctuations. This can nevertheless be of great interest for computing return
times of extreme (time-averaged) �uctuations, for instance.
Selection rules at the heart of rare-event algorithms rely heavily on the choice of a

score function that drives the selection and replication of trajectories. In this study,
the observable itself (the drag) has been chosen as the score function. Optimizing the
choice of this score function is desirable (especially for the AMS algorithm) but di�cult in
practice, since it should account for the phenomenology of the extreme events themselves,
for example how these events build up. Our study shows this quite clearly. A possible
direction would then be to take advantage of recent advances in learning methods to
dynamically optimise the score function.
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Appendix A. The Lattice Boltzmann Method

In the LB method, the �uid is viewed as a population of particles that collide,
redistribute and propagate along the di�erent links of a discrete lattice (see (Krüger et al.
2017) for a comprehensive introduction). In our two-dimensional situation, the so-called
D2Q9 lattice with only nine possible velocities {ci}i=0...8 at each node has been adopted
(see Fig. 20). Locally, the macroscopic �ow variables (per unit volume) are recovered by
summing over the densities of particles {fi}i=0...8 moving with the di�erent velocities,
i.e.

ρ(x, t) =
∑
i

fi(x, t) and ρ(x, t)u(x, t) =
∑
i

fi(x, t)ci

for the mass density and the �uid momentum respectively. The assumption of weak
compressibility (for an ideal gas) is made so that the pressure is directly proportional to
the mass density: p = c2sρ where cs is interpreted as a speed of sound.
The complexity of the �ow emerges from the repeated application of simple rules of

streaming and collision. The LBM advances the local densities of particles fi(x, t) moving
with velocities ci in a two-step procedure. Namely, an exact streaming step

fi(x + ci∆t, t+∆t) = fouti (x, t)

during which particles move with their own velocity to a neighbouring node, and an
instantaneous collision step

fouti (x, t) = − 1

τν
(fi(x, t)− f eqi (x, t))

which achieves a relaxation of local densities towards an absolute equilibrium (at the
macroscopic level). The time-scale τν (in lattice unit) is related to the kinematic viscosity
of the �uid by

ν =

(
τν −

1

2

)
c2s ∆t

This simpli�cation of the collision kernel is known as the BGK approximation in the
kinetic theory of gas (Bhatnagar et al. 1954). The equilibrium function is given by

f eqi (x, t) = wiρ(x, t)

(
1 +

u(x, t) · ci
c2s

+
uα(x, t)uβ(x, t)(ciαciβ − c2sδαβ)

2c4s

)
with the weight factors w0 = 4/9, w1...4 = 1/9 and w5...8 = 1/36 for the D2Q9 lattice.
This discrete Lattice Boltzmann scheme is second-order accurate in ∆x and compliant to
the weakly-compressible Navier-Stokes equations with a third-order error in Ma = |u|/cs
as the lattice spacing vanishes, i.e. ∆x→ 0 (Succi 2018).
As mentioned before, the pressure is directly accessible from the mass density: p = ρc2s.

The viscous stress is also obtained easily from the densities of particles by

τvisc.αβ = − ν

τν c2s∆t

∑
i

ciαciβ(fi − f eqi )

so that the total stress expresses as

ταβ = −c2s
∑
i

fi δαβ −
ν

τν c2s∆t

∑
i

ciαciβ(fi − f eqi ) (A 1)

Finally, let us mention that in the present context of turbulent �ows, the single-relaxation-
time BGK collision has been replaced by a multi-relaxation-time procedure based on
central moments with an improved stability (Rosis 2016).
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Figure 20: Sketch of the D2Q9 lattice. Particles move exactly from a lattice node
towards one of its nine neighbours (including the node itself) during one time step. By
de�nition, the lattice spacing is related to the time step by ∆x/∆t =

√
3cs where cs is

interpreted as a speed of sound.
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Figure 21: Operating principle of the AMS algorithm with three trajectories of
duration Ta. ξ(x(t)) is a prescribed score function de�ned along each trajectory.
Selection and branching rules are applied in order to reach a maximum score value
within the time interval [0, Ta].

