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Abstract

Graphene encapsulated metal nanoparticles (G@NPs) offer a possibility to observe

confined reactions in the nanocontainer formed by the NP’s facets and graphene. How-

ever, direct experimental detection of adsorbed atomic and molecular species under the

graphene cover is still challenging and the mechanisms of intercalation and adsorption

are not well understood. Here we show that Kelvin probe force microscopy (KPFM) can

largely contribute to the understanding of adsorption and desorption at the single NP

level, which we exemplify by comparing oxygen adsorption experiments obtained at as-

prepared PdNPs and G@PdNPs, both supported on highly oriented pyrolytic graphite

(HOPG) and studied under ultra-high vacuum (UHV) conditions. We show that oxy-

gen adsorption at room temperature occurs at a much higher partial oxygen pressure

on G@PdNPs compared to as-prepared PdNPs. Similarly, the removal of oxygen via

a reaction with the residual gas of the UHV is slower on the G@PdNPs compared to

as-prepared PdNPs. The differences can be explained by a limited facility for reactant

and product molecules to enter and desorb from the nanocontainer via the defects of the

graphene. Observed WF changes are supported by assisting density functional theory

(DFT) calculations.
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INTRODUCTION

Graphene encapsulated nanoparticles (G@NPs) have lately come into focus of several disci-

plines in nanosciences. Apart from NPs made from Pt1–3, Pd4–6, Au7, Fe8, Co9,10 and Cu4,11

as well as FeCo12,13 and NiCo14,15, also semiconducting NPs made from silicon16,17 and even

oxide NPs such as Fe2O3
18 and TiO2

19 have been explored. Core-shell G@NPs exhibit several

advantages in comparison to their pure counterparts with potential applications in surface

enhanced Raman scattering (SERS)20,21, lithium ion batteries (LiBs)16–18,22,23, nanobiotech-

nology24 and hydrogen storage solutions25. In heterogeneous catalysis, it has been suggested

that a protecting graphene shell could prevent degradation and metal sintering10,14,26,27 and

that the graphene-NP ensemble could alter the catalytic properties26. Furthermore, graphene

protected NPs provide a system for catalysis under cover 28,29 where chemical reactions take

place in the nanocontainer formed by the graphene wall and NP facets. In this way, the

G@NP systems offers a possibility to investigate the effects of confinement on catalytic re-

actions. As the reactants and products should enter and leave the container via defect sites,

it can be anticipated that the reactions can become mass transfer limited.

To detect adsorption or desorption phenomenon at the single NP level, a direct measure is

desired. In principle, scanning tunneling microscopy (STM) can detect atomic or molecular

species under a graphene sheet as shown on single crystal surfaces30. However, the imaging

is challenging and has never been done on nanometer large NPs, and STM is restricted

to conducting surfaces only. A simple experimental method for detecting adsorption and

desorption on metal surfaces is to measure related work function (WF) changes of the metal,

as exemplified by the macroscopic Kelvin probe technique on single crystal surfaces. For

instance, oxygen and hydrogen dissociatively adsorb on Pd(111)31–33 and increase the WF

depending on the coverage: at room temperature, saturation values of +0.834 and +0.3 eV31

are found for oxygen and hydrogen, respectively. Carbon monoxide increases the WF by

up to +1.0 eV35 whereas water decreases the WF of metals in general36, as in the case

of palladium with saturation values of around ∼ -0.8 eV37. A strong WF reduction is also
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observed when carbon is dissolved in a subsurface region (∼ -1 eV), which we exemplified

at PdNPs6. One possibility would therefore be to monitor changes of the NP’s WF when

G@NPs are exposed to an gaseous environment: if adsorption or desorption of atomic or

molecular species takes place on the NP’s facets, the WF of the G@NP should change

proportional to the adsorbate concentration31,34. The WF of a single NP can be measured

by Kelvin probe force microscopy (KPFM)38, which is an implementation of Kelvin probe

into noncontact atomic force microscopy (nc-AFM)38. Thanks to the spacial resolution at the

nanometer scale and the mV resolution in WF, KPFM yields WF information of nanometer

sized islands and NPs6,39–41.

