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Abstract—Pushbroom imaging systems are emerging tech-
niques for real-time acquisition of hyperspectral images. These
systems are frequently used in industrial applications to con-
trol and sort products on-the-fly. In this paper, the on-line
hyperspectral image blind unmixing is addressed. We propose
a new on-line method based on Alternating Direction Method of
Multipliers approach, particularly well-adapted to pushbroom
imaging systems. The proposed algorithm presents faster con-
vergence and lower computational complexity compared to the
algorithms based on multiplicative update rules. Because of the
generally ill-posed nature of the unmixing problem, we impose
a minimum endmembers dispersion constraint to regularize the
unmixing problem; this constraint can be interpreted as a convex
relaxation of the minimum volume constraint and, therefore,
presents interesting optimization properties. Experimental results
on synthetic and real data sets demonstrate the effectiveness of
our method in terms of rapidity and accuracy.

Index Terms—Hyperspectral imaging, Pushbroom acquisition
system, On-line unmixing, ADMM, Minimum dispersion con-
straint.

I. INTRODUCTION

Hyperspectral imaging is a powerful tool which combines

the power of digital imaging and spectroscopy. Each pixel

in a hyperspectral image provides local spectral information

about a scene of interest across a large number of contigu-

ous bands. Because of the limited spatial resolution of the

sensor, mixed pixels (pixels containing the contributions of

several components) are often encountered in hyperspectral

data. Thus, spectral unmixing is an important technique for

hyperspectral data interpretation, as it allows to decompose

a mixed pixel into a collection of spectral signatures (also

called endmembers) and their relative proportions (also called

abundances).

This paper addresses the problem of sequential (or on-line)

spectral unmixing of hyperspectral Near InfraRed (NIR) im-

ages acquired by a pushbroom imager [26], by means of Non-

negative Matrix Factorization (NMF)-like approaches. This

problem is encountered e.g., in real-time industrial systems,

for product quality control applications. On-line unmixing

methods present several advantages over the off-line methods:

i) they allow to alleviate computational burden and reduce

memory requirements for big hyperspectral data cubes; ii)

We benefit from the support of the ANR-OPTIFIN (Agence Nationale de
la Recherche-OPTimisation des FINitions) project.

they are well-adapted to real-time data processing for on-

line industrial acquisition systems; iii) they allow to highlight

(track) the spatial/time variability of the endmembers in a

hyperpectral imaging application.

A. Hyperspectral image unmixing

Spectral unmixing methods are based on a mixture model

describing how the endmembers are combined in the acquired

image. Depending on the application and/or the data, this

model can be linear or non-linear [4]. In this article, we

focus on the Linear Mixing Model (LMM) [19]; it is the most

commonly used model in hyperspectral unmixing because it

is simple to understand and represents a good approximation

of the physical reality in most applications. The LMM model

can be generally expressed in the following form:

X ≈ SA, (1)

with X ∈ R
L×P
+ , S = [s1, ..., sR] ∈ R

L×R
+ and A ∈ R

R×P
+ ,

where R+ denotes the set of non-negative real numbers. In

hyperspectral imaging, the P columns of X represent the data

samples (pixels) recorded at L wavelengths. S is a matrix

containing on its columns the R normalized endmembers

and A is a matrix containing on its columns the abundances

for the recorded samples. Under the non-negativity and the

sum-to-one constraint i.e., S ≥ 0, A ≥ 0 and AT 1 = 1

(where 1 is an all-ones vector), the LMM admits a geometric

interpretation: all the pixels belongs to the (R−1)-dimensional

simplex whose vertices are the endmembers s1, ..., sR. Fig.1

illustrates this geometrical representation for a mixture of

R = 3 endmembers. When the sum-to-one constraint does

not hold, the observations belong to the positive cone defined

by the endmembers.

There are many methods in the literature for hyperspec-

tral unmixing. Most of them are based on the pure pixel

assumption, i.e., the existence of pixels containing a single

source, see e.g. [29], [38]. However, the pure pixel assumption

is a strong requirement that generally does not hold for

highly mixed data, and finding the endmembers is therefore a

more challenging task. For this case, other family of methods

has been developed, based on the volume minimization idea

introduced by Craig in 1994 [9]. These approaches consist

in minimizing the volume of the simplex containing the

data by “creating” virtual endmembers such as in [2], [24].
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Fig. 1: Geometrical representation of the LMM for R = 3
endmembers. All the observed pixels (gray points) belong to

a 2-simplex (red lines) whose vertices are the endmembers

(blue points)

However the performance and computational efficiency of

these methods is often limited because of complicated simplex

volume calculations, sensitivity to initialization and lack of

rigorous performance analysis. A more detailed analysis can

be found in [4].

To overcome the above problems, Non-negative Matrix

Factorization (NMF) [21] has been applied to hyperspectral

data unmixing. For a non-negative matrix X, the NMF consists

in estimating two matrices, S ≥ 0 and A ≥ 0, satisfying (1).

In general, the NMF is not unique and, therefore, to reduce the

size of the set of admissible solutions, it is necessary to add

regularization terms. The most effective constraint approaches

are volume-regularized NMF such as [1], [13], [14], [23], [28],

[33], [43], [41], which can be considered as state-of-the-art

methods in blind hyperspectral unmixing.

B. Pushbroom acquisition scheme

In pushbroom imaging systems, hyperspectral data cubes are

acquired slice by slice, sequentially in time (which represents

the so-called along track spatial dimension). Fig. 2 illustrates

the acquisition of a hyperspectral image by a pushbroom

imager; the image is acquired by moving the sensor across the

scene. The stream of spatial-spectral data arrays is then stacked

to form the hyperspectral data cube. For each acquisition time

k (k = 1, ...,K), the new slice (represented by a dotted line in

Fig. 3) is a matrix of dimensions Nx×Nλ, where Nx denotes

the across track spatial dimension (one line of the scene) and

Nλ the spectral dimension (wavelengths).
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Fig. 2: Data acquisition

with pushbroom imager
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Fig. 3: Data structure for

pushbroom acquisition

The goal of the on-line blind hyperspectral unmixing is to

produce real-time estimates of the endmember and abundance

matrices for each new incoming slice, at the pushbroom system

acquisition rate.

