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Mycobacterium tuberculosis complex (MTBC) pathogens 
are collectively the top infectious disease killer glob-
ally, causing an estimated 10 million new tuberculosis 
(TB) cases annually1. Increasingly, new TB cases are 
already resistant to rifampicin and isoniazid (termed 
‘multidrug-​resistant TB’), the key first-​line drugs1. 
Tackling the spread and drug resistance burden of  
M. tuberculosis requires concerted global effort in pre-
vention, diagnosis, treatment and surveillance. Over 
the past decades, research and public health practices, 
including contact investigation and phenotypic meth-
ods for drug susceptibility testing (DST), have been com-
plemented by molecular approaches. These can now 
provide rapid diagnosis, drug susceptibility profiling 
and an understanding of M. tuberculosis transmission 
dynamics2,3.

Whole genome sequencing (WGS) approaches use 
DNA sequencing platforms to reconstruct the com-
plete DNA sequence of an organism’s genome. The 
small (~4.4Mb), single-​chromosome genome of MTBC 

strains4 is well suited to WGS approaches. Rapid, relia-
ble and increasingly affordable WGS technologies can 
now guide all components of TB control: diagnosis, 
treatment, surveillance and source investigation5,6 (Fig. 1). 
Individual strains of human and animal MTBC lineages 
can be identified by WGS7–9, and drug resistance pro-
files can be predicted, especially well for first-​line drugs2, 
allowing prompt, appropriate initiation of treatment and 
the monitoring of the acquisition of drug resistance10. 
TB outbreaks can be identified with high resolution11–13, 
including across borders14,15, and disease control meas-
ures can be implemented. The analysis of the emergence,  
spread, genetic makeup and evolution of specific out-
break strains (for example, highly resistant or highly viru
lent clones) can allow the implementation of targeted  
measures16–18.

WGS-​based approaches are quickly moving from 
research laboratories to clinical care and public health 
applications. The WHO is already using WGS for drug 
resistance surveillance19 and is scheduled to evaluate 

Mycobacterium 
tuberculosis complex
(MTBC). The genetically related 
group of organisms within the 
genus Mycobacterium that 
cause tuberculosis in humans 
or animals.

Drug susceptibility testing
(DST). A procedure to 
determine if clinical isolates are 
resistant to antibiotics either 
by testing the inhibition in 
culture (phenotypic DST) or by 
identifying drug resistance-​
associated mutations 
(genotypic DST).
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sequencing technologies for routine genotypic DST in 
2019 (ref.1). As WGS-​guided individualized treatment20 
and WGS-​based surveillance systems15 are being imple-
mented in several countries (for example, the United 
Kingdom and the Netherlands) with more to come, 
accurate methods and standardized reporting are vital. 
At present, multiple WGS data analysis solutions exist 
that differ widely in scope, pipelines and output for-
mats, with little standardization among them, making 
cross-​comparisons and rigorous validation of these 
pipelines difficult. As clinical decisions such as the 
choice of a drug regimen for treatment may be influ-
enced by differences in bioinformatic analyses, robust-
ness of the pipeline used in clinically relevant prediction 
tools is crucial.

In this Review, we present the current state of the 
art for the three core MTBC WGS tasks: drug suscep-
tibility profiling, transmission cluster detection and 
subspecies or lineage identification (strain typing). We 
highlight areas where general agreement in the analysis 
parameters or interpretation of the results has already 
been reached by the community. We also discuss areas 

where there is still open discussion about the best prac-
tices that will require more effort to reach a consensus 
in the future.

State of the art
The standard workflow for WGS analysis of MTBC 
strains (Fig. 2) involves culturing sputum specimens 
on solid (Löwenstein–Jensen) or liquid (Mycobacteria  
Growth Indicator Tube) media, extracting DNA from cells, 
library preparation and sequencing using short read 
technologies (for example, Illumina platforms)21. The 
complete MTBC WGS analysis pipeline involves several 
key steps, such as input data validation and quality con-
trol followed by mapping to a reference genome (often 
M. tuberculosis strain H37Rv) and detection of genomic 
variants such as SNPs and insertion or deletions (indels). 
Numerous resequencing pipelines for the MTBC cur-
rently exist, with currently no single gold standard. 
These pipelines typically exclude ~10% of the genome 
because erroneous mapping in certain regions results in 
false variant calls (PE and PPE gene families, other repeti-
tive genes and mobile genetic elements)4 and apply var-
ious criteria, such as read depth, base quality and strand 
bias, to filter out false positive variants. Finally, on the 
basis of the variants detected, several tasks can be per-
formed, including (but not limited to) prediction of drug 
resistance and susceptibility profiles, strain typing and 
identification of transmission clusters.

Owing to the clonality of their genomes and their 
inability to undergo lateral gene transfer, MTBC strains 
acquire drug resistance primarily through variants in 
core genes or promoters22,23. Drug resistance and sus-
ceptibility profiles can be determined with high accu-
racy for many drugs used for the treatment of TB by 
comparing variant calls with lists of high-​confidence 
resistance-​conferring variants. These lists have been 
established primarily using genotype–phenotype asso-
ciations identified from statistical analyses of large sets 
of clinical WGS data24,25 (Fig. 3). A prime effort in the 
construction of these lists is the Relational Sequencing 
Tuberculosis Data Platform (ReSeqTB), where research-
ers from around the world can contribute data26. This 
database contains curated, aggregated genotypic and 
phenotypic information on global MTBC isolates 
accompanied by metadata including clinical outcome. 
Another important initiative is the Comprehensive 
Resistance Prediction for Tuberculosis: an International 
Consortium (CRyPTIC) project. CRyPTIC aims to bet-
ter understand the relationship between genetic variants 
and minimum inhibitory concentrations for most drugs 
used for TB treatment2. By comparing the SNPs present 
in a sequenced isolate with these lists, WGS can predict 
not only resistance but also first-​line pansusceptibil-
ity under specific conditions2, replacing the need for 
phenotypic testing.