In this work we show that KPFM does indeed contribute to the understanding of ad-

sorption and desorption at the single NP level by measuring changes of the NP’s WF. The

technique helps to reveal adsorption phenomena of oxygen at room temperature (RT) and

under ultra-high vacuum conditions (UHV) on as-prepared palladium NPs (PdNPs) and

graphene encapsulated palladium NPs (G@PdNPs), which are supported on highly oriented

pyrolytic graphite (HOPG). Palladium is an important NP material in catalysis and graphene

can easily be grown on PdNPs5,6. The practical advantage of HOPG is that the very wide

terraces are inert towards oxygen and other molecules at RT42, so that the HOPG surface

always remains at its well-defined WF and therefore functions as a reference surface for

KPFM.

METHODS

Synthesis of PdNPs on HOPG. Clean surfaces are prepared by cleaving HOPG in air

and following annealing at ∼650 °C in UHV during several hours. The PdNPs are grown

by evaporating neutral palladium atoms onto the HOPG sample. During the growth, the

HOPG substrate is held at a temperature between 450 and 500 °C. For the synthesis of

graphene on the PdNPs, the UHV chamber is back-filled with ethylene via a leakage valve
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at a pressure between 1.0 and 2.0× 10-6mbar, and the dosage is determined by the exposure

time. During the ethylene exposure, the sample is held at a constant temperature between

670 and 740 °C. In oxygen adsorption experiments, the UHV chamber is back-filled with

molecular oxygen via a leakage valve at a pressure between 3.0× 10-7 and 4.0× 10-5mbar,

whereas the dosage is also determined by the exposure time. Adsorption experiments are

done at room temperature and during the SPM imaging (in operando experiments).

Scanning Probe Microscopy (SPM). STM, nc-AFM and KPFM experiments are

performed in the same UHV chamber (1× 10−10mbar base pressure)76 with a room temper-

ature AFM/STM. KPFM is used in the frequency modulation mode77 and applied during

the topography nc-AFM imaging mode. During the scanning of the surface, the electrostatic

tip-surface interaction is minimized at each image point by the bias voltage, yielding the con-

tact potential difference (CPD) between tip and surface defined as CPD= (φsample− φtip)/e.

A so-called work function image of the CPD is simultaneously obtained with the topography

nc-AFM image. The contrast of a WF image is directly related to WF differences on the

surface. A bright and in particular orange/yellow contrast in WF images corresponds to

a high WF whereas a violet and black contrast corresponds to a low WF. Note that for a

better data reading, the CPD values for HOPG are shifted onto zero such that the values of

the profiles are directly related to the WF difference between the PdNPs and HOPG.

Theory. DFT is used as implemented in the Dmol3 program78,79. The calculations are

performed either within the local density approximation (LDA)80. LDA is considered as this

functional thanks to error cancellation is known to provide good results for surface properties

such as surface energies and work-functions81,82. As binding energies generally are strongly

overestimated in LDA, we do not report any adsorption of diffusion energies. The Pd(111)

surface is modeled with 7 layers using four different surface cells;
√
3 ×
√
3, 2
√
3 × 2

√
3,

p(2 × 2) and p(5 × 5). Geometry optimization is performed using the BFGS method. The

work function (φ) is the energy needed to remove an electron from the bulk of palladium to

the vacuum. It is calculated according to: φ = Vvacuum−εF , where Vvacuum is the electrostatic
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potential in the vacuum region and εF is the Fermi energy.

More details about the materials, work function values and sample preparation as well as

details about STM, nc-AFM, KPFM and DFT calculations can be found in the Supporting

Information.

RESULTS

Oxygen Exposure on As-Prepared PdNPs. Figure 1a shows a topography (z) and WF

image of PdNPs, after their high-temperature growth at 476 °C on HOPG in UHV. In the

following, such NPs are referred to as as-prepared PdNPs. Owing to their 3D shape of a

top-truncated tetrahedron, the NPs exhibit well-known shapes from triangles to hexagons

via various truncated shapes, with the NPs’ edges forming always angles of 60° and 120°41.

The top facets are atomically flat and are in their (111) surface orientation, with the side

facets having (111) and (001) orientations6. The NPs are attached at steps of the HOPG

surface and have side lengths, which can vary between 10 and 50 nm, whereas their heights

generally can reach 10 nm and more.