C. On-line NMF methods

On-line NMF algorithms sequentially update the endmem-

bers and abundances as the data size increases. In that respect,

they are perfectly adapted to the processing of hyperspectral

data streaming as they allow to maintain a low and controlled

computational complexity. These algorithms can be gathered

into two main categories, depending on the considered as-

sumptions on the endmembers. In [27], [37], [15], [42], it is

assumed that the endmembers do not vary from one sample to

another, while in [22], [7], [44], [36], [39], [30], the endmem-

bers may evolve between successive samples. In particular, the

Incremental NMF (INMF) [7] considers that the endmembers

evolve slowly between two consecutive acquisitions; this is

now the most widely used assumption adopted in on-line

NMF algorithms. In the context of hyperspectral unmixing,

it allows to account for the so-called spectral variability.

However, as in the off-line case, the uniqueness of the solution

is not guaranteed, which led to the development of on-line

regularized NMF such as [44], [39], [36]. Recently, the on-

line Minimum Volume Constraint-NMF algorithm (OMVC-

NMF) was introduced in [30]. It is a straightforward adapta-

tion of [44] specially designed for pushbroom hyperspectral

imaging system. We did not find in the literature another

on-line NMF algorithm, except OMVC-NMF, adapted to on-

line processing of hyperspectral images. Thus, OMVC-NMF

will serve as benchmark for the on-line volume regularized

NMF method proposed in this paper. Most of the algorithms

mentioned above are based on multiplicative update rules

which are known to be highly sensitive to initialization and

often suffer from slow convergence rate [25]. An alternative

to multiplicative updates is to make use of the Alternating

Direction Method of Multipliers (ADMM) as presented in

[42], which proved its superiority over multiplicative updates

with respect to both reconstruction accuracy and efficiency

[35], [40], [17].

D. Main contributions

In this paper, we introduce a new algorithm for on-line

blind unmixing of hyperspectral images, specially devised for

pushbroom acquisition systems. The original contributions of

this algorithm compared to our previous work [30] and to

related state-of-the-art on-line approaches (see e.g. [42]) are:

1) The addition of the Minimum Dispersion Constraint

(MDC) [2], to regularize the problem. MDC can be

interpreted as a convex relaxation of the minimum

volume simplex constraint. Thanks to its convexity, this

constraint offers interesting optimization properties and

enables explicit updates of the parameters.

2) The integration of a tracking capability to the algorithm

which allows modeling dynamic content changes.

3) The use of ADMM approach in the context of on-line

volume regularized NMF.

The remainder of this paper is organized as follows: Section

2 is dedicated to the formulation of the on-line NMF problem
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for the acquisition scheme of a pushbroom imager. Section 3

provides a comparative study of different volume regularizers.

In particular, we highlight the differences between the mini-

mum dispersion and the determinant-based constraint. Section

4 presents the derivation of the proposed on-line ADMM

approach; convergence and computational complexity are also

discussed. Finally, in Section 5, we give extensive experimen-

tal results on both synthetic and real data. The results are

compared to those of the off-line (or batch) counterpart of the

proposed approach and to another benchmark on-line matrix

factorization algorithm. We conclude the paper in Section 6.

II. ON-LINE HYPERSPECTRAL UNMIXING FOR

PUSHBROOM ACQUISITION SCHEME

A. Data model

The principle of the proposed on-line method is to al-

ternatively update the endmember and abundance matrices

estimated at time instant k when a new sample (slice) arrives

at time instant (k + 1). One way to handle the problem is

to unfold the hyperspectral image as shown in Fig. 4 where

X̃
(1)

= X(1) is the first slice of the hyperspectral image and

X̃
(k)

is the kth slice. The entire dataset at time instant (k+1),
i.e., X(k+1), can be represented as the concatenation of the

first k samples with the new incoming sample i.e., X(k+1) =
[

X(k) X̃
(k+1)

]

. Similarly, we define S(k+1) =
[

S(k) S̃
(k+1)

]

and A(k+1) =
[

A(k) Ã
(k+1)

]

.

X̃
(1) ...

X̃
(k)

X̃
(k+1)Nλ

kNx

Nx Nx Nx

X(k)

Fig. 4: Unfolded pushbroom hyperspectral image

Then, the on-line NMF model is given by:

X̃
(k+1)

≈ S̃
(k+1)

Ã
(k+1)

. (2)

B. Cost function

The simplest way to fit the NMF model to the data is to

minimize the least square distance between the data and the

model. Let J (k) denote the cost function corresponding to the

first k samples:

J (k)
(

S(k),A(k)
)

=
1

2

k
∑

ℓ=1

∥

∥

∥
X̃

(ℓ)
− S̃

(ℓ)
Ã

(ℓ)
∥

∥

∥

2

F
.

When the (k+1)th sample, X̃
(k+1)

arrives, the corresponding

cost function can be decomposed as follows:

J (k+1)
(

S(k+1),A(k+1)
)

=
1

2

k
∑

ℓ=1

∥

∥

∥
X̃

(ℓ)
− S̃

(ℓ)
Ã

(ℓ)
∥

∥

∥

2

F

+
1

2

∥

∥

∥
X̃

(k+1)
− S̃

(k+1)
Ã

(k+1)
∥

∥

∥

2

F
. (3)

Without further assumptions, (3) is just a set of (k + 1)

independent least squares problems

∥

∥

∥
X̃

(l)
− S̃

(l)
Ã

(l)
∥

∥

∥

2

F
and in

this case, the on-line setup has no particular interest. However,

a natural assumption is that the endmembers vary only slightly

between consecutive samples i.e., S̃
(k+1)

≈ S̃
(k)

, ∀k. Thus,

the cost function (3) can be expressed as:

J (k+1)
(

S̃
(k+1)

, Ã
(k+1)

∣

∣

∣
A(k)

)

= J (k)
(

S̃
(k+1)

∣

∣

∣
A(k)

)

+J̃ (k+1)
(

S̃
(k+1)

, Ã
(k+1)

)

,

with

J (k)
(

S̃
(k+1)

∣

∣

∣
A(k)

)

=
1

2

k
∑

ℓ=1

∥

∥

∥
X̃

(ℓ)
− S̃

(k+1)
Ã

(ℓ)
∥

∥

∥

2

F
,

J̃ (k+1)
(

S̃
(k+1)

, Ã
(k+1)

)

=
1

2

∥

∥

∥
X̃

(k+1)
− S̃

(k+1)
Ã

(k+1)
∥

∥

∥

2

F
.

In order to add some tracking capability to the algorithm, a

weighting coefficient α (0 ≤ α ≤ 1) is incorporated into the

cost function as:

J (k+1)
(

S̃
(k+1)

, Ã
(k+1)

)

= αJ (k) + (1− α)J̃ (k+1). (4)

A version of the cost function (4) is used by the INMF

algorithm proposed in [7]. Nevertheless, without additional

constraint, the solution of (4) is not unique. The uniqueness

of the NMF relies on the sparsity of the underlying latent

variables. In particular, if either S and/or A has only non-zero

entries, the NMF factorization is not unique. To reduce the

size of the set of admissible solutions, we propose to impose

on the endmembers matrix S̃
(k+1)

, a geometric constraint

which forces the simplex bounded by the endmembers to

circumscribe the data as closely as possible. For now, we

denote this constraint by Vol
(

S̃
(k+1)

)

and integrate it into

the cost function as follows:

J
(k+1)
vol

(

S̃
(k+1)

, Ã
(k+1)

)

= αJ (k) + (1− α)J̃ (k+1)

+µ Vol
(

S̃
(k+1)

)

, (5)

where Jvol becomes the volume regularized criterion and µ ≥
0 controls the trade-off between the data fitting term and the

volume regularizer. The choice of Vol
(

S̃
(k+1)

)

is discussed

in the next section. Thus, the proposed approach in this paper

aims at solving the following optimization problem:

minimize
S̃
(k+1)

≥0,Ã
(k+1)

≥0

J
(k+1)
vol

(

S̃
(k+1)

, Ã
(k+1)

)

, (6)

for a particular choice of the volume regularizer term.

III. VOLUME REGULARIZATION

The classical measure for the minimum volume constraint

is the determinant, i.e. Vol
(

S̃
(k+1)

)

= det
(

S̃
(k+1)

)

[34].

However, this determinant is defined only if S̃
(k+1)

is a square

matrix. In the case where S̃
(k+1)

is a tall matrix, a pertinent

choice for Vol
(

S̃
(k+1)

)

is [33], [43]:

Vol
(

S̃
(k+1)

)

= det

(

S̃
(k+1)T

S̃
(k+1)

)

, (7)
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or its variants presented in [8], [28]. The expression (7) is

mathematically justified because it can be interpreted as the

square volume of the simplex bounded by the endmembers

[31, Theorem 7].

A. Identifiability

A lot of work has been done in the last decade to understand

the identifiability of the NMF model. The results in [10],

[20], [18] have shown that if the matrices S̃
(k+1)

and Ã
(k+1)

both contain null elements, according to a certain pattern,

then the model is unique. However, in hyperspectral imaging,

endmembers S̃
(k+1)

are likely to be strictly positive and thus,

the model is not indentifiable. This is the case where volume

minimization approaches can be successfully used. Based on

the recent work of [14], we give the following identifiability

sufficient conditions for our on-line model:

Sufficient identifiability conditions: if ∀ k, rank
(

S̃
(k)
)

=

rank
(

Ã
(k)
)

= R and Ã
(k)

is sufficiently scattered (see [14]

for the exact definition of sufficiently scattered), then model

(2) is identifiable.

This condition stipulates that there is no rank loss over the

different slices of the hyperspectral image.

B. Volume regularizers

In this section, to simplify the notations, the (k + 1)
upper indices are omitted. The use of the minimum volume

constraint in (7) makes the S̃ subproblem non convex and

therefore more difficult to solve. To tackle the determinant

minimization problems, others volume regularizer surrogates

can be considered. An alternative formulation for Vol
(

S̃
)

,

proposed in [3] is:

log
(

det
(

S̃
T

S̃
))

. (8)

The choice of the logarithm of the determinant rather than

the determinant itself is mainly motivated by algorithmic

reasons, since it drastically simplifies the update rule for S̃.

To avoid strong negative values of (8) when S̃ becomes close

to singularity, i.e. det
(

S̃
T

S̃
)

→ 0, a modified version was

proposed in [14], [23]:

log
(

det
(

S̃
T

S̃ + ǫI
))

, (9)

where ǫ > 0 is a specified small value and I is the identity

matrix. While (8) is a concave function, it appears that (9)

has a stationary point in 0 and is convex in a neighborhood

of 0. Indeed, let
{

λ2
i , i = 1, ..., R

}

be the ordered eigenvalues

of S̃
T

S̃, that is the λi’s are the singular values of S̃, then:

log
(

det
(

S̃
T

S̃ + ǫI
))

=

R
∑

i=1

log
(

λ2
i + ǫ

)

= f(λi),

∂f(λi)

∂λi
=

2λi

λ2
i + ǫ

.

Clearly, lim
λi→0

∂f(λi)
∂λi

= 0. In addition
∂2f(λi)
∂λ2

i

=
2ǫ−2λ2

i

(λ2
i
+ǫ)2

≥ 0 if

λ2
i ≤ ǫ. In fact, in the neighborhood of λi = 0, we can write:

log
(

det
(

S̃
T

S̃ + ǫI
))

= R log(ǫ) +

R
∑

i=1

log

(

λ2
i

ǫ
+ 1

)

≈ R log(ǫ) +
1

ǫ

R
∑

i=1

λ2
i

= R log(ǫ) +
1

ǫ
trace

(

S̃
T

S̃
)

. (10)

In other words, in the neighborhood of λ = 0,

log
(

det
(

S̃
T

S̃ + ǫI
))

essentially behaves as trace
(

S̃
T

S̃
)

,

the extent of the neighborhood being controlled by the value of

ǫ. This has an important consequence: while log
(

det
(

S̃
T

S̃
))

will favor rank deficiency as the regularization parameter µ

increases [12], the use of log
(

det
(

S̃
T

S̃ + ǫI
))

will preserve

the full column rank of the solution S̃ even for large values

of the regularization parameter.

Finally, a convex surrogate for Vol
(

S̃
)

was proposed in [2]

as:

trace
(

S̃PS̃
T
)

, (11)

where P = I − 1
r1R1T

R (1R is an all-ones column vector

of size R). Expression (11) can be interpreted as a

measure of the dispersion of the endmembers around their

centroid. In the following, we will denote the constraint

log
(

det
(

S̃
T

S̃ + ǫI
))

by MVC (for Minimum Volume

Constraint), and trace
(

S̃PS̃
T
)

by MDC (for Minimum

Dispersion Constraint).

In order to illustrate the difference between these two

regularization functions, consider a matrix S̃ composed of two

unit column vectors:

S̃ =

[

1 cos(β)
0 sin(β)

]

,

with β an angle varying between 0 et π
2 . If β = 0, the vectors

are collinear (the volume is zero); a contrario, if β = π
2 ,

the vectors become orthogonal (the volume is maximal and

equal to 1). We plotted in Fig. 5 the two functions: MVC with

varying ǫ and MDC, for increasing values of β; the curves

were normalized to set their minimum value to 0 and their

maximum value to 1. For small values of ǫ, MVC promotes

rank-deficient solutions but ǫ should no be chosen too small

to avoid a bad conditioning of S̃
T

S̃ + ǫI. For large values of

ǫ, rank deficiency is no longer promoted and both MDC and

MVC preserve the full column rank of S̃. This rank preserving

property is essential to ensure that the sufficient identifiability

condition of section III-A is satisfied.

IV. OMDC-ADMM ALGORITHM

To implement the proposed approach, in this paper we chose

MDC over MVC because of its convexity; it favors full column

rank solutions and allows an efficient implementation of on-

line ADMM. The resulting algorithm will be termed as On-line

MDC-ADMM (OMDC-ADMM).
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Fig. 5: MVC and MDC as functions of the angle β

A. Algorithm derivation

Defining

J
(k+1)
vol

(

S̃
(k+1)

, Ã
(k+1)

)

=

αJ (k) + (1− α)J̃ (k+1) + µ trace

(

S̃
(k+1)

PS̃
(k+1)T

)

(12)

and introducing the auxiliary variables Ũ and Ṽ, problem (6)

is equivalent to:

minimize
S̃
(k+1)

,Ã
(k+1)

,Ṽ
(k+1)

,Ũ
(k+1)

J
(k+1)
vol

(

S̃
(k+1)

, Ã
(k+1)

)

+IR+

(

Ṽ
(k+1)

)

+ IR+

(

Ũ
(k+1)

)

,

subject to S̃
(k+1)

= Ũ
(k+1)

and Ã
(k+1)

= Ṽ
(k+1)

, (13)

where IR+ is the indicator function of R+ ensuring the non-

negativity of endmembers and abundances. For algorithmic

convenience, we use the scaled form of ADMM [5] in which

the linear and quadratic terms are combined in the augmented

Lagrangian and the dual variables are scaled. The augmented

Lagrangian L for the problem (13) is given by:

L
(

Ã
(k+1)

, S̃
(k+1)

, Ṽ
(k+1)

, Ũ
(k+1)

, Π̃
(k+1)

, Λ̃
(k+1)

)

= J
(k+1)
vol

(

S̃
(k+1)

, Ã
(k+1)

)

+
ρ

2

∥

∥

∥
Ã

(k+1)
− Ṽ

(k+1)
+ Π̃

(k+1)
∥

∥

∥

2

F
−

ρ

2

∥

∥

∥
Π̃

(k+1)
∥

∥

∥

2

F

+
ρ

2

∥

∥

∥
S̃
(k+1)

− Ũ
(k+1)

+ Λ̃
(k+1)

∥

∥

∥

2

F
−

ρ

2

∥

∥

∥
Λ̃

(k+1)
∥

∥

∥

2

F

+ IR+

(

Ṽ
(k+1)

)

+ IR+

(

Ũ
(k+1)

)

. (14)

The parameter ρ > 0 controls the convergence of the

method. Λ̃
(k+1)

and Π̃
(k+1)

are the scaled versions of

the dual variables corresponding to the equality constraints

S̃
(k+1)

= Ũ
(k+1)

and Ã
(k+1)

= Ṽ
(k+1)

, respectively. ADMM

optimization alternately minimizes the augmented Lagrangian

(14) with respect to
(

Ã
(k+1)

, Ṽ
(k+1)

)

and
(

S̃
(k+1)

, Ũ
(k+1)

)

and then, updates the dual variables Π̃
(k+1)

and Λ̃
(k+1)

. The

updates of Ã
(k+1)

, Ṽ
(k+1)

and Π̃
(k+1)

at data slice (k + 1)
can be expressed as:

Ã
(k+1)

=

(

(1− α)S̃
(k)T

S̃
(k)

+ ρI

)−1

(15a)

(

(1− α)S̃
(k)T

X̃
(k+1)

+ ρ
(

Ṽ
(k)

− Π̃
(k)
)

)

,

Ṽ
(k+1)

= max
(

0, Ã
(k+1)

+ Π̃
(k)
)

, (15b)

Π̃
(k+1)

= Π̃
(k)

+ Ã
(k+1)

− Ṽ
(k+1)

. (15c)

The updates of S̃
(k+1)

, Ũ
(k+1)

and Λ̃
(k+1)

at data slice (k+1)
can be expressed as:

S̃
(k+1)

=
(

N(k+1) + ρ
(

Ũ
(k)

− Λ̃
(k)
))

(16a)

(

M(k+1) + 2µP + ρI
)−1

,

Ũ
(k+1)

= max
(

0, S̃
(k+1)

+ Λ̃
(k)
)

, (16b)

Λ̃
(k+1)

= Λ̃
(k)

+ S̃
(k+1)

− Ũ
(k+1)

, (16c)

where N(k+1) = α
∑k

l=1 X̃
(l)

Ã
(l)T

+ (1 − α)X̃
(k+1)

Ã
(k+1)T

and M(k+1) = α
∑k

l=1 Ã
(l)

Ã
(l)T

+ (1 − α)Ã
(k+1)

Ã
(k+1)T

.

Following [7], under the assumption S̃
(k+1)

≈ S̃
(k)

, we can

write N(k) ≈
∑k

l=1 X̃
(l)

Ã
(l)T

and M(k) ≈
∑k

l=1 Ã
(l)

Ã
(l)T

.

Therefore, N(k+1) and M(k+1) read as:

N(k+1) = αN(k) + (1− α)X̃
(k+1)

Ã
(k+1)T

, (17)

M(k+1) = αM(k) + (1− α)Ã
(k+1)

Ã
(k+1)T

. (18)

Algorithm 1 summarizes the proposed OMDC-ADMM algo-

rithm. It includes two main loops: the outer loop produces

estimates of all parameters at each new slice. These estimates

are iteratively refined in the inner loop using a fixed number of

iterations Niter. For notation simplification, the indices (k+1)
in the updates rules are omitted.

B. Convergence

We provide in this section a partial result of convergence

for the proposed algorithm: we show that any stationary point

generated by a sequence of iterations satisfies the Karush-

Kuhn-Tucker (KKT) conditions [6]. To simplify the nota-

tion, we gather all the variables to be estimated in W =
(

Ã, S̃, Ṽ, Ũ, Π̃, Λ̃
)

. Following [6], [17] and after some basic

algebraic manipulations, it can be shown that a point W is a

KKT point for the problem (13) if:

(1− α)S̃
T

S̃Ã − (1− α)S̃
T

X̃ + Π̃ = 0, (19a)

S̃M̃ − Ñ + 2µS̃P + Λ̃ = 0, (19b)

Ã − Ṽ = 0, (19c)

S̃ − Ũ = 0, (19d)

Π̃ ≤ 0 ≤ Ṽ, Π̃⊙ Ṽ = 0, (19e)

Λ̃ ≤ 0 ≤ Ũ, Λ̃⊙ Ũ = 0, (19f)
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Algorithm 1 OMDC-ADMM

Inputs: X; P; R; α; µ; ρ; Niter ;
Initialization: k = 0; N = zeros(Nλ, R); M = zeros(R,R);
S̃ = rand(Nλ, R); Ṽ = zeros(R,Nx); Ũ = zeros(Nλ, R); Π̃ =
zeros(R,Nx); Λ̃ = zeros(Nλ, R); I = eye(R,R); A = [ ]; S = [ ];
Outputs: A; S;
while New sample (k + 1) available do

X̃ = X̃
(k+1)

;
t = 1;
while t < Niter do

Ã =
(

(1 − α)S̃
T

S̃ + ρI
)

−1 (

(1 − α)S̃
T

X̃ + ρ
(

Ṽ− Π̃

))

;

Ṽ = max
(

0, Ã + Π̃

)

;

Π̃← Π̃+ Ã− Ṽ;

Ñ = αN + (1− α)
(

X̃Ã
T
)

;

M̃ = αM + (1 − α)
(

ÃÃ
T
)

;

S̃ =
(

Ñ + ρ
(

Ũ− Λ̃

))(

M̃S̃ + 2µP + ρI
)

−1
;

Ũ = max
(

0, S̃ + Λ̃

)

;

Λ̃← Λ̃+ S̃− Ũ;
t← t + 1;

end while

N = Ñ;
M = M̃;

A =
[

A Ã
]

;

S =
[

S S̃
]

;

end while

where ⊙ represents the Hadamard product. Let Wt :=
(

Ãt, S̃t, Ṽt, Ũt, Π̃t, Λ̃t

)

be the estimate of W at iteration t

of Algorithm 1. From (15a), the following relation can be

written between Ãt et Ãt+1:

(

(1− α)S̃
T

t S̃t + ρI
)(

Ãt+1 − Ãt

)

= −
(

(1− α)S̃
T

t S̃tÃt − (1− α)S̃
T

t X̃ + ρ
(

Ãt − Ṽt

)

+ ρΠ̃t

)

.

(20)

Suppose that the algorithm reaches a stationary point i.e.,

Wt+1 = Wt = W⋆; this implies Ãt+1 = Ãt = Vt = Ã
⋆
.

By replacing it in (20), we obtain (1 − α)S̃
⋆T

S̃
⋆
Ã

⋆
− (1 −

α)S̃
⋆T

X̃ + ρΠ̃
⋆
= 0. Using similar rationale for the other

parameters of W, it can be shown that the first four equalities

from the KKT conditions (19) are satisfied for every limit

point W⋆ :=
(

Ã
⋆
, S̃

⋆
, Ṽ

⋆
, Ũ

⋆
, Π̃

⋆
, Λ̃

⋆
)

. To prove (19e), we

can write: max
(

0, Ã
⋆
+ Π̃

⋆
)

= Ṽ
⋆
. If Ã

⋆
= Ṽ

⋆
= 0, then

max
(

0, Π̃
⋆
)

= 0 which leads to Π̃
⋆
< 0. If Ã

⋆
= Ṽ

⋆
> 0,

then Π̃
⋆
= 0. The same kind of rationale also applies to (19f).

Thus, we have shown that for the problem (13), any stationary

point W⋆ given by Algorithm 1 satisfies the KKT conditions.

The working assumption to establish this result is S̃
(k+1)

≈

S̃
(k)

, meaning that the proposed convergence result is valid

only when the steady state is reached; it does not provide

any insights into the transient behavior. This point will be

addressed through numerical simulations in sections V-C and

V-D.

C. Computational complexity

In this section we evaluate the computational complexity

of the proposed algorithm; this is done by taking into ac-

count only the matrix multiplication operations, that dominate

the algorithm complexity. By considering K slices of size

(Nx ×Nλ), Niter iterations and a decomposition rank R, the

computational complexity for OMDC-ADMM algorithm is of

the order of 2KNiter(RNxNλ+(Nλ+Nx)R
2+R3). For com-

parison, we developed a batch version of OMDC-ADMM, that

we called BMDC-ADMM (for Batch MDC-ADMM), which

processes the entire hyperspectral data cube at once; this algo-

rithm has complexity of 2Niter(RNxKNλ+(Nλ+NxK)R2+
R3). Moreover, the OMVC-NMF algorithm presented in [30],

based on multiplicative update rules with minimum volume

constraint (8), has a computational complexity of the order

of KNiter(2RNxNλ + (Nλ + Nx)R + (6Nλ + 2Nx)R
2).

Note that the complexity of OMDC-ADMM is comparable

to that of BMDC-ADMM and OMVC-NMF. However, as we

show in the sequel, OMDC-ADMM requires fewer iterations

to converge compared to the two other methods, and thus

significantly reduces the computational cost.

V. EXPERIMENTAL RESULTS

In order to evaluate the performance of OMDC-ADMM

for hyperspectral unmixing, we conducted several exper-

iments on simulated and real hyperspectral images (in-

cluding the benchmarking image Jasper Ridge available

at http://lesun.weebly.com/hyperspectral-data-set.html). For

these experiments we used Matlab (R2016a) on a 2.7 GHz

Macbook Pro with 4-core processor and 16 GB of RAM.

These experiments have the following objectives:

1) Showing the efficiency of OMDC-ADMM by examining

its convergence speed and comparing it to that of the

OMVC-NMF algorithm [30]. The sensitivity of the

convergence speed of the proposed method to parameters

α and ρ is also studied.

2) Illustrating the rank preserving properties of MDC and

MVC.

3) Comparing OMDC-ADMM with its batch counterpart

BMDC-ADMM to assess the advantages of on-line

processing of hyperspectral images.

4) Studying the tracking capability of OMDC-ADMM.

5) Validating the unmixing performance of our algorithm

on a real hyperspectral image with ground truth.

A. Performance criteria

Three performance criteria were used for these experiments:

the residual error, Spectral Angle Distance (SAD) and Root

Mean Square Error (RMSE).

The residual error was calculated for each slice k as follows:

1

2

∥

∥

∥
X̃ − ˆ̃

S
ˆ̃
A

∥

∥

∥

2

F
, (21)

where
ˆ̃
S and

ˆ̃
A are the estimated endmembers and abundances,

respectively.

http://lesun.weebly.com/hyperspectral-data-set.html
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SAD measures the similarity between original endmembers

S̃ and estimated endmembers
ˆ̃
S. For a given slice k, it is written

as follows:

1

R

R
∑

r=1

cos−1

(

s̃
T
r
ˆ̃sr

||̃sr|| ||̂̃sr||

)

, (22)

where R is the number of endmembers, S̃ = [̃s1, ..., s̃R] and
ˆ̃
S =

[

ˆ̃s1, ..., ˆ̃sR

]

.

RMSE measures the error between the original abundances

A and the estimated abundances Â and is computed as:

1

R

R
∑

r=1

√

√

√

√

1

P

P
∑

p=1

(arp − ârp)
2
, (23)

where arp and ârp are the ground truth and estimated abun-

dance respectively of the rth endmember at pixel p (p =
1, ..., P ).

B. Rank preserving properties of MVC and MDC

We performed an experiment to illustrate the rank

preserving properties of both volume regularizers, MVC

(9) and MDC (11). We used the endmembers shown in

Fig. 8. None of the three endmembers has any zero value,

which results in a non-unique NMF problem. In other words,

without additional constraints the model is non-identifiable.

The three abundance maps are matrices of size 36 × 36,

randomly drawn from a continuous uniform distribution

on the interval [0, 1]. By doing so, we ensure (with high

probability) that the sufficiently scattered and full column

rank conditions are fulfilled (see subsection III-A). For µ

ranging from 0.0001 to 0.003, the quantities trace
(

ˆ̃
SP

ˆ̃
ST
)

and log
(

det
(

ˆ̃
ST ˆ̃S + ǫI

))

were computed, where
ˆ̃
S is the

endmember matrix estimated by either OMVC-NMF or

OMDC-ADMM at the last slice k of the image. For MVC,

four different values of ǫ are chosen: ǫ = 0, 10−4, 10−3 and

10−2. The normalized curves (maximum value equal to 1,

minimum value equal to 0) are shown in Fig. 6.

0.5 1 1.5 2 2.5 3

µ ×10
-3

0

0.5

1

1.5 MVC, ǫ = 0

MVC, ǫ = 10
-4

MVC, ǫ = 10
-3

MVC, ǫ = 10
-2

MDC

Fig. 6: The values of MVC and MDC as functions of µ

In Fig. 6, several behaviors can be observed. For MVC

with ǫ = 0, the plot presents a staircase shape and, as the

value of ǫ increases, the steps tend to disappear. Actually,

MVC with low values of ǫ is favoring rank deficiency as

µ increases. When ǫ increases, rank deficiency is no longer

promoted. In Fig. 7, we can compare the true and estimated

simplexes for different values of µ, for MVC (ǫ = 0, 10−3,

and 10−2) and MDC. For ǫ = 0, as µ increases, the volume

of the estimated simplex tends to zero, which means that

endmembers become collinear. In the limit case (µ → +∞),

all endmembers become collinear. On the other hand, as ǫ

increases, the rank of the decomposition is preserved for a

larger interval of µ. For example, for ǫ = 10−2 and µ = 0.03,

although the estimated simplex is included in the true simplex,

the rank is preserved which avoids numerical instabilities; this

shows the interest of the ǫ parameter in the context of on-line

blind unmixing. Similarly, for MDC, the simplex decreases

progressively, while preserving the rank of the decomposition.

-0.05
µ=0.0001

0.05

0

µ=0.001

0.05

0µ=0.002

µ=0.003 -0.05

Estimated simplex

True simplex

(a) MVC, ǫ = 0

-0.05
µ=0.0001

0.05

0

µ=0.001

0.05

0µ=0.003

µ=0.01 -0.05

Estimated simplex

True simplex

(b) MVC, ǫ = 10−3

-0.05
µ=0.0001

0.05

0

µ=0.001

0.05

0µ=0.01

µ=0.03 -0.05

Estimated simplex

True simplex

(c) MVC, ǫ = 10−2

-0.05
µ=0.0001

0.05

0

µ=0.001

0.05

0µ=0.1

µ=0.5 -0.05

Estimated simplex

True simplex

(d) MDC

Fig. 7: Simulated simplexes as functions of µ for MVC and

MDC

C. Convergence rate

The convergence speed of OMDC-ADMM and OMVC-

NMF was studied on a synthetic hyperspectral image. A

hyperspectral image of size 119×40×40, composed of R = 3
endmembers not varying over time was simulated. Here, 119

corresponds to the number of wavelengths and 40 × 40 to

the (spatial × time) dimensions. Each new time sample is a

119×40 slice of the hyperspectral image. The abundance maps

(considered binary for this experiment) and the corresponding

endmembers are shown in Fig. 8. The data were corrupted by

a low-level noise. We used for both OMVC-NMF and OMDC-

ADMM the same coefficient α = 0.99 and regularization

parameter µ = 0.003. The parameter ρ for OMDC-ADMM

algorithm was set to 0.001 and ǫ for MVC to 0.001.
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Fig. 8: Simulated abundances and endmembers (End)

To compare the convergence speeds of the two algorithms,

the residual error vs. time sample (from 1 to 40) was evaluated

for different values of Niter. The results are shown in Fig. 9.

Note that a logarithmic scale was used for the vertical axis.
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(b) Niter = 100
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(c) Niter = 150
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(d) Niter = 1000

Fig. 9: The residual error as functions of number of samples

for OMDC-ADMM and OMVC-NMF

In Fig. 9, we observe that for all the considered values of

Niter , OMDC-ADMM has a faster convergence than OMVC-

NMF. The latter reaches asymptotically an error close to

OMDC-ADMM for approximately Niter = 1000 iterations.

In order to quantify the quality of estimated endmembers and

abundances for each value of Niter, we computed the SAD and

RMSE performance criteria. The SAD was calculated using

the endmembers estimated at the last slice, which is relevant in

the case of stationary sources. The obtained values are given in

Tables I and II. One can see that 100 iterations are sufficient for

OMDC-ADMM algorithm to converge to a relevant solution;

in fact, beyond 100 iterations, the estimation accuracy of

OMDC-ADMM no longer improves, and the whole image is

processed in about 0.3 s. OMVC-NMF algorithm requires at

least 1000 iterations to estimate correctly the endmembers and

the abundances, for a processing time of about 1.3 s. This slow

convergence rate can be attributed to the use of multiplicative

update rules in OMVC-NMF. These results show that there

is a real interest in terms of rapidity and accuracy in using

OMDC-ADMM for on-line blind unmixing.

OMVC-NMF OMDC-ADMM

Niter = 50 0.2824 0.0816
Niter = 100 0.2339 0.0019
Niter = 150 0.1985 0.0019
Niter = 1000 0.0028 0.0019

TABLE I: SAD for endmembers

OMVC-NMF OMDC-ADMM

Niter = 50 0.2246 0.1312
Niter = 100 0.2057 0.0029
Niter = 150 0.1946 0.0028
Niter = 1000 0.0036 0.0028

TABLE II: RMSE for abundances

Another interest of on-line algorithm for spectral unmixing

is the processing of large hyperspectral images. In that respect,

we compared the performance of OMDC-ADMM algorithm

with its batch counterpart BMDC-ADMM. We used the same

synthetic hyperspectral image (corrupted by a low-level noise)

presented in Fig. 8. Both algorithms used the same ρ = 0.001;

the minimum dispersion constraint was set to µ = 0.003 for

the on-line version and to µ = 0.5 for the batch version. The

value of α was set to 0.99. The BMDC-ADMM method was

applied to the unfolded version of the hyperspectral image,

of size 119 × 1600. To study the convergence speeds of

both algorithms, the SAD and the RMSE were evaluated

for different values of Niter ranging from 10 to 2000, and

averaged for 20 different random initializations. The results

are shown in Fig. 10 and Fig. 11. One can see that our on-

line algorithm converges much faster than its batch counterpart

for both error measures. Indeed, 100 iterations are enough

for OMDC-ADMM to yield accurate estimates, while BMDC-

ADMM requires at least 800 iterations. This has strong conse-

quences on the computational cost. Consider the computational

complexity of the on-line and batch version established in

subsection IV-C. If we consider R = 3, Nx = 40, Nλ = 119,

K = 40, Niter = 100 for the on-line version and Niter ≈ 800
for the batch version, the computation complexity of OMDC-

ADMM is about ten times lower than its batch counterpart.
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Fig. 10: SAD as functions

of Niter
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Fig. 11: RMSE as functions

of Niter
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We also examined the influence of parameter α on the con-

vergence speed of OMDC-ADMM using the same synthetic

dataset in the noise-free case. We first varied α from 0.99

to 0.5 while fixing the values of ρ = 0.001, µ = 0.003
and Niter = 1000. The results are shown in Fig. 12. As α

decreases, fewer time samples are required to converge to the

correct solution; at the same time, the asymptotic residual error

decreases; this can be explained the overfitting of each slice

introduced by the low values of α. Next, we varied ρ from 1

to 0.001 while keeping the value of α to 0.9 and µ to 0.003.

From Fig. 13, it can be seen that as ρ increases, the OMDC-

ADMM convergence rate decreases.
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Fig. 12: Residual error as

functions of number of

samples for different values

of α
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Fig. 13: Residual error as

functions of number of

samples for different values

of ρ

The last aspect assessed by numerical simulation is the

sensitivity of the algorithm to initial conditions. In that respect,

20 different random initializations were used for the OMDC-

ADMM on the synthetic data corrupted by a low-level noise.

The SAD and RMSE were computed for each initialization,

using Niter = 100 and µ = 0, 0.00005, 0.0005, 0.0008 and

0.003. The results are shown in Fig. 14 as boxplots. When

µ is too small, different initializations are likely to produce

different estimates of the endmembers. When the value of

µ is adequately chosen, the algorithm is not sensitive to

initialization.
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Fig. 14: SAD and RMSE for different initializations as

functions of µ

D. Tracking the spectral variability

In hyperspectral imaging, the spectral signature of a com-

ponent may present intra-class variability. Thus, studying

the endmembers evolution between successive samples is

sometimes crucial in understanding the underlying physical

phenomenon. Integrating a tracking capability (via the α

parameter) allows the tracking of dynamic spectral changes. To

address this point, a hyperspectral image of size 119×40×100
with non-stationary endmembers was simulated. The abun-

dance maps are identical to those in Fig. 8, but the endmem-

bers evolve at each slice, according to the following random

walk model: S̃
(k+1)

= S̃
(k)

+W(k), where W(k) is a low-level

random noise drawn from the standard normal distribution.

The simulated data were corrupted by noise with an SNR =

26 dB. The parameters µ and ρ were set to 0.01 and 0.001

respectively. In order to assess the ability of our algorithm to

follow the evolution of the endmembers, we varied α from

0.9 to 0.4 and, for each slice k, we computed the SAD. The

results are shown in Fig. 15. As α decreases, both convergence

speed and asymptotic SAD (k → +∞) increase. Note that for

very large values of α an increase of the asymptotic SAD is

observed (not shown on this figure). This indicates that there

exists an optimal value of α mitigating at best the transient

error and tracking error.

0 50 100

Number of samples

0.014

0.016

0.018

0.02

0.022

S
A

D

α=0.9

α=0.7

α=0.5

α=0.4

Fig. 15: SAD as functions of number of samples for

different values of α

E. Real data application

We also assessed the performance of OMDC-ADMM on

a real hyperspectral image with available ground truth. We

compared the performance of OMDC-ADMM to its batch

version (BMDC-ADMM) and other state-of-the-art (batch)

methods: Vertex Component Analysis (VCA) [29], NMF [21],

ℓ1-NMF [16] and ℓ1/2-NMF [32]. The results of the last four

methods come from simulations conducted in [45]. We used

the hyperspectral image Jasper Ridge [45] for this experiment.

This image has a spatial size of 100×100 pixels. Each pixel is

recorded at 198 wavelengths ranging from 380 nm to 2500 nm.

There are four latent endmembers in this data corresponding

to soil, tree, water and road. The OMDC-ADMM algorithm

processed the hyperspectral image sequentially along the

vertical axis. Note that the sequential processing along the

horizontal axis was not possible since rank preservation was

not guaranteed from one slice to another. The parameters were

set as follows: R = 4, µ = 0.05, α = 0.99, ρ = 0.001 and

Niter = 200. BMDC-ADMM was applied to the unfolded

version of the hyperspectral image, of size 198× 10000 with

parameters R = 4, ρ = 0.001, µ = 200 and Niter = 2000.

For the parameters settings details of the other methods, the

reader is referred to [45]. In order to evaluate the quality of
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the estimated endmembers and abundances, the SAD and the

RMSE for all methods were computed. Each experiment was

repeated 50 times for different random initializations and the

average results for SAD and RMSE are provided in Table III.

It can be seen from Table III that BMDC-ADMM

outperforms the other state-of-the-art methods. Moreover,

OMDC-ADMM and BMDC-ADMM yield close estimates

for soil, tree, and road. Interestingly, we observed that there

is a significant difference between the two methods regarding

the SAD of water (0.1113 for OMDC-ADMM vs. 0.3141

for BMDC-ADMM). This difference can be explained by

the phenomenon of spectral variability, which can modify

locally the spectrum of pure materials [11]. The causes of

this variability can be diverse, e.g., the changing illumination

conditions during the acquisition processing, the intrinsic

variability of the components or the atmospheric effects. This

aspect is illustrated in Fig. 16 which plots the spectra for all

estimated endmembers slice by slice by the on-line algorithm.

Thanks to its tracking capability, OMDC-ADMM offers the

possibility to study the dynamic content changes over time.

We note that the spectral signature of water evolves strongly

between slices. In Table III, the SAD for OMDC-ADMM

was calculated using the average over the K time samples of

the estimated spectra.
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0.1
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500 1000 1500 2000 2500

Wavelength (nm)

0
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0.16

Water

500 1000 1500 2000 2500
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0

0.04

0.08

Road

Fig. 16: Estimated endmembers slice by slice by

OMDC-ADMM

For the batch algorithm, this spectral variability is not

explicitly taken into account, and the estimated endmembers

can be interpreted as the average spectra for the entire image.

The “best” endmembers and abundance maps estimated by on-

line and batch MDC-ADMM, along with the ground truth are

represented in Fig. 17 and in Fig. 18. For OMDC-ADMM, the

average values of the endmembers are represented. Besides

the fact that OMDC-ADMM makes it possible to track the

spectral variability, it also requires fewer iterations than the

batch version which significantly reduces the processing time

(2.77 s vs. 4.92 s).
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Water
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(a) Ground truth
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(b) OMDC-ADMM
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Fig. 17: True and estimated endmembers by on-line and

batch MDC-ADMM

VI. CONCLUSIONS

We proposed a new algorithm (OMDC-ADMM), specially

designed for the on-line unmixing of pushbroom hyperspectral

images. Tests on simulated data have shown that this new

algorithm outperforms the state-of-the-art methods based on

multiplicative update rules, in terms of convergence speed and

estimation accuracy. From a methodological point of view,

we showed the interest of using the minimum dispersion

constraint compared to the minimum volume one, in particular

its capacity to regularize the problem and to stabilize the

solution. Finally, experiments on a real hyperspectral image

revealed that OMDC-ADMM makes it possible to track the

spectral variability of the endmembers over time and sig-

nificantly reduces the processing time compared to its off-

line counterpart, which is a crucial feature for real-time data

processing. In future work, we plan to use OMDC-ADMM to

perform on-line unmixing of products (pieces of wood) in an

industrial application, in order to control and sort them on the

fly.
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