Similarly, strain classification of the seven major 
human-​associated lineages, many of the animal-​
associated lineages and their sublineages can be derived 
directly from variant calls using lists of lineage-​defining 
SNPs7–9. This is important for understanding population 
structure and potential phenotypic differences between 
lineages27 and comparing isolates on the global level18,28.
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Source investigation
The first case in a group of 
related individuals that 
transmitted the disease. 
Usually, identified during  
the development of an 
epidemiological investigation.

Löwenstein–Jensen
A selective culture solid 
medium commonly used  
to isolate Mycobacterium 
tuberculosis complex strains.

Mycobacteria Growth 
Indicator Tube
A tube that contains 
mycobacteria-​selective culture 
liquid medium and is usually 
coupled to an automated 
instrument to read the results.
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The genomic data for a set of isolates can also be 
used for surveillance and transmission investigations. 
For this, the most common approach is to use a SNP 
cut-​off-based clustering method, although genome-​
based multilocus sequence typing (MLST) has shown 
comparable results29,30. The SNP cut-​off approach starts 
by constructing a list of high-​confidence, unambiguous 
SNPs found in each isolate, often excluding indels and 
drug resistance-​related sites. This filtering is important 
when predefined SNP distance thresholds are used to 
cluster strains and define recent transmission chains. 
Given the very low genetic diversity of the MTBC, 
thresholds of 5 or 12 SNPs are frequently used to sug-
gest epidemiological links, although these thresholds 
were calibrated in low-​incidence settings with a diverse 
strain population31. It is not yet clear if a single threshold 
can be used to detect epidemiologically linked cases in 
all timeframes and contexts. The MLST approach uses 
a predefined set of shared genes and assigns a number 
to each allele sequence identified for each gene. Coded 
allele combinations can be compared between strains to 
detect potential transmission clusters. Two schemes exist 
for this approach: core genome MLST (2,891 genes cover-
ing 2.86 million bases)30 and an extended pangenome 
including 1,141 accessory loci (whole genome MLST)11. 
These WGS-​based approaches have been shown to 
perform better than contact tracing and with higher 

resolution than classic approaches such as mycobacterial 
interspersed repetitive unit variable-​number tandem repeat 
genotyping12,13,29,30,32.

This currently recommended data processing work-
flow (Fig. 2) leading to SNP-​based drug resistance profil-
ing, transmission clustering at a given SNP cut-​off and 
strain profiling using lineage-​defining SNPs is often 
robust and reliable. However, steps towards standardi-
zation and validation of this workflow are required to 
ease integration into current clinical and public health 
initiatives.

Currently, two MTBC-​specific pipelines are avail-
able that perform multiple core tasks in a single-​
installation set-​up to produce genetic variant calls from  
raw Illumina sequence data (MTBseq33 and UVP- 
ReSeqTB34). General WGS pipelines that are not specific to  
a certain pathogen can be used with an MTBC-specific 
reference genome and drug resistance database to 
achieve similar results32,35–37. Numerous custom-built 
pipelines also exist8,38–45, often incorporating similar 
tools for mapping and variant calling, with additional 
accessory tools and in-​house scripts to parse and 
refine outputs. A non-​exhaustive list of such pipelines 
is given in Supplementary Table 1 to demonstrate the 
range of tools and settings that are routinely imple-
mented. Lastly, pipelines specific for a single task, such 
as drug resistance prediction24,46–50 or strain typing7,49, 

Whole genome sequencing

Surveillance

Clustering and outbreaks

Strain and subspecies typing

Drug susceptibility

Drug
RIF
INH
ETH
PZA

Phenotype
   Resistant
   Resistant
   Susceptible
   Susceptible

a

b

d

c

Fig. 1 | Whole genome sequencing of Mycobacterium tuberculosis. The primary applications for whole genome 
sequencing of M. tuberculosis in public health include international surveillance of prevalence and drug resistance  
(panel a), determination of the species or subspecies of M. tuberculosis complex isolates (panel b), determination of drug 
resistance patterns on the basis of the presence of specific SNPs (panel c) and identification of transmission clusters and 
outbreaks (panel d). ETH, ethambutol; INH, isoniazid; PZA , pyrazinamide; RIF, rifampicin. Panel b is adapted with 
permission from ref.155, Springer Nature Limited.

PE and PPE gene families
Families of genes that encode 
virulence factors in 
Mycobacterium tuberculosis 
complex strains. They have 
signature (proline)–proline–
glutamate ((P)PE) motifs at 
their amino terminus.

Core genome MLST
A scheme that converts 
genome-​wide SNP data into an 
allele-​numbering system using 
a preselected set of core genes.

Whole genome MLST
A scheme that converts 
genome-​wide SNP data into an 
allele-​numbering system using 
a preselected set of core genes 
and additional accessory genes.

Contact tracing
The identification of possible 
contacts that interacted  
with an infected person  
(index case), often through 
questionnaires and interviews.
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are available and have been comprehensively compared 
elsewhere51–54.

Validation and standardization
Before a workflow can become a gold standard, the 
validity of that workflow needs to be ensured for its 
intended uses. For MTBC WGS workflows, this essentially 
means ensuring virtually every variant that is reported is 
truly present in the isolate (validation) and each pipeline 
calls the same variants (standardization). Ideally, all steps 
of the workflow, from DNA extraction to sequencing, 
data analysis and reporting, should be standardized (or 
at least comparable) and well documented, and an exter-
nal quality assessment programme should be in place. 
Efforts to standardize and validate pre-​bioinformatics 
pipeline steps have been undertaken to great effect21,53. 
Pipeline standardization could be achieved through the 

use of a single pipeline in all settings or through valida-
tion with rigorous testing and convergence to a defined 
outcome for all pipelines developed. Since multiple 
pipelines have already been implemented (for exam-
ple, MTBseq33 for the EUSeqMyTB consortium and the 
Unified Variant Pipeline34 for ReSeqTB) (Supplementary 
Table 1), agreement on validation criteria seems more 
realistic. Since WGS-​based diagnostics present a poten-
tial paradigm shift for regulatory approvals, there is an 
urgent need to understand how to validate and standar
dize these multiple pipelines for clinical use55. In 2016, 
the US Food and Drug Administration released draft 
guidelines on sequencing-​based infectious disease 
diagnostics, and bodies such as the WHO and the 
European Centre for Disease Prevention and Control 
are taking steps towards international standardizations 
of MTBC WGS15,21,56.
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     ...
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    ...
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        ...
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  ...

M. tuberculosis sequencing report

Patient:    John Smith  Cluster detection
Birth date:   27 Feb 1959 Cluster 48
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... ...
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Fig. 2 | Standard workflow for whole genome sequencing of Mycobacterium tuberculosis complex isolates. A clinical 
sample (often sputum) is first cultured for up to 6 weeks, followed by genomic DNA extraction and sequencing. The resulting 
sequencing output (fastq data files) can be deposited online in public repositories and also run through standard SNP-​
calling pipelines. These pipelines first map reads to a reference genome (often M. tuberculosis strain H37Rv) and then call 
genomic variants, creating a table of SNPs. The resulting SNP lists can then be used for a variety of analyses, such as strain 
typing, transmission clustering and drug resistance profiling. The results of these tasks are then reported to the end user  
(for example, a clinician or researcher). INH, isoniazid; RIF, rifampicin.

Mycobacterial interspersed 
repetitive unit variable-​
number tandem repeat
Mycobacterium tuberculosis 
complex (MTBC)-specific 
variable tandem repeat locus 
used to genotype MTBC 
strains.

WGS pipelines
The bioinformatics section of 
the whole genome sequencing 
workflow, starting from raw 
sequencing files through to 
SNP calling and analyses.
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Technical validation and external quality control of 
MTBC WGS. First, the extracted DNA needs to meet 
minimal standards as defined for a given WGS instru-
ment21. Next, the pipeline to convert the raw sequencing 
reads into accurate variant calls should be technically 
valid, that is, call the correct variants. Although there 
is much debate about the reference standard to be used 
for technical validation of WGS pipelines, currently this 
is best undertaken by use of short read data sets derived 
from isolates with known complete genomes (for exam-
ple, from long read sequencing)57. Mapping these read 
sets to their respective assembled genomes allows the 
rate of false positive and false negative SNPs called 
by the pipeline to be calculated. Ideally, to promote 

interoperability and ease of bioinformatics protocol 
verification, a standard reporting format (for example, 
a BioCompute Object (BCO)) should be used to record 
all thresholds, steps and implementation arguments for 
a given pipeline58. Comparisons of BCOs from different 
pipelines can then be used to set acceptable lower limits 
for the assessed parameters, refining technical validation 
criteria across pipelines59.

A prime example of external quality control of bio-
informatics pipelines is the efforts by the Netherlands 
National Institute for Public Health and the Environment 
(RIVM) to standardize the use of WGS for MTBC geno
typing across the European Reference Laboratory 
Network for TB (ERLTB-​Net). Panels of DNA extracted 

A G
Statistical approach using
genotype–phenotype associations

Mutagenesis

Multiomics

DNA RNA Proteins Metabolites

Machine learning

Input whole genome sequencing data

Strain 1 Strain 2 Strain 3 Strain 4

Lineage 4 3 1 M. bovis

rpoB mutation Ser450Leu Ser450Leu Ser450Leu Gln429Ala

pncA mutation Val130Gly Val130Gly Arg123Gly Gly108Ser

Phenotype RIF resistant
PZA resistant

RIF resistant
PZA resistant

RIF resistant
PZA susceptible

RIF susceptible
PZA resistant

Resistance detected using
a statistical approach

Gene Mutation Drug

rpoB Ser450Leu RIF

pncA Val130Gly PZA

Extended knowledge base

Gene Mutation Drug Phenotype Support

rpoB Ser450Leu RIF Resistant Statistical

rpoB Gln429Ala RIF Susceptible Mutagenesis

pncA Val130Gly PZA Resistant Statistical and mutagenesis

pncA Arg123Gly PZA Susceptible Machine learning

pncA Gly108Ser PZA Resistant Transcriptomics

Current approach Future approach

Fig. 3 | current and potential approaches for determining resistance-​related polymorphisms. In the current 
approach, linked phenotypic–genotypic data derived from a variety of strains across the diversity of the Mycobacterium 
tuberculosis complex are passed through statistical approaches such as likelihood ratios to identify genetic variants that 
are likely related to drug resistance. In this example, the Ser450Leu mutation in rpoB is observed in phenotypically 
rifampicin (RIF)-resistant strains from multiple lineages. Thus, this mutation has a high probability of being associated with 
RIF resistance and is added to the list. The suggested future approach would complement this procedure with additional 
information from targeted mutagenesis, machine learning, multiomics and so on to detect drug resistance-​causing SNPs 
that are too rare to be detected with a statistical approach only. For example, the Gly108Ser mutation in pncA is observed 
in only a single strain, but further confirmation of its association with pyrazinamide (PZA) resistance may be undertaken 
with other methods, allowing it to be added to the list. Additionally , such extensions could also determine variants that 
are definitely not associated with resistance (for example, pncA Arg123Gly).

WGS workflows
All steps involved (from 
culturing to SNP calling and 
analyses) for whole genome 
sequencing of an isolate.

BioCompute Object
(BCO). A framework for 
standardized reporting of 
computational parameters for 
a whole genome sequencing 
pipeline.
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from selected MTBC isolates are sent annually by the 
RIVM to reference laboratories to assess intralaboratory 
and interlaboratory reproducibility of WGS. Similar 
efforts in high-​burden settings are needed to monitor 
the reliability of MTBC WGS outputs when used in 
these settings.

Validation for core tasks: transmission, phylogeny 
and drug resistance. Task validation is used to demon-
strate that a given pipeline is verified for a specific analy
sis (for example, drug resistance profiling). For task  
validation, MTBC bioinformatics pipelines should 
use defined validation data sets, ideally with hundreds 
or thousands of well-​characterized clinical MTBC 
strains representing the diversity of a specific core 
task (for example, different drug susceptibility profiles 
for resistance detection, representatives of all MTBC 
phylogenetic diversity for typing or differing degrees  
of clustering for transmission analyses). The number of  
readily available, well-​curated validation data sets is 
currently limited.

For validation of transmission cluster detection, the 
RIVM has provided laboratories with sequenced reads 
from 535 MTBC isolates for which epidemiological 
links are known. Using this data set, the EUSeqMyTB 
consortium showed that existing pipelines could confi-
dently distinguish linked from unlinked cases, especially 
when the SNP distances are high, as is often the case in 
low-​burden settings12. This comparison was undertaken 
as part of an effort to standardize WGS for monitoring 
cross-​border transmission of multidrug-​resistant TB  
in Europe15.

The clonality of MTBC strains means that lineage 
and strain typing can be performed using only a hand-
ful of SNPs that are specific for strains of a particular 
lineage. Several studies have demonstrated the reliability 
of specific SNPs to determine the MTBC lineage or sub-
lineage8,9,60. However, sublineage classifications are often 
less resolved, and parallel nomenclatures for lineage 2 are 
being used18,61,62. As the diversity of the MTBC is further 
explored, especially for animal-​associated and zoonotic 
TB, these underdescribed lineages can also easily  
be strain typed using the same SNP-​based approach7.

Validation of WGS for drug resistance is the most 
advanced of all the core tasks. Studies showed high con-
cordance between phenotypic and genotypic predic
tions, regardless of the sequencing platform used19,53.  
In the past 2 years, major progress has been made in the  
linkage between genotype and resistance phenotype by 
use of a standardized statistical approach24,25. The task 
of incrementally improving our knowledge base on 
genetic resistance profiling is primarily being addressed 
by the two global consortia outlined earlier: ReSeqTB’s 
single platform for genotype–phenotype investiga-
tion of drug resistance26,34 and CRyPTIC’s genotypic– 
phenotypic linking of more than 10,000 isolates demon-
strating susceptibility prediction with 99% sensitivity for 
rifampicin and isoniazid and 93–96% for ethambutol 
and pyrazinamide2. These results have led to some low-​
burden countries (for example, the Netherlands and the 
United Kingdom) replacing phenotypic DST with WGS-​
based DST for first-​line drugs. Resistance predictions for 

drugs used to treat multidrug-​resistant TB can also be 
undertaken with sensitivity often ~90%24. Large comp
arative studies using phenotype–genotype associations 
are expanding the catalogue of resistance markers63,64 
and will help to increase the sensitivity for detect-
ing multidrug-​resistant TB. Efforts are now directed 
towards increasing the diversity of isolates and includ-
ing accompanying high-​quality phenotypic and clinical  
data, especially for new anti-​TB drugs.

Standardization of communication of MTBC WGS 
results and data sharing. Effective communication of 
WGS-​based results to a diverse audience of end users 
is key to positively impacting patient care and TB con-
trol programmes. Although the need for plain language 
reporting of genomic results has been recognized51,65, 
there are no international standards yet. Reporting 
standards should be flexible enough to address the dif-
fering levels of familiarity of end users with genomic 
data interpretation and allow customization to region-​
specific treatment guidelines and formatting require-
ments. For example, the International Organization for 
Standardization ISO 15189:2012 standard mandates that 
information such as patient identifiers, assay details and 
the testing laboratory is reported. Recommendations 
from MTBC WGS report design validation stud-
ies include avoiding the use of abbreviations, draw-
ing attention to important elements with shading,  
bolding and other types of emphasis, and incorporat-
ing summary statements to effectively communicate  
key results66,67.

In peer-​reviewed publications, the parameters used 
at each step of a bioinformatics pipeline must be stated 
in a manner that makes the analysis reproducible and 
understandable to non-​bioinformaticians (for example, 
using a BCO as outlined earlier). Custom code used in 
the analysis should be made available through a pub-
lic repository (for example, GitHub), ensuring ease of 
installation elsewhere. Pipelines should report the out-
come of technical validations, at least for the core tasks 
that they aim to address (for example, lineage-​defining 
SNPs for a strain typing pipeline). Examples of standard 
reporting include the Minimum Information About a 
Bioinformatics Investigation68 and the Strengthening 
the Reporting of Molecular Epidemiology for Infectious 
Diseases69 guidelines. In Supplementary Box 1, we sug-
gest data elements to include according to intended use, 
but note that a report may need to include elements from 
more than one use case.

Data sharing is crucial as incremental knowledge 
improves drug resistance predictions and strain track-
ing relies on the number and diversity of strain genome 
data available. Data that are shared include either coded 
strain identifiers such as MLST patterns or raw sequence 
data not yet processed by a pipeline. Data sharing has 
already been shown to be invaluable for detecting cross-​
Europe transmission clusters14. Data sharing should 
encompass data produced by research and collected in 
public health laboratories and from surveillance efforts70, 
similarly to what is done by the GenomeTrakr network 
for foodborne pathogens71, while safeguarding patient 
data and appropriately acknowledging contributions.
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The crucial next step for fully utilizing MTBC WGS 
data is implementation of validations, both technical 
and task oriented, for all pipelines. Once undertaken, 
the agreed-​upon pipeline or pipelines can then be 
widely implemented, once infrastructure and usability 
are accounted for.

Implementation of WGS
Although WGS is becoming widely used in research, 
minimal progress has been made in the implementation 
of WGS in clinical and public health applications. Some 
reasons include the lack of standardized end-​to-end 
solutions, the required wet-​laboratory and computing 
infrastructure, the need for sufficient Internet connectiv-
ity and bandwidth, and training deficits in genomics and 
bioinformatics72–74. Efforts are thus needed to expand 
accessibility to perform analysis by non-​experts. How 
these factors are addressed will depend on a country’s 
income and public health sector strength.

High-​income countries will probably use a mixture of 
closed (end-​to-end) solutions and more complex pipe-
lines as they likely will have on-​site bioinformatics sup-
port. Ideally, routine analysis of WGS data will require 
little to no bioinformatics knowledge by the end user. 
Implementation of these pipelines can be undertaken by 
either local set-​ups with supporting infrastructure or a 
Web-​based approach with easy, affordable access75. Many 
large healthcare facilities, such as referral hospitals, are 
already incorporating bioinformatics units into their 

support services as part of the trend towards person-
alized medicine, a practice that TB treatment can take 
advantage of. These services should mediate the imple-
mentation of complex pipelines and make all required 
software readily available without a requirement to 
install additional software tools, as is done with certain 
existing pipelines33,47.

Given the heterogeneity of pipelines already in place 
(Supplementary Table 1), it is conceivable that pipelines 
will become more numerous and diverse when imple-
mentation is done in hundreds of care services. Some 
will opt in for end-​to-end solutions, perhaps integrated 
with the sequencing platform, whereas others will pre-
fer task-​specific pipelines, such as resistance prediction 
only. Those implementing their own pipeline should 
be aware of the limitations, cautions and recommenda-
tions detailed by expert consensus here and elsewhere6,75.  
To evaluate new pipelines it is preferable to develop 
inside ‘containers’ (that is, cross-​platform, stand-​alone 
software sections that contain the pipeline and all requi
red dependencies), such as Docker or Singularity76,77,  
or package managers such as Bioconda or Homebrew 
which allow easy installation of platform-​specific pro-
grams78,79. Creating a container for each step (Fig. 2) 
also allows easy updating of a specific step without the 
need to install a whole new pipeline and allows tasks 
(for example, resistance profiling) to be added to the 
pipeline as needed. To allow usability by a range of end 
users, high-​level access to the individual steps should be 
available for advanced users, with functionality layers 
abstracted away from users with limited bioinformatics 
expertise. The pipelines should be open source and user-​
friendly, by using intuitive and well-​documented com-
mand line and graphical user interfaces with relevant 
and validated default parameters.

The situation in low- and middle-​income (LMIC) 
countries, especially those with a high burden of TB, is 
currently totally different. End-​to-end solutions based 
on cloud computing are the most logical step forward, 
similar to the roll-​out of quantitative PCR systems 
(Box 1). Centralized Web-​based analysis platforms have 
recently emerged and promise to aid in computational 
efficiency, access and usability46,50. Roll-​out of such initia-
tives to more countries would greatly increase the poten-
tial for large-​scale WGS implementation. The primary 
barrier to this is usually unstable Internet connectivity 
with limited bandwidth, although use of methods that 
can effectively handle connection interruptions, such as 
BioTorrents80, or direct transfer from sequencing centres 
to cloud storage and/or Web-​based pipelines may help 
circumvent these issues.

The use of end-​to-end, cloud-​based solutions is likely 
to have an important role in LMIC countries. It is, how-
ever, advisable to train more scientists in MTBC WGS in 
those countries81,82. Although standardized, unchange-
able pipelines are optimal for global implementation 
of WGS, there are several reasons why local bioinfor-
matics knowledge is required, such as the necessity to 
adapt analyses to the country-​specific epidemiological 
profiles and public health ecosystems or regulatory 
laws that do not allow storage beyond country borders. 
Such customized, yet reproducible solutions are being 

Spoligotyping
A PCR-​based approach based 
on the amplification of spacers 
in the CRISPR region of the 
Mycobacterium tuberculosis 
complex (MTBC). It is used for 
genotyping MTBC strains.

Box 1 | Primary Mycobacterium tuberculosis diagnostics

solid or liquid culture (for example, Mycobacteria Growth indicator tube137) is the 
conventional diagnostic tool for Mycobacterium tuberculosis complex (MtBC) 
identification and drug susceptibility testing. However, such phenotypic tests can take 
weeks to months to obtain results, require high-​level biosafety infrastructure and are 
considered unreliable for certain drugs (for example, pyrazinamide). therefore, several 
molecular tests (besides whole genome sequencing) that are directly applicable to 
clinical samples have been developed. Line probe assays rely on the hybridization of 
amplified mycobacterial DNa to nucleotide probes on strips to detect select drug 
resistance-​associated mutations or their wild type alleles. the line probe assays 
MtBDrplus138,139, tB NtM+MDr139,140 and MtBDrsl141,142 were all endorsed by the wHO. 
the two former assays identify mutations associated with resistance to rifampicin  
(in rpoB) and isoniazid (in katG and inhA); that is, they detect multidrug-​resistant 
tuberculosis. the MtBDrsl assay identifies mutations associated with resistance to 
fluoroquinolones (in gyrA and gyrB) and aminoglycosides (in rrs and eis); that is, it 
detects extensively drug resistant tuberculosis. Other tests use (cartridge-​based)  
real-​time PCr (GeneXpert MtB/riF86,143 (and updated ultra144,145), anyplex ii MtB/ 
MDr/XDr146 and Fluorotype MtBDr147) or PCr melting curve (Meltpro148) for mutation 
detection. Fluorotype and the wHO-​endorsed and globally deployed GeneXpert both 
detect rifampicin-​associated mutations in rpoB and, in the case of Fluorotype, isoniazid 
resistance mutations (in katG, and inhA). as all aforementioned molecular tests use 
indirect sequencing technologies, they are intrinsically limited to the detection of 
common preselected mutations and are prone to false positive results due to 
indiscriminate detection of unrelated mutations149,150. to circumvent these limitations, 
newer assays use targeted amplicon sequencing. the Next Gen-​rDst151,152 and 
Deeplex-​MyctB153,154 assays are directly applicable to clinical samples and sequence  
6 or 18 genes (including some promoter regions) associated with resistance to 7 or 13 
antituberculosis drugs, respectively. Deeplex-​MyctB additionally includes 
identification of mycobacterial species and uses spoligotyping (spacer oligonucleotide 
typing). the large read coverage depths that can be achieved with Deeplex-​MyctB 
allow high-​confidence mutation calls, including those born by minor subpopulations in 
the case of heteroresistance. Nevertheless, the accessible targets are inherently fewer 
than with whole genome sequencing.
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supported by capacity-​building initiatives (for example, 
the Human, Heredity and Health in Africa Consortium 
and the TORCH consortium). TB supranational ref-
erence laboratories should also have an important 
coordinating role, as is currently done for phenotypic 
workflows19,83. Ultimately, expansion of education cur-
ricula to include bioinformatics is needed to generate 
sufficient capacity84.

Finally, supportive policy and political commitment 
will be essential for sustainable implementation of WGS, 
especially in TB-​endemic LMIC countries73,81,85. This 
implementation will benefit from the lessons learned 
during the stepwise approach used to roll out line probe 
assays and GeneXpert86 (Box 1).

Extensions of the current standard
Although current pipelines (Fig. 2) appear to be highly 
accurate for many aspects of the three core tasks, multi-
ple important issues remain open and should be part of 
future research and evaluation.

Input data validation and quality control. Most cur-
rent pipelines do not routinely filter out reads that do 
not come from MTBC strains. However, sequencing 
files can contain reads from other organisms, and these 
contaminants can introduce errors during the variant 
calling process, modifying both the variants identified 
and their respective frequencies87. Additionally, any host 
DNA sequencing reads should be removed for legal or 
ethical reasons, especially if the data are shared online. 
Computationally removing non-​MTBC strain reads 
before mapping is an efficient strategy to implement 
contamination-​proof analysis pipelines39 but requires 
taxonomic classification of individual reads. Use  
of taxonomic classification methods, in which reads 
are assigned to the closest matched species, allows 
quick and efficient removal of contaminating reads but 
requires comprehensive genome databases, often mak-
ing their implementation extremely memory consum-
ing88,89. Additionally, elimination of reads from highly 
conserved core bacterial genes of heterologous sources 
remains a problem. Proposed alternatives include mask-
ing genomic regions known to accumulate artefactual 
polymorphisms87, filtering the alignments produced by 
contaminant reads, or fine-​tuning the read aligners such 
that only the MTBC strains sequences are mapped to  
the reference genome. Any method will require tho
rough technical validation to ensure that contaminant 
reads are removed without eliminating true MTBC 
sequences (for example, through in silico generation 
of data sets with differing levels of reads from other 
organisms).

Sequence read mapping and reference genomes. 
The use of a single reference genome for mapping all 
MTBC strains is the ideal approach for comparable and 
standard variant calling. Although most pipelines use 
the M. tuberculosis strain H37Rv genome4,90 as the ref-
erence genome, several alternative approaches should 
be explored. As H37Rv is a lineage 4 strain, its use as 
a reference for other lineages may be inappropriate 
due to gene content differences between lineages91–94. 

Additionally, H37Rv contains many variants not found 
in any other strain95, including in genes related to drug 
resistance (for example, gyrA S95T), creating confusion 
in SNP interpretations. Any replacement of H37Rv as 
the reference genome should be assessed by in silico 
studies across data sets and clinical settings. An exam-
ple of such a study tested seven different references 
against sequence reads from lineage 4 isolates and 
showed that very limited variation occurred and that 
reference choice should be based on criteria other than 
matching lineage96.

One alternative to the H37Rv genome is a pan
genome which incorporates the entire gene pool of 
MTBC lineages. Studies have found small but notable 
differences in gene content between lineages, often 
affecting genes involved in pathogenesis91–94. Although 
these differences are unlikely to affect drug resistance 
profiling (because associated mutations are in the 
core genome), they may impact delineation of trans-
mission clusters if additional SNPs are found in these 
genes that would push strain comparisons over the pre
determined thresholds. Building an MTBC pangenome 
should be straightforward due to the close genetic rela-
tionship between different strains (average nucleotide 
identity between any two strains ≥99.8%) and the lack 
of horizontal gene transfers events. So far this approach 
has not been effectively explored.

A second alternative is the use of an inferred ances-
tral genome representative of the MTBC population 
and diversity28,39. From an evolutionary perspective, this 
approach addresses the M. tuberculosis strain H37Rv-​
specific variants outlined above. In addition, because all 
extant strains are equidistant to a common ancestor, the 
number of SNPs called for any MTBC strain will be sim-
ilar (normalized) regardless of its lineage. This expected 
SNP range is useful for quality control, as deviations may 
indicate poor quality sequencing, mixed infections or 
contaminations39.

A third approach is to use ad hoc reference genomes, 
depending on the study being conducted. For instance, 
lineage-​specific ancestral genomes or high-​quality, 
closed, outbreak-​specific reference genomes97–99 could 
be used as a reference to reduce mapping errors10. A dis-
advantage of this approach is that it hampers compar-
ison of results between pipelines and the standardized 
reporting of results.

A completely different alternative involves de novo 
assembly, using a reference-​free approach, which 
has been successfully applied for human population 
genomics data100.

Independent of the selection of the reference genome, 
other steps such as mapping and filtering are not consist-
ent between different pipelines but might greatly affect 
the analysis outcome. For instance, removal of duplicate 
reads may have a large impact on the variants identi-
fied and allele frequencies. Similarly, local assembly or 
realignment around indels, reducing false positive SNPs 
derived from mapping artefacts, is rarely used in MTBC 
WGS pipelines57 but is known to affect variant calling46. 
The question of whether these steps have a relevant 
effect on the final outcome should be incorporated into 
future technical validations.

www.nature.com/nrmicro

R e v i e w s

https://h3abionet.org
https://torch-consortium.com/vliruos


Interpretation of drug resistance results and predic-
tions. Currently, the bulk of routine drug resistance 
testing is undertaken using phenotypic DST. This 
approach will still be required for a subset of difficult-​to- 
interpret drug resistance patterns; however, the overarch-
ing goal is to detect all variants associated with resistance 
for comprehensive genome-​based resistance profiling. 
Although the current statistical approach for identify-
ing resistance-​associated variants using WGS data is an 
important step forward for clinical use, a weakness is that 
phenotype predictions of rare and/or novel genetic vari-
ants cannot be assessed (Fig. 3). This problem is especially 
relevant for identifying resistance to new and repurposed 
drugs, or drugs such as pyrazinamide and ethionamide 
for which drug resistance mutations do not arise in hot-
spots but appear across entire genes (for example, pncA 
and ethA) and in promoter regions. For uncommon or 
novel genomic variants, the standard statistical approach 
could be complemented by experimental data, compre-
hensive single-​nucleotide mutagenesis101 followed by 
systematic phenotypic screening, multiomics studies 
and machine learning approaches to predict the resist-
ance phenotype102,103. With the final aim of replacing 
most of phenotypic DST with sequence-​based testing, 
it will also be essential to catalogue ‘benign’ variants 
that are not associated with resistance (that is, phyloge-
netic markers or other neutral variants2). New statistical 
approaches such as large-​scale genome-​wide association 

studies63,64, protein structure modelling43,104 and machine 
learning102,103,105 will likely have a key role in identifying 
causative versus benign variants. Comprehensive data-
bases of WGS data linked with phenotypic and clinical 
outcome data (for example, CRyPTIC or ReSeqTB) are 
key to moving towards this goal.

Once established, endorsement of a single standard-
ized variant list by the WHO or other regulatory body 
with regular updating should be pursued.

Variant calling for other purposes. Accurate variant 
calling has major implications on downstream inter-
pretation of the results for evolutionary, epidemiolog-
ical and clinical applications. Owing to the low levels 
of diversity and the slow substitution rate of MTBC 
genomes31,41,98,106, a few falsely called SNPs can affect 
the interpretation of transmission events, lead to the 
false diagnosis of a relapsed infection as reinfection or 
influence the interpretation of subpopulations within a 
patient (Fig. 4).

A primary use of MTBC WGS is the identification of 
recent transmission chains and their direction at high 
resolution. Although some studies have used thresh
olds ranging from 0 to 50 SNPs107–109, a threshold of  
5 or 12 SNPs is most frequently used to identify possible 
epidemiological links and recent transmission29,31. For 
WGS-​based distinction of relapse versus reinfection, 
studies have often used arbitrary thresholds of less than 
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Fig. 4 | Epidemiological and within-​host applications of SNP-​based comparisons between Mycobacterium 
tuberculosis complex isolates. Whole genome sequencing data can be used at multiple levels of epidemiological 
complexity. At a global population level, SNP-​based phylogenetics can be used to delineate strains and subspecies 
within the M. tuberculosis complex. At the local level, these phylogenies can be subdivided into transmission clusters 
using predefined SNP or allele cut-​offs. Finally , at the individual level, within-​host diversity can be examined using SNP 
proportions to detect heteroresistance (subpopulations with different drug resistance profiles) or mixed infections  
(a single host infected multiple times).
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6 or less than 10 SNPs to define reactivation, and more 
than 100 SNPs to define reinfection45,110,111. Any thres
hold selection can be problematic as inferences based on 
relatedness must include possible underlying methodo-
logical bias (culture, sampling and pipeline). In addition, 
genetic distances may be impacted by biological factors 
such as potential mutational bursts41,112, clonal variants in 
different lesions10,113, the impact of strain type (lineage or 
subspecies) or drug resistance on substitution rates106,114, 
and genome instability during latency114,115. For example, 
identifying transmission from unrelated cases or distin-
guishing relapse and reinfection in low-​burden countries  
is relatively easy, where the distribution of SNP distan
ces is bimodal, separating linked from unlinked cases12,14. 
Conversely, inferring transmission clusters within the 
context of institutional or household settings or in 
high-​TB-incidence scenarios where the SNP distance 
distribution is continuous remains difficult, especially 
if epidemiological links in large clusters of patients with 
seemingly identical strains are lacking116–118.

Other approaches beyond SNP-​based clustering 
have been developed to improve the identification of  
epidemiological links and improve the resolution  
of transmission networks in outbreaks. These either use 
transmission event thresholds119 or combine genomic 
and epidemiological data to identify the most prob-
able transmission trees for infectious diseases, or do 
both120,121. One particularly important consideration 
when one is reconstructing transmission networks of 
MTBC outbreaks is that phylogeny and transmission 
events do not necessarily coincide as a consequence of 
genetic diversification during latency and long genera-
tion times122; it is thus necessary to model the within-​
host genetic dynamics123–125. Besides transmission 
reconstruction, phylodynamic approaches also allow the 
inference of epidemiologically relevant parameters such 
as the effective reproduction number, as well as the timing 
and geographic origin of an outbreak126,127.

Within-​host diversity and subpopulation detection 
remains even more challenging. Low-​frequency variants 
that are not due to technical artefacts can indicate the 
presence of mixed infections (that is, coinfection with two 
distinct MTBC strains), or microevolution leading to closely 
related subpopulations, or heteroresistance (subpopula-
tions that differ in drug resistance-​related variants)10,113,128. 
Proposed subpopulation detection limits in different 
pipelines range from 10% to 75% (Supplementary Table 1)  
and are strongly influenced by factors such as read depth. 
Although the presence of a subpopulation of at least 1% 
resistant bacilli is considered clinically relevant129, selec-
tion bias means that what is observed in sequencing data 
may not be representative of what is present in the culture 
isolate, which in turn is likely not representative of the 
diversity in the sputum sample, which is known to not 
represent the entirety of the within-​patient diversity113,130. 
Mathematical modelling approaches have been developed 
to identify mixed infections131,132. However, with current 
approaches the detection of mixed infections is limited 
by the relative ratio of the two strains and the number 
of differing SNPs. Further research and methodologi-
cal improvements are needed to better understand and 
interpret this within-​host diversity.

Beyond the current standards
As current culture-​based approaches require time 
for MTBC strain growth, culture-​free WGS directly 
from clinical samples (for example, sputum) would 
be transformative for clinical and public health appli-
cations of WGS. This approach would not only elimi-
nate the culture delay but also remove culture selection 
biases. Although studies have shown some success, this 
approach is still mired with problems such as contami-
nation by human and commensal microbial reads, pre-
venting sufficient coverage depth of the MTBC genomes 
and thus reliable variant calling, even in samples with 
high bacterial loads133–135. Improvements in cell lysis 
or capture coupled with selective DNA enrichment or 
depletion could reduce this technical complexity and 
cost. Additionally, downstream bioinformatic filter-
ing could be used to control for and remove possible 
remaining false variants.

Much is expected from the development of highly 
portable sequencing devices (for example, the MinION). 
Such technology offers the capacity to detect variants in 
real time during sample acquisition, potentially report-
ing results from sputum within hours if mycobacterial 
loads are high. Their portability and ability to work in 
resource limited settings also favours direct sequencing 
of clinical samples, even in LMIC countries. Moreover, 
although progress has been made in analysis of variants 
in repeat-​rich genome regions (for example, PE and 
PPE gene families) or structural changes (duplications, 
large indels and so on) by short read mapping110,136, 
long read sequencing will make this more robust99,133. 
Unfortunately, application of this technology is currently 
limited by high error rates (although new dual sequence 
reading systems promise substantial improvement) 
and, specifically for mycobacteria, difficulty in cell lysis 
without overshearing DNA.

Conclusions
A decade after the first proof-​of-principle studies, 
the community consensus is that MTBC WGS is now 
advanced enough to inform clinical decisions and pub-
lic health. This is evident as WGS has already replaced 
phenotypic testing for first-​line drugs in some settings, 
has become the basis of drug resistance surveillance 
surveys supported by the WHO and has become the 
standard for MTBC molecular epidemiology and 
strain typing studies. Before its full-​scale implemen-
tation, we call for extensive standardization and vali-
dation efforts. This will require political commitment 
and the involvement of supranational laboratories and 
regulatory authorities. There also remains an impor-
tant role for the research community at large to con-
tinue to improve the technical and analytical aspects 
of WGS. Consideration is also needed for the ethical 
implications and consequences of routine WGS and 
the information it provides. There is therefore a need 
now to commit resources to ensure access to stand-
ardized and validated WGS approaches, especially 
in high-​burden countries, where WGS will have the 
greatest impact.
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