A +0.4± 0.1 eV small WF difference can be found between the PdNPs and HOPG in

Figure 1a (see profile in Figure 1a for one NP), which is much smaller than the expected

WF difference of ∼+1.1 eV between pristine Pd(111) and HOPG (φHOPG,lit=4.5± 0.1 eV,

φPd,lit=5.6± 0.1 eV, see Table S1 and S2 in the Supporting Information). The reason for the

small difference is that carbon is detached from the HOPG steps during the NP growth at

476 °C and occupies subsurface sites in the NP, reducing the WF of the palladium NP6.

The image series in Figure 1b and e shows the same NPs, successively recorded during

an exposure of molecular oxygen at room temperature. For each image, the scanning is

started at the bottom of the image and finishes at the top after about 35minutes. Thus,

the upward oriented slow scanning direction is a measure of the measurement time, which

is represented by the blue and orange arrows in all images of Figure 1. Important to note is
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Figure 1: As-prepared PdNPs imaged by KPFM during an exposure of O2 at room tempera-

ture (771 L @ pO2=3× 10−7mbar, texposure=57min). One KPFM experiment is represented

by a vertically arranged topography (top) and WF image (bottom), with a representative

WF profile underneath taken from the gray dotted line in each WF image. The profiles

show the contrast for one and the same NP. The WF images have all the same color scale

(See Figure S1 in the Supporting Information). The orange arrows show the O2 exposure

whereas blue arrows correspond to the imaging in UHV (no O2). (c) Profile taken from the

WF image in (b) at the green dotted line. (d) Region of the dotted green square in the WF

image in (b). NP growth: 2.0ML at 476 °C, KPFM parameters: 4f =-8.2Hz, v=0.5Hz,

Uac=650mV and fac=634Hz.

that one scanning line needs about tline=4 seconds (scanning speed v=0.5Hz, scanning in

forward and backward direction).

Up to the middle of image Figure 1b, the NPs are imaged in UHV (blue arrows) whereas

starting from the middle, the UHV chamber is backfilled with molecular oxygen (orange

arrows). A partial oxygen pressure of pO2=3.0× 10−7mbar is used so that after the scanning

of one line, a dosage of ∼ 1Langmuir (L) is achieved (tline× pO2 / 1.33× 10−6mbar≈ 0.9 L).

Within a few scanning lines, the WF of the PdNPs increases on average by +0.4± 0.1 eV,
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which can be seen by the large contrast change in the WF image (from white to orange in

Figure 1b) and in the profile of the representative NP below the WF image. In Figure 1c,

a profile along the row of NPs (green dotted line in Figure 1b) shows the immediate WF

increase more clearly. After this strong increase of the WF, the WF contrast of the top facets

is homogeneous (Figure 1d). The WF remains almost constant with only a slight increase for

all NPs in the following KPFM measurement in Figure 1e: after about 30 minutes of oxygen

dosage, the mean WF has increased onto +0.6± 0.1 eV. The last image of the image series

(Figure 1f) shows the same NPs, after the oxygen supply has been stopped at the end of the

measurement from above (top of Figure 1e). As it can be seen by the contrast of the WF

image and corresponding profile underneath, the WF decreases in mean by -0.1 eV, and in

following images (not shown) by ∼-0.3 eV. As explained further below, the WF increase and

decrease can be assigned to a dissociative adsorption of oxygen on the (111) facets of the

PdNPs and to a loss of oxygen, respectively.

Oxygen Exposure on G@PdNPs. In the following, we compare the oxygen adsorption

characteristics of the as-prepared PdNPs with results obtained on G@PdNPs. Figure 2a

and b show typical G@PdNPs after the graphene growth in ethylene (several hundreds

of L) at temperatures between 670 and 740 °C. As described in Ref. [ 5], a single moiré

pattern can be found on large and symmetrically shaped NPs (one perfect graphene sheet)

whereas unsymmetrical NPs with a size below ∼ 30 nm exhibit several types of moiré patterns

(graphene sheets) together with line defects on the NP’s facets and probably also defects

at the edges of the NPs. The WF of such PdNPs is strongly decreased by ∼ -1.4 eV with

respect to the WF of palladium6, moving the WF about ∼-0.1 eV below the WF of the

HOPG surface, thus the NPs appear in a dark contrast in WF images, as it can be seen in

the WF image of Figure 3a.

In Figure 3a-d, four successively recorded KPFM images are shown, which were selected

from a series of 26 images. They present the same G@PdNPs on a time scale of 175 minutes.

As before, the recording of one image needs 35 minutes with tline=4 sec, and, within an
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Figure 2: STM topography images of G@PdNPs. A single 2.52 nm large (2
√
21× 2

√
21) -

R10.9° (a) and a 1.92 nm large (7× 7) - R21.8° moiré pattern (b) can be seen. (c,d) Top

facet of a NP with a 2.47 nm large (9× 9) - R0.0° moiré pattern, observed after an oxygen

dosage. NP growth: 1.5ML at 475 °C (a,c,d) and 2.0ML at 500 °C (b), Graphene growth:

847L of C2H4 (1× 10−6mbar) at 670 °C (a,c,d) and 900L of C2H4 (2× 10−6mbar) at 735 °C

(b), STM parameters: UBias=0.41 (a), 0.09 (b) and 0.43V (c,d), I =0.43 (a), 0.42 nA (b)

and 0.37 nA (c,d), v=3.3 (a), 2.0 (b,c) and 3.0Hz (d).

image, the surface is scanned from the bottom to the top, with the blue and orange arrows

marking the time line.

During the image acquisition, molecular oxygen is dosed in several steps on the NPs at

room temperature: in the first measurement (Figure 3a), 5.5× 10−7mbar of molecular oxygen

is dosed into the UHV chamber (orange arrow). An important observation is that at this

pressure, no WF changes are visible, unlike the case of the as-prepared NPs (compare with

Figure 1b). To observe any changes, the oxygen pressure is increased onto 1.5× 10−5mbar

(see Figure S3b in the Supporting Information), and even at this pressure, no immediate

WF increase can be seen; the WF increases rather slowly such that after a few minutes, the

WF of the NPs reaches the same WF of HOPG. To increase the speed of the WF change

9



WF

50 nm

a b c d e f

z

50 nm

WF

z

50 nm

50 nm

5
.5

 1
0

-7
 m

b
ar

 O
2

4
.3

 1
0

-5
 m

b
ar

 O
2

4
.3

 1
0

-5
 m

b
ar

 O
2

U
H

V

U
H

V

U
H

V

After UHV annealing 
@ 670°C for 1.5h

~ -0.1 eV ~ +0.3 eV
~ +0.5 eV ~ +0.48 eV

~ +0.3 eV
~ -0.1 eV

70 min 9.2 hours35 min70 min

Figure 3: (a-e) Graphene encapsulated PdNPs imaged by KPFM during an exposure of O2

at room temperature (620 L @ pO2=5.5× 10−7mbar (a), 2.2× 104 L @ 1.5× 10−5mbar (b)

and 1.5× 105 L @ 4.3× 10−5mbar (c), total dosage: 1.7× 105 L). One KPFM experiment

is represented by a vertically arranged topography (top) and WF image (bottom), with a

representative WF profile underneath, taken from the gray dotted line in the WF image.

The profiles show the contrast for one and the same NP. The WF images have all the same

color scale (See Figure S3 in the Supporting Information). The orange arrows show the O2

exposure whereas blue arrows correspond to the imaging in UHV (no O2). (f) Same sample

after an annealing in UHV (4× 10−10mbar) at 670 °C during 1 h 20min. NP growth: 1.5ML

at 475 °C, Graphene growth: 847L of C2H4 (1× 10−6mbar) at 670 °C, KPFM parameters:

4f =-9.5 (a), -10.6 (b), -12.7 (c), -13.6 (d), -13.7 (e) and -15.3Hz (g), all: v=0.5Hz,

Uac=500mV and fac=630Hz.

furthermore, the oxygen pressure is increased onto a value of 4.3× 10−5mbar (Figure 3b).

After some scanning lines, the WF is higher than the one of HOPG (white color) and increases

further more by a few hundreds of meV. In the third image (Figure 3c), the pressure is kept

constant and the WF increase saturates at a mean WF difference of +0.5± 0.1 eV for all

NPs, similar to the case of the as-prepared PdNPs from above.

The oxygen supply is stopped in the next image (Figure S3e in the Supporting Informa-
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Figure 4: The temporal development of the WF difference 4φ between HOPG and the

G@PdNPs from Figure 3 (a) and the as-prepared PdNPs from Figure 1 (b). The data was

extracted at selected NPs, which are labeled in the topography images of Figure 3b and

Figure 1a. For the G@PdNPs (as-prepared PdNPs) the data is obtained from a series of 26

(6) images. Alongside the WF difference, the partial oxygen pressure is shown in form of

the gray shaded region.

tion) and a slight decrease of the WF is detected. In the next following image (Figure 3d),

the WF decrease measures only ∼ -0.06 eV, about 70 minutes after the oxygen supply has

been stopped. Figure 3e shows the same NPs 10 hours after: although the WF difference has

decreased onto +0.3± 0.1 eV, the NPs still exhibit a strong WF difference with the HOPG

surface. In Figure 4a, the temporal development of the NP’s WF is shown for some selected

NPs (see blue dots in the topography image of Figure 3b), from the start of the oxygen

dosage until 13 hours after: when the oxygen supply is closed, the WF decreases slightly

but remains stable for many hours. This small WF decrease contrasts the situation of the

as-prepared PdNPs, where the WF difference decreases much faster (see Figure 4b).

After a second oxygen adsorption experiment on the same NPs (see Figure S4 in the

11



Supporting Information), STM has been used to verify if the graphene on top of the NPs

is still intact. The two STM topography images in Figure 2c and d clearly show, that the

graphene is still intact right after a dosage of oxygen: typical perfect moiré patterns can

be seen, with a corrugation that is comparable with G@PdNPs, which are not dosed with

oxygen5,6. Unfortunately, the atomic resolution could not be obtained to observe possible

oxygen atoms underneath the graphene, as it was done in Ref. [ 30].

The very last preparation step consists of a post-annealing of the sample in UHV (4× 10−10

mbar) at 670 °C (Figure 3f). The initial very low WF of G@PdNPs is recovered (compare

with Figure 3a), which can be seen by the typical dark contrast that corresponds to a WF

difference of ∼ 0.1 eV between the NPs and HOPG.

Density Functional Theory Calculations. To elucidate the origin of the observed

changes in the WF, we use DFT calculations and explore a range of representative config-

urations of oxygen on Pd(111) and Pd6C(111) as well as of oxygen intercalated between

graphene and the two surfaces. We consider two graphene configurations, namely the fre-

quently observed
√
3×
√
3 and 5× 5 graphene structures5,6. The calculations are performed

with surface cells of (
√
3×
√
3), (2

√
3× 2

√
3) or (5× 5). The oxygen atoms at a given cov-

erage are evenly distributed for each surface cell. Note that due to the special cell geometry,

the distribution of the oxygen atoms may not reflect the experimentally observed structures.

For example, at 0.25ML coverage, the measured structure is a (2× 2) structure43–47. Note

also that we merely focus on the trends in the WF changes when oxygen is adsorbed on the

surface because of the unknown coverage in the experiments. The DFT results are summa-

rized in Table 1 and the corresponding structures are shown in Figure S7 of the Supporting

Information.

Palladium is an fcc metal with an experimental lattice constant of aPd,lit=3.89± 0.01Å

(see Table S3 in the Supporting Information). We calculate the lattice constant to be 3.87Å.

The slight underestimation by LDA is consistent with previous reports48. For the WF for the

pristine Pd(111) surface, a value of 5.70 eV is obtained. This value is consistent with previous
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Table 1: DFT results for the WF (in eV) for different oxygen coverages (ρ) on Pd(111) and

Pd6C(111), either with or without graphene (Gr
√
3×
√
3 and Gr 5× 5). The WF change

4WF (in eV) induced by oxygen is also reported. For graphene on Pd(111) and Pd6C(111),

the mean distance d (in Å) between graphene and the first atomic Pd surface layer is given.

ρ WF 4WF d WF 4WF d WF 4WF d WF 4WF d

Pd(111) Gr
√
3×
√
3/Pd(111) Pd6C(111) Gr

√
3×
√
3/Pd6C(111)

0 5.70 0 / 4.68 0 3.00 5.54 0 / 4.68 0 2.92

1/12 (0.083) 5.94 +0.24 / 4.81 +0.13 2.90 5.82 +0.28 / 5.04 +0.36 3.28

2/12 (0.167) 6.18 +0.48 / 5.02 +0.34 3.32 6.09 +0.55 / 5.23 +0.55 3.52

3/12 (0.250) 6.39 +0.69 / 5.14 +0.46 3.57 6.38 +0.84 / 5.33 +0.65 3.69

4/12 (0.333) 6.62 +0.92 / 5.19 +0.51 3.79 6.65 +1.11 / 5.39 +0.71 3.77

Gr 5× 5/Pd(111)

0 4.55 0 2.62

1/25 (0.040) 4.83 +0.28 2.58

2/25 (0.080) 4.79 +0.24 2.50

2/25 (0.080) 5.10 +0.55 3.22

6/25 (0.024) 5.40 +0.85 3.70

computational reports and agree well with the experimental value of φPd,lit= 5.6± 0.1 eV

(see Table S2 in the Supporting Information).

Molecular oxygen adsorbs dissociatively on Pd(111) and PdNPs, and the oxygen atoms

occupy preferably fcc hollow sites49. In the following, we only consider fcc hollow sites, also

when oxygen is intercalated between the graphene sheet and the palladium surface. We

calculate the WF of the Pd(111) surface for four different oxygen coverages, namely 1/12,

2/12, 3/12 and 4/12 monolayer (ML). One ML is defined as the the number of surface atoms

whereas max. 12 oxygen atoms can be present in the 2
√
3× 2

√
3 cell. The 3/12 oxygen

coverage is shown in Figure 5a whereas all the other coverages are shown in Figure S7 of the

Supporting Information.

With increasing coverage (see Table 1), theWF of the Pd(111) surface increases monotonously,

with a WF shift of +0.69 eV at a 3/12ML (0.25ML) coverage and a maximum shift of
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+0.92 eV at 4/12ML (0.33ML), which is in qualitative agreement with previous reports

(e.g., +0.5 eV for a 2× 2 related 0.25ML coverage49,50). Note that we also modeled the

0.25ML 2× 2 structure described in literature43–47 (see Figure S8 in the Supporting Infor-

mation). For this structure, we obtain the same WF as above (3/12ML coverage), i.e., the

WF does not depend sensitively on the detailed arrangement of the surface oxygen atoms.

The monotonous increase of the WF is owing to the increasing density of the oxygen atoms,

which carry a negative charge and create a net surface dipole oriented towards the surface,

overall increasing the WF of the metal.

A monotonous WF increase is observed also when increasing the coverage of interca-

lated oxygen atoms (Figure 5b). In comparison to oxygen on Pd(111), the WF shifts are

smaller being +0.46 and +0.51 eV at 3/12ML (0.25ML) and 4/12ML (0.33ML) coverage,

respectively. With respect to the mean distance d between graphene and Pd(111), the value

first decreases slightly by -0.1Å but increases monotonously by up to +0.8Å at a 4/12ML

coverage. A similar increase of the mean distance upon oxygen intercalation was observed

on graphene/Rh(111)51. Note that an increase of the distance leads to an increase of the

surface WF6 because it reduces the charge density overlap and thereby the electrostatic com-

pression owing to the Pauli principle. Overall, the WF increase upon oxygen intercalation

clearly demonstrates that the surface WF is not determined by graphene alone but rather

by three contributions: i) the metal WF, ii) the surface dipole layer induced by the oxygen

atoms and iii) the electrostatic compression effect induced by graphene.

We now consider the Pd6C(111) surface, which represents the (111) facets of those PdNPs

grown at relative high temperatures on HOPG and therefore contain subsurface carbon6.

We consider the same oxygen coverages and adsorption sites as for the pure palladium case

above. Oxygen is adsorbed on Pd6C(111) (Figure 5c) or intercalated between the graphene

wall and Pd6C(111) (Figure 5d). As on Pd(111), the WF shifts are all positive and the WF

is monotonously increasing with increasing coverage. The WF shifts for O/Pd6C(111) are

larger than for intercalated oxygen. Furthermore, the mean graphene-Pd6C(111) distance
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Figure 5: Atomic O with a coverage of 3/12ML (0.25ML) on different surfaces: O adsorbed

on Pd(111) (a), O intercalated between graphene
√
3×
√
3 and Pd(111), O adsorbed on

Pd6C(111) (c), and O intercalated between graphene
√
3×
√
3 and Pd6C(111) (d). The

structures are shown in side and top views. The light gray rhomb shows the 2
√
3× 2

√
3

surface cell used for the calculations.

increases with increasing coverage. In comparison to Pd(111), the WF shifts are somewhat

larger, in mean by 0.1 to 0.2 eV. Overall, Pd6C(111) behaves similar to Pd(111).

To understand the dependence of the induced WF changes on the graphene configuration,

we consider the 5× 5 graphene structure on Pd(111) (Figure 6a), which is regularly observed

by STM5,6. Because the size of this surface cell is considerably larger than the
√
3×
√
3
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Figure 6: Atomic O intercalated between Pd(111) and the 5× 5 graphene structure for

different O coverages: 0 (a), 1/25 (b), 2/25 (c,d) and 6/25ML (e). Images (c) and (d) show

the same O coverage but for two different O distributions. The structures are shown in side

and top views. The light gray rhomb shows the surface cell of the 5× 5 graphene structure

used for the calculations.

structure (1.37 nm versus 0.48 nm side length) there are many possibilities to place oxygen

atoms. Starting with a coverage of 1/25ML (0.04ML) in the configuration shown in Fig-

ure 6b, the WF shift is +0.28 eV large. If the coverage is doubled onto 2/25ML (0.08ML),

the two independent O configurations (Figure 6c and d) yield clearly different WF shifts: in

the first case, the graphene sheet is closer to the Pd(111) surface (Figure 6c) whereas in the

second case the graphene is 0.72Å farer away from the surface (Figure 6d). As a result of the

electrostatic compression effect6, the WF shift is smaller in the first case (+0.24 eV) than in

the second one (+0.55 eV).

When the coverage is increased onto 6/25 (0.24ML) (Figure 6e), we obtain a WF shift

of +0.85 eV, which is larger than the value of the
√
3×
√
3 graphene structure at 3/12

(0.25ML) coverage (+0.46 eV). However, the values are still comparable and we expect that

the WF shift for a 0.25ML oxygen coverage is well below 1 eV, independent on the graphene

orientation on Pd(111) and Pd6C(111).

Alongside the distance dependence of the WF, there also is a considerable buckling of the
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graphene, which, in particular, is present in the absence of intercalated oxygen (Figure 6a).

For a low oxygen concentration (1/25ML, Figure 6b), the oxygen atoms do not influence

the distance between graphene and Pd(111) surface if they are placed at positions where

the distance is largest. The same applies for a slightly larger coverage (Figure 6c), however,

some oxygen atoms start to separate the graphene sheet from the metal where the distance

to the surface is relatively close. If for the same coverage, the oxygen atoms are differently

distributed, e.g., at sites where the graphene distance is relatively close, the adsorption

leads to an increased metal-graphene distance (Figure 6d). Finally, with increasing oxygen

coverage, the oxygen atoms displace more and more the graphene sheet from the surface

(Figure 6e). Similar phenomena were suggested before52 and observed by DFT on Rh(111)51.

At relatively large mean distances, which are obtained at in particular high oxygen coverages

(e.g., at 6/25 (0.24ML) coverage, Figure 6e), the buckling is less pronounced or even not

present, and graphene adopts a more free-standing character. A similar though smaller

buckling can be also found for the
√
3×
√
3 graphene structure at low oxygen coverages (see

Figure 5b).

DISCUSSION

Mechanisms of the Oxygen Adsorption on As-Prepared PdNPs. It is well known

that molecular oxygen dissociatively adsorbs on Pd(111) single crystal surfaces at room

temperature (RT)43,44. The dissociative adsorption of oxygen was extensively studied by,

e.g., LEED43–46, photoemission spectroscopy43–45, Auger spectroscopy44–46, temperature pro-

grammed desorption (TPD)46 and STM46,53,54 and also described in detail by several DFT

works49,50,55,56. In the following, we only consider the adsorption of atomic oxygen on the

surface. Surface oxides46,57,58 and subsurface oxygen47,59 appear at higher temperatures and

pressures and can therefore be neglected for the following discussion.

Our and previous DFT results50 show that a charge transfer from palladium to oxygen
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takes place creating a surface dipole towards the surface, which the latter increases the surface

WF. The WF change depends sensitively on the oxygen coverage, with values ranging from

roughly +0.2 to +1.0 eV for 1/12 to 1/3ML oxygen, respectively (see Table 1). