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A Density-Based Basis-Set Incompleteness Correction for GW Methods

Similar to other electron correlation methods, manybody perturbation theory methods based on Green functions, such as the so-called GW approximation, suffer from the usual slow convergence of energetic properties with respect to the size of the one-electron basis set. This displeasing feature is due to the lack of explicit electron-electron terms modeling the infamous Kato electron-electron cusp and the correlation Coulomb hole around it. Here, we propose a computationally efficient density-based basis-set correction based on short-range correlation density functionals which significantly speeds up the convergence of energetics towards the complete basis set limit. The performance of this density-based correction is illustrated by computing the ionization potentials of the twenty smallest atoms and molecules of the GW100 test set at the perturbative GW (or G 0 W 0 ) level using increasingly large basis sets. We also compute the ionization potentials of the five canonical nucleobases (adenine, cytosine, thymine, guanine, and uracil) and show that, here again, a significant improvement is obtained.

I. INTRODUCTION

The purpose of many-body perturbation theory (MBPT) based on Green functions is to solve the formidable many-body problem by adding the electron-electron Coulomb interaction perturbatively starting from an independent-particle model. [START_REF] Martin | Interacting Electrons: Theory and Computational Approaches[END_REF] In this approach, the screening of the Coulomb interaction is an essential quantity. [START_REF] Aryasetiawan | The GW method[END_REF][START_REF] Onida | Electronic excitations: density-functional versus many-body Green's-function approaches[END_REF][START_REF] Reining | The GW Approximation: Content, Successes and Limitations: The GW Approximation[END_REF] The so-called GW approximation is the workhorse of MBPT and has a long and successful history in the calculation of the electronic structure of solids. [START_REF] Aryasetiawan | The GW method[END_REF][START_REF] Onida | Electronic excitations: density-functional versus many-body Green's-function approaches[END_REF][START_REF] Reining | The GW Approximation: Content, Successes and Limitations: The GW Approximation[END_REF] GW is getting increasingly popular in molecular systems [START_REF] Blase | First-Principles GW Calculations for Fullerenes, Porphyrins, Phtalocyanine, and Other Molecules of Interest for Organic Photovoltaic Applications[END_REF][START_REF] Faber | First-Principles GW Calculations for DNA and RNA Nucleobases[END_REF][START_REF] Bruneval | Ionization Energy of Atoms Obtained from GW Self-Energy or from Random Phase Approximation Total Energies[END_REF][START_REF] Bruneval | A Systematic Benchmark of the Ab Initio Bethe-Salpeter Equation Approach for Low-Lying Optical Excitations of Small Organic Molecules[END_REF][START_REF] Bruneval | Molgw 1: Many-Body Perturbation Theory Software for Atoms, Molecules, and Clusters[END_REF][START_REF] Bruneval | Optimized Virtual Orbital Subspace for Faster GW Calculations in Localized Basis[END_REF][START_REF] Boulanger | Fast and Accurate Electronic Excitations in Cyanines with the Many-Body Bethe-Salpeter Approach[END_REF][START_REF] Blase | Bethe-Salpeter Study of Small Water Clusters[END_REF][START_REF] Li | Helium Atom Excitations by the G W and Bethe-Salpeter Many-Body Formalism[END_REF][START_REF] Hung | Excitation Spectra of Aromatic Molecules within a Real-Space G W -BSE Formalism: Role of Self-Consistency and Vertex Corrections[END_REF][START_REF] Hung | Benchmarking the GW Approximation and Bethe-Salpeter Equation for Groups IB and IIB Atoms and Monoxides[END_REF][START_REF] Van Setten | Benchmarking G 0 W 0 for Molecular Systems[END_REF][START_REF] Van Setten | Assessing GW Approaches for Predicting Core Level Binding Energies[END_REF][START_REF] Ou | Comparison between GW and Wave-Function-Based Approaches: Calculating the Ionization Potential and Electron Affinity for 1D Hubbard Chains[END_REF][START_REF] Ou | Comparison between the Bethe-Salpeter Equation and Configuration Interaction Approaches for Solving a Quantum Chemistry Problem: Calculating the Excitation Energy for Finite 1D Hubbard Chains[END_REF][START_REF] Faber | Excitonic and Polaronic Properties of Organic Systems within the Many-Body GW and Bethe-Salpeter Formalisms: Towards Organic Photovoltaics[END_REF] thanks to efficient implementation relying on plane waves [START_REF] Marini | An Ab Initio Tool For Excited State Calculations[END_REF][START_REF] Deslippe | A Massively Parallel Computer Package for the Calculation of the Quasiparticle and Optical Properties of Materials and Nanostructures[END_REF][START_REF] Maggio | A Plane Wave Perspective for Small Molecules[END_REF] or local basis functions. [START_REF] Blase | First-Principles GW Calculations for Fullerenes, Porphyrins, Phtalocyanine, and Other Molecules of Interest for Organic Photovoltaic Applications[END_REF][START_REF] Bruneval | Molgw 1: Many-Body Perturbation Theory Software for Atoms, Molecules, and Clusters[END_REF][START_REF] Blase | The Bethe-Salpeter Equation in Chemistry: Relations with TD-DFT, Applications and Challenges[END_REF][START_REF] Van Setten | The GW -Method for Quantum Chemistry Applications: Theory and Implementation[END_REF][START_REF] Kaplan | Off-Diagonal Self-Energy Terms and Partially Self-Consistency in GW Calculations for Single Molecules: Efficient Implementation and Quantitative Effects on Ionization Potentials[END_REF][START_REF] Kaplan | Quasi-Particle Self-Consistent GW for Molecules[END_REF][START_REF] Krause | Implementation Of The Bethe-Salpeter Equation In The Turbomole Program[END_REF][START_REF] Caruso | Unified Description of Ground and Excited States of Finite Systems: The Self-Consistent G W Approach[END_REF][START_REF] Caruso | Bond Breaking and Bond Formation: How Electron Correlation Is Captured in Many-Body Perturbation Theory and Density-Functional Theory[END_REF][START_REF] Caruso | Self-Consistent G W : All-Electron Implementation with Localized Basis Functions[END_REF][START_REF] Caruso | Self-Consistent GW Approach for the Unified Description of Ground and Excited States of Finite Systems[END_REF] The GW approximation stems from the acclaimed Hedin's equations [START_REF] Hedin | New Method for Calculating the One-Particle Green's Function with Application to the Electron-Gas Problem[END_REF] G(12) = G 0 (12) + G 0 (13)Σ(34)G( 42 
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Depending on the degree of self-consistency one is willing to perform, there exists several types of GW calculations. [START_REF] Loos | Green functions and selfconsistency: insights from the spherium model[END_REF] The simplest and most popular variant of GW is perturbative GW (or G 0 W 0 ). [START_REF] Hybertsen | First-Principles Theory of Quasiparticles: Calculation of Band Gaps in Semiconductors and Insulators[END_REF][START_REF] Hybertsen | Electron Correlation in Semiconductors and Insulators: Band Gaps and Quasiparticle Energies[END_REF] Although obviously starting-point dependent, [START_REF] Bruneval | Benchmarking the Starting Points of the GW Approximation for Molecules[END_REF][START_REF] Jacquemin | Assessment Of The Convergence Of Partially Self-Consistent BSE/GW Calculations[END_REF][START_REF] Gui | Accuracy Assessment of GW Starting Points for Calculating Molecular Excitation Energies Using the Bethe-Salpeter Formalism[END_REF] it has been widely used in the literature to study solids, atoms, and molecules. [START_REF] Bruneval | Ionization Energy of Atoms Obtained from GW Self-Energy or from Random Phase Approximation Total Energies[END_REF][START_REF] Van Setten | Benchmarking G 0 W 0 for Molecular Systems[END_REF][START_REF] Van Setten | Assessing GW Approaches for Predicting Core Level Binding Energies[END_REF][START_REF] Bruneval | Benchmarking the Starting Points of the GW Approximation for Molecules[END_REF] For finite systems such as atoms and molecules, partially [START_REF] Blase | First-Principles GW Calculations for Fullerenes, Porphyrins, Phtalocyanine, and Other Molecules of Interest for Organic Photovoltaic Applications[END_REF][START_REF] Faber | First-Principles GW Calculations for DNA and RNA Nucleobases[END_REF][START_REF] Hybertsen | Electron Correlation in Semiconductors and Insulators: Band Gaps and Quasiparticle Energies[END_REF][START_REF] Shishkin | Self-Consistent G W Calculations for Semiconductors and Insulators[END_REF] or fully self-consistent [START_REF] Caruso | Unified Description of Ground and Excited States of Finite Systems: The Self-Consistent G W Approach[END_REF][START_REF] Caruso | Bond Breaking and Bond Formation: How Electron Correlation Is Captured in Many-Body Perturbation Theory and Density-Functional Theory[END_REF][START_REF] Caruso | Self-Consistent G W : All-Electron Implementation with Localized Basis Functions[END_REF][START_REF] Caruso | Self-Consistent GW Approach for the Unified Description of Ground and Excited States of Finite Systems[END_REF] GW methods have shown great promise. [START_REF] Blase | First-Principles GW Calculations for Fullerenes, Porphyrins, Phtalocyanine, and Other Molecules of Interest for Organic Photovoltaic Applications[END_REF][START_REF] Faber | First-Principles GW Calculations for DNA and RNA Nucleobases[END_REF][START_REF] Hung | Excitation Spectra of Aromatic Molecules within a Real-Space G W -BSE Formalism: Role of Self-Consistency and Vertex Corrections[END_REF][START_REF] Blase | The Bethe-Salpeter Equation in Chemistry: Relations with TD-DFT, Applications and Challenges[END_REF][START_REF] Ke | All-Electron G W Methods Implemented in Molecular Orbital Space: Ionization Energy and Electron Affinity of Conjugated Molecules[END_REF][START_REF] Koval | Fully Self-Consistent G W and Quasiparticle Self-Consistent G W for Molecules[END_REF][START_REF] Jacquemin | Benchmark of Bethe-Salpeter for Triplet Excited-States[END_REF] Similar to other electron correlation methods, MBPT methods suffer from the usual slow convergence of energetic properties with respect to the size of the one-electron basis set. This can be tracked down to the lack of explicit electron-electron terms modeling the infamous electron-electron coalescence point (also known as Kato cusp [START_REF] Kato | On The Eigenfunctions Of Many-Particle Systems In Quantum Mechanics[END_REF] ) and, more specifically, the Coulomb correlation hole around it. Pioneered by Hylleraas 46 in the 1930's and popularized in the 1990's by Kutzelnigg and coworkers [START_REF] Kutzelnigg | R12-Dependent Terms In The Wave Function As Closed Sums Of Partial Wave Amplitudes For Large L[END_REF][START_REF] Noga | Coupled Cluster Theory That Takes Care Of The Correlation Cusp By Inclusion Of Linear Terms In The Interelectronic Coordinates[END_REF][START_REF] Kutzelnigg | Wave Functions With Terms Linear In The Interelectronic Coordinates To Take Care Of The Correlation Cusp. I. General Theory[END_REF] (and subsequently others [START_REF] Kong | Explicitly Correlated R12/F12 Methods for Electronic Structure[END_REF][START_REF] Hattig | Explicitly Correlated Electrons in Molecules[END_REF][START_REF] Ten-No | Explicitly Correlated Electronic Structure Theory From R12/F12 Ansatze[END_REF][START_REF] Ten-No | Explicitly Correlated Wave Functions: Summary And Perspective[END_REF][START_REF] Grüneis | Perspective: Explicitly Correlated Electronic Structure Theory For Complex Systems[END_REF] ), the so-called F12 methods overcome this slow convergence by employing geminal basis functions that closely resemble the correlation holes in electronic wave functions. F12 methods are now routinely employed in computational chemistry and provide robust tools for electronic structure calculations where small basis sets may be used to obtain near complete basis set (CBS) limit accuracy. [START_REF] Tew | Quintuple-ζ Quality Coupled-Cluster Correlation Energies With Triple-ζ Basis Sets[END_REF] The basis-set correction presented here follow a different route, and relies on the range-separated density-functional theory (RS-DFT) formalism to capture, thanks to a short-range correlation functional, the missing part of the short-range correlation effects. [START_REF] Giner | Curing Basis-Set Convergence Of Wave-Function Theory Using Density-Functional Theory: A Systematically Improvable Approach[END_REF] As shown in recent studies on both groundand excited-state properties, [START_REF] Loos | A Density-Based Basis-Set Correction for Wave Function Theory[END_REF][START_REF] Giner | Chemically Accurate Excitation Energies With Small Basis Sets[END_REF] similar to F12 methods, it significantly speeds up the convergence of energetics towards the CBS limit while avoiding the usage of the large auxiliary basis sets that are used in F12 methods to avoid the numerous three-and four-electron integrals. [START_REF] Kong | Explicitly Correlated R12/F12 Methods for Electronic Structure[END_REF][START_REF] Hattig | Explicitly Correlated Electrons in Molecules[END_REF][START_REF] Ten-No | Explicitly Correlated Electronic Structure Theory From R12/F12 Ansatze[END_REF][START_REF] Ten-No | Explicitly Correlated Wave Functions: Summary And Perspective[END_REF][START_REF] Grüneis | Perspective: Explicitly Correlated Electronic Structure Theory For Complex Systems[END_REF][START_REF] Barca | Many-Electron Integrals over Gaussian Basis Functions. I. Recurrence Relations for Three-Electron Integrals[END_REF][START_REF] Barca | Three-and Four-Electron Integrals Involving Gaussian Geminals: Fundamental Integrals, Upper Bounds, and Recurrence Relations[END_REF][START_REF] Barca | Recurrence Relations for Four-Electron Integrals Over Gaussian Basis Functions[END_REF] Explicitly correlated F12 correction schemes have been derived for second-order Green function methods (GF2) [START_REF] Loos | Green functions and selfconsistency: insights from the spherium model[END_REF][START_REF] Szabo | Modern quantum chemistry[END_REF][START_REF] Casida | Physical Interpretation and Assessment of the Coulomb-Hole and Screened-Exchange Approximation for Molecules[END_REF][START_REF] Casida | Simplified Green-Function Approximations: Further Assessment of a Polarization Model for Second-Order Calculation of Outer-Valence Ionization Potentials in Molecules[END_REF][START_REF] Stefanucci | Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction[END_REF][START_REF] Ortiz | Electron Propagator Theory: An Approach to Prediction and Interpretation in Quantum Chemistry: Electron Propagator Theory[END_REF][START_REF] Phillips | Communication: The Description of Strong Correlation within Self-Consistent Green's Function Second-Order Perturbation Theory[END_REF][START_REF] Phillips | Fractional Charge and Spin Errors in Self-Consistent Green's Function Theory[END_REF][START_REF] Rusakov | Local Hamiltonians for Quantitative Green's Function Embedding Methods[END_REF][START_REF] Rusakov | Self-Consistent Second-Order Green's Function Perturbation Theory for Periodic Systems[END_REF][START_REF] Hirata | General-Order Many-Body Green's Function Method[END_REF][START_REF] Hirata | One-Particle Many-Body Green's Function Theory: Algebraic Recursive Definitions, Linked-Diagram Theorem, Irreducible-Diagram Theorem, and General-Order Algorithms[END_REF] by Ten-no and coworkers [START_REF] Ohnishi | Explicitly Correlated Frequency-Independent Second-Order Green's Function for Accurate Ionization Energies[END_REF][START_REF] Johnson | Monte Carlo Explicitly Correlated Many-Body Green's Function Theory[END_REF] and Valeev and coworkers. [START_REF] Pavošević | Communication: Explicitly Correlated Formalism for Second-Order Single-Particle Green's Function[END_REF][START_REF] Teke | Explicitly Correlated Renormalized Second-Order Green's Function For Accurate Ionization Potentials Of Closed-Shell Molecules[END_REF] However, to the best of our knowledge, a F12-based correction for GW has not been designed yet.

In the present manuscript, we illustrate the performance of the density-based basis-set correction developed in Refs. 56-58 on ionization potentials obtained within G 0 W 0 . Note that the present basis-set correction can be straightforwardly applied to other properties (e.g, electron affinities and fundamental gaps), as well as other flavors of (self-consistent) GW or Green function-based methods, such as GF2 (and its higher-order variants).

The paper is organized as follows. In Sec. II, we provide details about the theory behind the present basis-set correction and its adaptation to GW methods. Results for a large collection of molecular systems are reported and discussed in Sec. IV. Finally, we draw our conclusions in Sec. V. Unless otherwise stated, atomic units are used throughout.

II. THEORY

A. MBPT with DFT basis-set correction

Following Ref. 56, we start by defining, for a N-electron system with nuclei-electron potential v ne (r), the approximate ground-state energy for one-electron densities n which are "representable" in a finite basis set B

E B 0 = min n∈D B F [n] + v ne (r)n(r)dr , (3) 
where D B is the set of N-representable densities which can be extracted from a wave function Ψ B expandable in the Hilbert space generated by B. In this expression,

F [n] = min Ψ n Ψ| T + Ŵee |Ψ (4) 
is the exact Levy-Lieb universal density functional, [START_REF] Levy | Universal Variational Functionals Of Electron Densities, First-Order Density Matrices, And Natural Spin-Orbitals And Solution Of The V-Representability Problem[END_REF][START_REF] Levy | Electron Densities In Search Of Hamiltonians[END_REF][START_REF] Lieb | Density Functionals For Coulomb Systems[END_REF] where the notation Ψ n in Eq. ( 3) states that Ψ yields the oneelectron density n. T and Ŵee are the kinetic and electronelectron interaction operators. The exact Levy-Lieb universal density functional is then decomposed as

F [n] = F B [n] + ĒB [n], (5) 
where F B [n] is the Levy-Lieb density functional with wave functions Ψ B expandable in the Hilbert space generated by B

F B [n] = min Ψ B n Ψ B | T + Ŵee |Ψ B , (6) 
and ĒB [n] is the complementary basis-correction density functional. [START_REF] Giner | Curing Basis-Set Convergence Of Wave-Function Theory Using Density-Functional Theory: A Systematically Improvable Approach[END_REF] In the present work, instead of using wavefunction methods for calculating F B [n], we use Green-function methods. We assume that there exists a functional Ω B [G B ] of N-representable one-electron Green functions G B (r, r , ω) representable in the basis set B and yielding the density n which gives F B [n] at a stationary point

F B [n] = stat G B n Ω B [G B ]. (7) 
The reason why we use a stationary condition rather than a minimization condition is that only a stationary property is generally known for functionals of the Green function 

Ω B [G] = Tr ln -G -Tr (G B f ) -1 G -1 + Φ B Hxc [G], (8) 
where (G B f ) -1 is the projection into B of the inverse freeparticle Green function

(G f ) -1 (r, r , ω) =       ω + ∇ 2 r 2       δ(r -r ), (9) 
and we have introduced the trace

Tr[AB] = +∞ -∞
dω 2πi e iω0 + A(r, r , ω)B(r , r, ω)drdr .

(10) In Eq. ( 8), Φ B Hxc [G] is a Hartree-exchange-correlation (Hxc) functional of the Green function such that its functional derivatives yields the Hxc self-energy in the basis

δΦ B Hxc [G] δG(r, r , ω) = Σ B Hxc [G](r, r , ω). (11) 
Inserting Eqs. ( 5) and (7) into Eq. (3), we finally arrive at

E B 0 = stat G B Ω B [G B ] + v ne (r)n G B (r)dr + ĒB [n G B ] , (12) 
where the stationary point is searched over N-representable one-electron Green functions G B (r, r , ω) representable in the basis set B.

The stationary condition from Eq. ( 12) is

δ δG B Ω B [G B ] + v ne (r)n G B (r)dr + ĒB [n G B ] -λ n G B (r)dr = 0, ( 13 
)
where λ is the chemical potential (enforcing the electron number). It leads the following Dyson equation

(G B ) -1 = (G B 0 ) -1 -Σ B Hxc [G B ] -ΣB [n G B ], (14) 
where (G B 0 ) -1 is the basis projection of the inverse noninteracting Green function with potential v ne (r), i.e,

(G 0 ) -1 (r, r , ω) =       ω + ∇ 2 r 2 -v ne (r) + λ       δ(r -r ), ( 15 
)
and ΣB is a frequency-independent local self-energy coming from the functional derivative of the complementary basiscorrection density functional

ΣB [n](r, r ) = vB [n](r)δ(r -r ), (16) 
with vB [n](r) = δ ĒB [n]/δn(r). This is found from Eq. ( 13) by using the chain rule,

δ ĒB [n] δG(r, r , ω) = δ ĒB [n] δn(r ) δn(r ) δG(r, r , ω) dr , (17) 
and

n(r) = +∞ -∞ dω 2πi e iω0 + G(r, r, ω). ( 18 
)
The solution of the Dyson equation ( 14) gives the Green function G B (r, r , ω) which is not exact (even using the exact complementary basis-correction density functional ΣB [n]) but should converge more rapidly with the basis set thanks to the presence of the basis-set correction ΣB . Of course, in the CBS limit, the basis-set correction vanishes and the Green function becomes exact, i.e,

lim B→CBS ΣB = 0, lim B→CBS G B = G. (19) 
The Dyson equation ( 14) can also be written with an arbitrary reference

(G B ) -1 = (G B ref ) -1 -Σ B Hxc [G B ] -Σ B ref -ΣB [n G B ], (20) 
where

(G B ref ) -1 = (G B 0 ) -1 -Σ B ref . For example, if the refer- ence is Hartree-Fock (HF), Σ B ref (r, r ) = Σ B Hx (r, r ) is the HF nonlocal self-energy, and if the reference is Kohn-Sham (KS), Σ B ref (r, r ) = v B Hxc (r)δ(r -r
) is the local Hxc potential. Note that the present basis-set correction is applicable to any approximation of the self-energy (irrespectively of the diagrams included) without altering the CBS limit of such methods. Consequently, it can be applied, for example, to GF2 methods (also known as second Born approximation [START_REF] Stefanucci | Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction[END_REF] in the condensed-matter community) or higher orders. [START_REF] Loos | Green functions and selfconsistency: insights from the spherium model[END_REF][START_REF] Szabo | Modern quantum chemistry[END_REF][START_REF] Casida | Physical Interpretation and Assessment of the Coulomb-Hole and Screened-Exchange Approximation for Molecules[END_REF][START_REF] Casida | Simplified Green-Function Approximations: Further Assessment of a Polarization Model for Second-Order Calculation of Outer-Valence Ionization Potentials in Molecules[END_REF][START_REF] Stefanucci | Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction[END_REF][START_REF] Ortiz | Electron Propagator Theory: An Approach to Prediction and Interpretation in Quantum Chemistry: Electron Propagator Theory[END_REF][START_REF] Phillips | Communication: The Description of Strong Correlation within Self-Consistent Green's Function Second-Order Perturbation Theory[END_REF][START_REF] Phillips | Fractional Charge and Spin Errors in Self-Consistent Green's Function Theory[END_REF][START_REF] Rusakov | Local Hamiltonians for Quantitative Green's Function Embedding Methods[END_REF][START_REF] Rusakov | Self-Consistent Second-Order Green's Function Perturbation Theory for Periodic Systems[END_REF][START_REF] Hirata | General-Order Many-Body Green's Function Method[END_REF][START_REF] Hirata | One-Particle Many-Body Green's Function Theory: Algebraic Recursive Definitions, Linked-Diagram Theorem, Irreducible-Diagram Theorem, and General-Order Algorithms[END_REF] Note, however, that the basis-set correction is optimal for the exact self-energy within a given basis set, since it corrects only for the basis-set error and not for the chosen approximate form of the self-energy within the basis set.

B. The GW Approximation

In this subsection, we provide the minimal set of equations required to describe G 0 W 0 . More details can be found, for example, in Refs. 9,25,27. For the sake of simplicity, we only give the equations for closed-shell systems with a KS singleparticle reference (with a local potential). The one-electron energies p and their corresponding (real-valued) orbitals φ p (r) (which defines the basis set B) are then the KS orbitals and their orbital energies.

Within the GW approximation, the correlation part of the self-energy reads

Σ B c,p (ω) = φ p |Σ B c (ω)|φ p = 2 N occ i m [pi|m] 2 ω -i + Ω m -iη + 2 N virt a m [pa|m] 2 ω -a -Ω m + iη , (21) 
where i runs over the N occ occupied orbitals, a runs over the N virt virtual orbitals, m labels excited states (see below), and η is a positive infinitesimal. The screened two-electron integrals

[pq|m] = N occ i N virt a (pq|ia)(X m + Y m ) ia (22) 
are obtained via the contraction of the bare two-electron integrals [START_REF] Gill | Molecular Integrals Over Gaussian Basis Functions[END_REF] (pq|rs) = φ p (r)φ q (r)φ r (r )φ s (r )

|r -r | drdr , (23) 
and the transition densities (X m + Y m ) ia originating from a (direct) random-phase approximation (RPA) calculation 84,85

A B -B -A X m Y m = Ω m X m Y m , (24) 
with

A ia, jb = δ i j δ ab ( a -i ) + 2(ia|b j), B ia, jb = 2(ia| jb), (25) 
and δ pq is the Kronecker delta. [START_REF] Olver | NIST Handbook of Mathematical Functions[END_REF] Equation ( 24) also provides the RPA neutral excitation energies Ω m which correspond to the poles of the screened Coulomb interaction W (ω). The G 0 W 0 quasiparticle energies G 0 W 0 p are provided by the solution of the (non-linear) quasiparticle equation [START_REF] Van Setten | The GW -Method for Quantum Chemistry Applications: Theory and Implementation[END_REF][START_REF] Hybertsen | First-Principles Theory of Quasiparticles: Calculation of Band Gaps in Semiconductors and Insulators[END_REF][START_REF] Veril | Unphysical Discontinuities in GW Methods[END_REF] 

ω = p -V B xc,p + Σ B x,p + Re[Σ B c,p (ω)]. ( 26 
)
with the largest renormalization weight (or factor)

Z p =          1 - ∂ Re[Σ B c,p (ω)] ∂ω ω= p          -1 . ( 27 
)
Because of sum rules, [START_REF] Martin | Theory of Many-Particle Systems[END_REF][START_REF] Baym | Conservation Laws and Correlation Functions[END_REF][START_REF] Baym | Self-Consistent Approximations in Many-Body Systems[END_REF][START_REF] Von Barth | Self-Consistent GW 0 Results for the Electron Gas: Fixed Screened Potential W 0 within the Random-Phase Approximation[END_REF] the other solutions, known as satellites, share the remaining weight. In Eq. ( 26),

Σ B x,p = φ p |Σ B
x |φ p is the (static) HF exchange part of the self-energy and

V B xc,p = φ p (r)v B xc (r)φ p (r)dr, (28) 
where v B xc (r) is the KS exchange-correlation potential. In particular, the ionization potential (IP) and electron affinity (EA) are extracted thanks to the following relationships: 62

IP = -G 0 W 0 HOMO , EA = -G 0 W 0 LUMO , (29) 
where G 0 W 0 HOMO and G 0 W 0 LUMO are the HOMO and LUMO quasiparticle energies, respectively.

C. Basis-set correction

The fundamental idea behind the present basis-set correction is to recognize that the singular two-electron Coulomb interaction |rr | -1 projected in a finite basis B is a finite, non-divergent quantity at |rr | = 0, which "resembles" the long-range interaction operator |rr | -1 erf(µ|rr | ) used within RS-DFT. [START_REF] Giner | Curing Basis-Set Convergence Of Wave-Function Theory Using Density-Functional Theory: A Systematically Improvable Approach[END_REF] We start therefore by considering an effective non-divergent two-electron interaction W B (r, r ) within the basis set which reproduces the expectation value of the Coulomb interaction over a given pair density n B 2 (r, r ), i.e,

1 2 n B 2 (r, r ) |r -r | drdr = 1 2 n B 2 (r, r )W B (r, r )drdr . (30) 
The properties of W B (r, r ) are detailed in Ref. 56. A key aspect is that because the value of W B (r, r ) at coalescence, W B (r, r), is necessarily finite in a finite basis B, one can approximate W B (r, r ) by a non-divergent, long-range interaction of the form

W B (r, r ) ≈ 1 2 erf[µ B (r)|r -r | ] |r -r | + erf[µ B (r )|r -r | ] |r -r | .
(31) The information about the finiteness of the basis set is then transferred to the range-separation function µ B (r), and its value can be determined by ensuring that the two sides of Eq. ( 31) are strictly equal at |rr | = 0. Knowing that lim r→0 erf(µr)/r = 2µ/ √ π, this yields

µ B (r) = √ π 2 W B (r, r). (32) 
Following Refs. 56-58, we adopt the following definition for W B (r, r )

W B (r, r ) =        f B (r, r )/n B 2 (r, r ), if n B 2 (r, r ) 0, ∞, otherwise, (33) 
where, in this work, f B (r, r ) and n B 2 (r, r ) are calculated using the opposite-spin two-electron density matrix of a spinrestricted single determinant (such as HF and KS). For a closedshell system, we have

f B (r, r ) = 2 N bas pq N occ i j
φ p (r)φ i (r)(pi|q j)φ q (r )φ j (r ), (34) and

n B 2 (r, r ) = 2 N occ i j φ i (r) 2 φ j (r ) 2 = 1 2 n B (r)n B (r ), (35) 
where n B (r) is the one-electron density. The quantity n B 2 (r, r ) represents the opposite-spin pair density of a closed-shell system with a single-determinant wave function. Note that in Eq. ( 34) the indices p and q run over all occupied and virtual orbitals (N bas = N occ + N virt is the total dimension of the basis set).

Thanks to this definition, the effective interaction W B (r, r ) has the interesting property

lim B→CBS W B (r, r ) = |r -r | -1 , (36) 
which means that in the CBS limit one recovers the genuine (divergent) Coulomb interaction. Therefore, in the CBS limit, the coalescence value W B (r, r) goes to infinity, and so does µ B (r). Since the present basis-set correction employs complementary short-range correlation potentials from RS-DFT which have the property of going to zero when µ goes to infinity, the present basis-set correction properly vanishes in the CBS limit.

D. Short-range correlation functionals

The frequency-independent local self-energy ΣB [n](r, r ) = vB [n](r)δ(rr ) originates from the functional derivative of complementary basis-correction density functionals vB [n](r) = δ ĒB [n]/δn(r).

In this work, we have tested two complementary density functionals coming from two approximations to the short-range correlation functional with multideterminant (md) reference of RS-DFT. [START_REF] Toulouse | A Short-Range Correlation Energy Density Functional With Multi-Determinantal Reference[END_REF] The first one is a short-range local-density approximation (srLDA) [START_REF] Toulouse | A Short-Range Correlation Energy Density Functional With Multi-Determinantal Reference[END_REF][START_REF] Paziani | Local-Spin-Density Functional For Multideterminant Density Functional Theory[END_REF] ĒB srLDA

[n] = n(r) εsrLDA c,md n(r), µ B (r) dr, (37) 
where the correlation energy per particle εsrLDA c,md n, µ has been parametrized from calculations on the uniform electron gas [START_REF] Loos | The Uniform Electron Gas[END_REF] reported in Ref. 92. The second one is a short-range Perdew-Burke-Ernzerhof (srPBE) approximation [START_REF] Loos | A Density-Based Basis-Set Correction for Wave Function Theory[END_REF][START_REF] Ferté | Range-Separated Multideterminant Density-Functional Theory With A Short-Range Correlation Functional Of The On-Top Pair Density[END_REF] ĒB srPBE

[n] = n(r) εsrPBE c,md n(r), s(r), µ B (r) dr, (38) 
where s(r) = ∇n(r)/n(r) 4/3 is the reduced density gradient and the correlation energy per particle εsrPBE c,md n, s, µ interpolates between the usual PBE correlation energy per particle [START_REF] Perdew | Generalized Gradient Approximation Made Simple[END_REF] at µ = 0 and the exact large-µ behavior [START_REF] Paziani | Local-Spin-Density Functional For Multideterminant Density Functional Theory[END_REF][START_REF] Toulouse | Long-Range-Short-Range Separation Of The Electron-Electron Interaction In Density-Functional Theory[END_REF][START_REF] Gori-Giorgi | Properties Of Short-Range And Long-Range Correlation Energy Density Functionals From Electron-Electron Coalescence[END_REF] using the on-top pair density of the Coulombic uniform electron gas (see Ref. 57). Note that the information on the local basis-set incompleteness error is provided to these RS-DFT functionals through the range-separation function µ B (r).

From these energy functionals, we generate the potentials vB srLDA [n](r) = δ ĒB srLDA [n]/δn(r) and vB srPBE [n](r) = δ ĒB srPBE [n]/δn(r) (considering µ B (r) as being fixed) which are then used to obtain the basis-set corrected G 0 W 0 quasiparticle energies

¯ G 0 W 0 p = G 0 W 0 p + VB p , (39) 
with

VB p = φ p (r)v B [n](r)φ p (r)dr, (40) 
where vB [n](r) = vB srLDA [n](r) or vB srPBE [n](r) and the density is calculated from the HF or KS orbitals. The expressions of these srLDA and srPBE correlation potentials are provided in the supporting information.

As evidenced by Eq. ( 39), the present basis-set correction is a non-self-consistent, post-GW correction. Although outside the scope of this study, various other strategies can be potentially designed, for example, within linearized G 0 W 0 or self-consistent GW calculations.

III. COMPUTATIONAL DETAILS

All the geometries have been extracted from the GW100 set. [START_REF] Van Setten | Benchmarking G 0 W 0 for Molecular Systems[END_REF] Unless otherwise stated, all the G 0 W 0 calculations have been performed with the MOLGW software developed by Bruneval and coworkers. [START_REF] Bruneval | Optimized Virtual Orbital Subspace for Faster GW Calculations in Localized Basis[END_REF] The HF, PBE, and PBE0 calculations as well as the srLDA and srPBE basis-set corrections have been computed with Quantum Package, [START_REF] Garniron | Quantum Package 2.0: A Open-Source Determinant-Driven Suite Of Programs[END_REF] which by default uses the SG-2 quadrature grid for the numerical integrations. Frozen-core (FC) calculations are systematically performed. The FC density-based basis-set correction [START_REF] Loos | A Density-Based Basis-Set Correction for Wave Function Theory[END_REF] is used consistently with the FC approximation in the G 0 W 0 calculations. The G 0 W 0 quasiparticle energies have been obtained "graphically", i.e, by solving the non-linear, frequency-dependent quasiparticle equation ( 26) (without linearization). Moreover, the infinitesimal η in Eq. ( 21) has been set to zero.

Compared to the conventional O(N 3 occ N 3 virt ) computational cost of GW, the present basis-set correction represents a marginal O(N 2 occ N 2 bas N grid ) additional cost as further discussed in Refs. 57 and 58. Note, however, that the formal O(N 3 occ N 3 virt ) computational scaling of GW can be significantly reduced thanks to resolution-of-the-identity techniques [START_REF] Bruneval | Molgw 1: Many-Body Perturbation Theory Software for Atoms, Molecules, and Clusters[END_REF][START_REF] Van Setten | The GW -Method for Quantum Chemistry Applications: Theory and Implementation[END_REF][START_REF] Duchemin | Hybrid and Constrained Resolution-of-Identity Techniques for Coulomb Integrals[END_REF] and other tricks. 100,101

IV. RESULTS AND DISCUSSION

In this section, we study a subset of atoms and molecules from the GW100 test set. [START_REF] Van Setten | Benchmarking G 0 W 0 for Molecular Systems[END_REF] In particular, we study the 20 smallest molecules of the GW100 set, a subset that we label as GW20. This subset has been recently considered by Lewis and Berkelbach to study the effect of vertex corrections to W on IPs of molecules. 103 Later in this section, we also study the five canonical nucleobases (adenine, cytosine, thymine, guanine, and uracil) which are also part of the GW100 test set.

A. GW20

The IPs of the GW20 set obtained at the G 0 W 0 @HF and G 0 W 0 @PBE0 levels with increasingly larger Dunning's basis sets cc-pVXZ (X = D, T, Q, and 5) are reported in Tables I and II, respectively. The corresponding statistical deviations (with respect to the CBS values) are also reported: mean absolute deviation (MAD), root-mean-square deviation (RMSD), and maximum deviation (MAX). These reference CBS values have been obtained with the usual X -3 extrapolation procedure using the three largest basis sets. [START_REF] Bruneval | Ionization Energy of Atoms Obtained from GW Self-Energy or from Random Phase Approximation Total Energies[END_REF] The convergence of the IP of the water molecule with respect to the basis set size is depicted in Fig. 1. This represents a typical example. Additional graphs reporting the convergence of the IPs of each molecule of the GW20 subset at the G 0 W 0 @HF and G 0 W 0 @PBE0 levels are reported in the supporting information.

Tables I and II (as well as Fig. 1) clearly evidence that the present basis-set correction significantly increases the rate of convergence of IPs. At the G 0 W 0 @HF (see Table I), the MAD of the conventional calculations (i.e, without basis-set correction) is roughly divided by two each time one increases the basis set size (MADs of 0.60, 0.24, 0.10, and 0.05 eV going from cc-pVDZ to cc-pV5Z) with maximum errors higher than 1 eV for molecules such as HF, H 2 O, and LiF with the smallest basis set. Even with the largest quintuple-ζ basis, the MAD is still above chemical accuracy (i.e, error below 1 kcal/mol or 0.043 eV).

For each basis set, the correction brought by the short-range correlation functionals reduces by roughly half or more the MAD, RMSD, and MAX compared to the correction-free calculations. For example, we obtain MADs of 0.27, 0.12, 0.04, and 0.01 eV at the G 0 W 0 @HF+srPBE level with increasingly larger basis sets. Interestingly, in most cases, the srPBE correction is slightly larger than the srLDA one. This observation is clear at the cc-pVDZ level but, for larger basis sets, the two RS-DFT-based corrections are essentially equivalent. Note also that, in some cases, the corrected IPs slightly overshoot the CBS values. However, it is hard to know if it is not due to the extrapolation error. In a nutshell, the present basis-set correction provides cc-pVQZ quality results at the cc-pVTZ level. Besides, it allows to reach chemical accuracy with the quadruple-ζ basis set, an accuracy that could not be reached even with the cc-pV5Z basis set for the conventional calculations.

Very similar conclusions are drawn at the G 0 W 0 @PBE0 level (see Table II) with a slightly faster convergence to the CBS limit. For example, at the G 0 W 0 @PBE0+srLDA/cc-pVQZ level, the MAD is only 0.02 eV with a maximum error as small as 0.09 eV.

It is worth pointing out that, for ground-state properties such as atomization and correlation energies, the density-based correction brought a larger acceleration of the basis-set convergence. For example, we evidenced in Ref. 57 that quintuple-ζ quality atomization and correlation energies are recovered with triple-ζ basis sets. Here, the overall gain seems to be less important. The possible reasons for this could be: i) DFT approximations are usually less accurate for the potential than TABLE I. IPs (in eV) of the 20 smallest molecules of the GW100 set computed at the G 0 W 0 @HF level of theory with various basis sets and corrections. The mean absolute deviation (MAD), root-mean-square deviation (RMSD), and maximum deviation (MAX) with respect to the G 0 W 0 @HF/CBS values are also reported. for the energy, 104 and ii) because the present scheme only corrects the basis-set incompleteness error originating from the electron-electron cusp, some incompleteness remains at the HF or KS level. 105

G 0 W 0 @HF G 0 W 0 @HF+srLDA G 0 W 0 @HF+srPBE G 0 W 0 @HF Mol. cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z cc-pVDZ cc-pVTZ cc-pVQZ cc-

B. Nucleobases

In order to check the transferability of the present observations to larger systems, we have computed the values of the IPs of the five canonical nucleobases (adenine, cytosine, thymine, guanine, and uracil) at the G 0 W 0 @PBE level of theory with a different basis set family. 109,110 The numerical values are reported in Table III, and their error with respect to the G 0 W 0 @PBE/def2-TQZVP extrapolated values [START_REF] Van Setten | Benchmarking G 0 W 0 for Molecular Systems[END_REF] (obtained via extrapolation of the def2-TZVP and def2-QZVP results) are shown in Fig. 2. Table III also contains extrapolated IPs obtained with plane-wave basis sets with two different software packages. [START_REF] Maggio | A Plane Wave Perspective for Small Molecules[END_REF]106 The CCSD(T)/def2-TZVPP computed by Krause et for comparison purposes.

For these five systems, the IPs are all of the order of 8 or 9 eV with an amplitude of roughly 1 eV between the smallest basis set (def2-SVP) and the CBS value. The conclusions that we have drawn in the previous subsection do apply here as well. For the smallest double-ζ basis def2-SVP, the basisset correction reduces by roughly half an eV the basis-set incompleteness error. It is particularly interesting to note that the basis-set corrected def2-TZVP results are on par with the correction-free def2-QZVP numbers. This is quite remarkable as the number of basis functions jumps from 371 to 777 for the largest system (guanine).

V. CONCLUSION

In the present manuscript, we have shown that the densitybased basis-set correction developed by some of the authors FIG. 2. Error (in eV) with respect to the G 0 W 0 @PBE/def2-TQZVP extrapolated values for the IPs of the five canonical nucleobases (adenine, cytosine, thymine, guanine, and uracil) computed at the G 0 W 0 @PBE level of theory for various basis sets and corrections.

in Ref. 56 and applied recently to ground-and excited-state properties [START_REF] Loos | A Density-Based Basis-Set Correction for Wave Function Theory[END_REF][START_REF] Giner | Chemically Accurate Excitation Energies With Small Basis Sets[END_REF] can also be successfully applied to Green function methods such as GW. In particular, we have evidenced that the present basis-set correction (which relies on LDA-or PBE-based short-range correlation functionals) significantly speeds up the convergence of IPs for small and larger molecules towards the CBS limit. These findings have been observed for different GW starting points (HF, PBE, and PBE0). We have observed that the performance of the two short-range correlation functionals (srLDA and srPBE) are quite similar with a slight edge for srPBE over srLDA. Therefore, because srPBE is only slightly more computationally expensive than srLDA, we do recommend the use of srPBE.

As mentioned earlier, the present basis-set correction can be straightforwardly applied to other properties of interest such as electron affinities or fundamental gaps. It is also applicable to other flavors of GW such as the partially self-consistent evGW or qsGW methods, and more generally to any approximation of the self-energy. We are currently investigating the performance of the present approach within linear response theory in order to speed up the convergence of excitation energies obtained within the RPA and Bethe-Salpeter equation (BSE) [START_REF] Blase | The Bethe-Salpeter Equation in Chemistry: Relations with TD-DFT, Applications and Challenges[END_REF]111,112 formalisms. We hope to report on this in the near future.

  ) = i G(13)W (14)Γ(324)d(34),

  

TABLE II .

 II IPs (in eV) of the 20 smallest molecules of the GW100 set computed at the G 0 W 0 @PBE0 level of theory with various basis sets and corrections. The mean absolute deviation (MAD), root-mean-square deviation (RMSD), and maximum deviation (MAX) with respect to the G 0 W 0 @PBE0/CBS values are also reported.

											10.27	10.34	10.35	10.36
	F 2	14.92	15.38	15.57	15.64	15.41	15.65	15.73	15.74	15.57	15.69	15.73	15.73	15.71
	MAD	0.60	0.24	0.10	0.05	0.29	0.07	0.02	0.01	0.23	0.07	0.03	0.01	
	RMSD	0.66	0.26	0.11	0.06	0.33	0.08	0.03	0.02	0.27	0.08	0.04	0.01	
	MAX	1.12	0.42	0.19	0.09	0.67	0.18	0.09	0.04	0.54	0.15	0.10	0.03	

  al.108 on the same geometries, the CCSD(T)//CCSD/aug-cc-pVDZ results from Ref. 107, as well as the experimental results extracted from Ref. 16 are reported FIG.1. IP (in eV) of the water molecule computed at the G 0 W 0 (black circles), G 0 W 0 +srLDA (red squares), and G 0 W 0 +srPBE (blue diamonds) levels of theory with increasingly large Dunning's basis sets 102 (cc-pVDZ, cc-pVTZ, cc-pVQZ, and cc-pV5Z) with two different starting points: HF (left) and PBE0 (right). The thick black line represents the CBS value obtained by extrapolation (see text for more details). The green area corresponds to chemical accuracy (i.e, error below 1 kcal/mol or 0.043 eV).
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TABLE III .

 III IPs (in eV) of the five canonical nucleobases (adenine, cytosine, thymine, guanine, and uracil) computed at the G 0 W 0 @PBE level of theory for various basis sets and corrections. The deviation with respect to the G 0 W 0 @PBE/def2-TQZVP extrapolated values are reported in square brackets. The extrapolation error is reported in parenthesis. Extrapolated G 0 W 0 @PBE results obtained with plane-wave basis sets, as well as CCSD(T) and experimental results are reported for comparison. Experimental values are taken from Ref.16 and correspond to vertical ionization energies.

					IPs of nucleobases (eV)		
	Method	Basis	Adenine	Cytosine	Guanine	Thymine	Uracil
	G 0 W 0 @PBE a	def2-SVP	7.27[-0.88]	7.53[-0.92]	6.95[-0.92]	8.02[-0.85]	8.38[-1.00]
	G 0 W 0 @PBE+srLDA a	def2-SVP	7.60[-0.55]	7.95[-0.50]	7.29[-0.59]	8.36[-0.51]	8.80[-0.58]
	G 0 W 0 @PBE+srPBE a	def2-SVP	7.64[-0.51]	8.06[-0.39]	7.34[-0.54]	8.41[-0.45]	8.91[-0.47]
	G 0 W 0 @PBE a	def2-TZVP	7.74[-0.41]	8.06[-0.39]	7.45[-0.42]	8.48[-0.38]	8.86[-0.52]
	G 0 W 0 @PBE+srLDA a	def2-TZVP	7.92[-0.23]	8.26[-0.19]	7.64[-0.23]	8.67[-0.20]	9.25[-0.13]
	G 0 W 0 @PBE+srPBE a	def2-TZVP	7.92[-0.23]	8.27[-0.18]	7.64[-0.23]	8.68[-0.19]	9.27[-0.11]
	G 0 W 0 @PBE b	def2-QZVP	7.98[-0.18]	8.29[-0.16]	7.69[-0.18]	8.71[-0.16]	9.22[-0.16]
	G 0 W 0 @PBE c	def2-TQZVP	8.16(1)	8.44(1)	7.87(1)	8.87(1)	9.38(1)
	G 0 W 0 @PBE d	plane waves	8.12	8.40	7.85	8.83	9.36
	G 0 W 0 @PBE e	plane waves	8.09(2)	8.40(2)	7.82(2)	8.82(2)	9.19(2)
	CCSD(T) f	aug-cc-pVDZ	8.40	8.76	8.09	9.04	9.43
	CCSD(T) g	def2-TZVPP	8.33	9.51	8.03	9.08	10.13
	Experiment h		8.48	8.94	8.24	9.20	9.68

a This work. b Unpublished data taken from https://gw100.wordpress.com obtained with TURBOMOLE v7.0. c Extrapolated values obtained from the def2-TZVP and def2-QZVP values. d Extrapolated plane-wave results from Ref. 23 obtained with WEST. e Extrapolated plane-wave results from Ref. 106 obtained with VASP. f CCSD(T)//CCSD/aug-cc-pVDZ results from Ref. 107. g Reference 108. h
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See supporting information for the expression of the shortrange correlation potentials, additional graphs reporting the convergence of the ionization potentials of the GW20 subset with respect to the size of the basis set, and the numerical data of Tables I and II (provided in txt and json formats).