Appendix B. The AMS algorithm

B.1. Operating principle

The operating principe of the AMS algorithm is sketched in Fig. 21. The trajectories
1, 2 and 3 represent the evolution of the score function for the current ensemble of
trajectories. On the basis of their respective maximum: Q1, Q2 and Q3, the trajectory
with the lowest maximum is discarded in the ensemble (dashed line). Among the two
remaining trajectories, trajectory 3 is chosen randomly and copied until it reaches the
valueQ1. It is then simulated from this branching point to the �nal time Ta. In the present
case of deterministic dynamics, a small perturbation is introduced at the branching to
separate the trajectories. This re-sampling procedure can be iterated J times or until all
trajectories do exceed a �xed threshold Q.

B.2. Application to a simple case: the Ornstein-Uhlenbeck process

A one-dimensional Ornstein-Uhlenbeck process is considered:

ẋ = −x+ η(t), (B 1)

where η is a Gaussian noise with 〈η(t)η(t− t′)〉 = δ(t− t′).
The AMS is applied to a set of N = 32 trajectories {xn(t)}06t6Ta

with Ta = 5τc.
Let us note that the correlation time is τc = 1 for the process de�ned by Eq. (B 1). Our
objective is to sample �uctuations x > a with a being very large compared to the typical
values of x. The score function is simply x(t) and only one trajectory is re-sampled at
each iteration. The computational cost of the algorithm after J iterations is therefore
related to the simulation of the N initial trajectories and the number of re-sampled
trajectories. Fig. 22 compares the computational cost of the AMS algorithm with that of
a direct sampling. In the latter, the typical computational cost is simply the return time
r(a). One can see that the successive re-samplings of the AMS algorithm lead rapidly to
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Figure 22: E�ciency of the AMS algorithm with respect to direct sampling in the case
of an Ornstein-Uhlenbeck process (Lestang et al. 2018). The red line represents the
evolution of the maximum obtained from re-sampled trajectories as a function of the
computational cost CAMS . The blue line is the analytical solution for the return time of
amplitude a.

trajectories exhibiting extreme �uctuations. For large a, the computational cost is many
orders of magnitude lower than that obtained by direct sampling.
The Ornstein-Uhlenbeck process showcases the e�ciency of the AMS algorithm. How-

ever, the state space is here one-dimensional and the choice of the score function is
straightforward: it is x itself. In addition, the noise term in Eq. (B 1) has no correlation
in time, which implies that newly generated trajectories quickly separate from their
parents. Such favourable features do not persist in the case of �uid dynamics.
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Appendix C. The Giardina-Kurchan-Tailleur-Lecomte algorithm

C.1. The operating principle

The GKTL algorithm is based on the simulation of an ensemble of N trajectories
{xn(t)}06t6Ta

with n = 1 · · ·N starting from independent random initial conditions. Let
us consider a real-valued observable of interest A(x(t)), e.g. the drag fd(t), and introduce
a cloning period τ . At time instants ti = iτ with i = 1, 2, ..., Ta/τ (Ta is a multiple of
τ) a weight W i

n is assigned to each trajectory. This weight is de�ned (t0 = 0) by

W i
n =

e
k
∫ ti
ti−1

A(xn(t))dt

Ri
with the normalisation factor Ri =

1

N

N∑
n=1

e
k
∫ ti
ti−1

A(xn(t))dt

(C 1)
so that

∑N
n=1W

i
n = N . The weights {W i

n}n=1···N determine how many copies of each
trajectory are made at time t = ti. The parameter k characterizes the amplitude of the
statistical bias involved in the algorithm (see Fig. 16). For more information about the
practical implementation of the algorithm, the interested reader can refer to (Brewer et al.
2018; Lestang 2018). The application of this re-sampling at each step ti eventually leads
to a biased sampling in the trajectory space; the trajectories corresponding to extreme
values of

∫ Ta

0
A(xn(t))dt have a higher probability. The sampled biased distribution writes

Pk
(
{X(t)}06t6Ta

= {x(t)}06t6Ta

)
∼

N→∞

ek
∫ Ta
0

A(x(t))dt

Z(k, Ta)
P0

(
{X(t)}06t6Ta

= {x(t)}06t6Ta

)
,

(C 2)

where P0

(
{X(t)}06t6Ta

= {x(t)}06t6Ta

)
refers formally to the probability of observing

the trajectory {x(t)}06t6Ta
. The normalisation factor is given by Z(k, Ta) =

∏Ta/τ
i=1 Ri.

One can mention that

Z(k, Ta) ∼
N→∞

E0

[
ek

∫ Ta
0

A(X(t))dt
]
, (C 3)

with E0 being the expectation value with respect to the distribution P0. This result relies
on the mean-�eld approximation

Ri =
1

N

N∑
n=1

e
k
∫ ti
ti−1

A(Xn(t))dt ∼
N→∞

Z(k, ti) = Ei
[
e
k
∫ ti
ti−1

A(X(t))dt
]
, (C 4)

where Ei[.] denotes the expectation value with respect to the biased distribution P(i)
k

obtained after i cloning steps. The typical relative error related to this approximation
can be shown to be of order 1/

√
N for a family of rare-event algorithms including the

GKTL algorithm (Del Moral 2004, 2013). Rejected trajectories are discarded from the
statistics. Eventually, an e�ective ensemble of N trajectories of duration Ta is obtained,
distributed according to Pk.
A key feature of the GKTL algorithm is that all resampled trajectories are solutions of

the original dynamics. Nevertheless, it should be noted that a small random perturbation
is introduced in the cloning procedure to force clones from the same trajectory to
separate, i.e. arti�cial randomness is introduced so that the cloning procedure is e�ective
for deterministic dynamics. As for the AMS algorithm, it has been checked that this
perturbation did not a�ect the statistics of the sampled trajectories. Eventually, the
sampled trajectories obtained with the GKTL algorithm can be used to compute the
statistical properties of any observable with respect to the distribution P0 from the
distribution Pk by using Eq. (C 2).
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C.2. Computation of return times

Each trajectory in the biased ensemble results in a timeseries of the time-averaged
drag

F
(j)
T (t) =

∫ t

t−T
f
(j)
d (τ)dτ, t ∈ [T, Ta] (C 5)

and the return time of a �uctuation FT > a is given by (Lestang et al. 2018)

r(a) = − Ta − T
ln(1− P(FT > a))

. (C 6)

The probability P(FT > a) can be estimated from the biased ensemble by inverting
Eq. (C 2)

P(fd > a) ≈ 1

N

N∑
j=1

eTaλ(k)ekTaF
(j)
T sj(a) (C 7)

with sj(a) = 1 if maxT6t6Ta [F
(j)
T ] > a and sj(a) = 0 otherwise, i.e. by summing the

weights of the timeseries which maximum is larger than a.
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Figure 23: PDFs of (normalised) drag �uctuations obtained from the perturbed (at
branching points) and unperturbed numerical simulations; ε is the relative amplitude of
the perturbation.

Appendix D. Perturbation at branching time

The application of the AMS and GKTL algorithms to a deterministic dynamical system
requires a perturbation at initial time of the resampled trajectories. In the absence of
such perturbation, the resampling would not yield new trajectories but exact copies of
the original trajectories. In the framework of Lattice Boltzmann simulations, the state
of the system is described at a mesoscopic level by the particle densities {fi(x, t)}i=0···8
(see appendix A). Therefore, the perturbation of the solution at time t0 applies directly
to the fi's with

fi(x, t0) −→ fi(x, t0) + ε

Ns∑
n=1

αnf
(n)
i (x), (D 1)

where the αn's are random numbers uniformly picked in the interval [0, 1], ε is the
relative amplitude of the perturbation and {f (n)i }n=1···Ns is a set of arbitrary snapshots
of the �ow. In other words, the perturbation is a random linear combination of Ns
snapshots. Eventually, the perturbed densities are rescaled so that the mass of the
system is preserved. In practice, we chose ε = 0.002 and Ns = 10 to ensure that the
perturbations remain su�ciently small, random and independent. In order to check that
this perturbation does not impact the statistics of drag �uctuations, a long simulation
of duration Ttot = 105τc has been performed with a periodic perturbation (with period
τc/2) mimicking the perturbation of the clones in the algorithm (see section 4). Fig. 23
shows that the statistics of the perturbed and unperturbed simulations are equivalent.
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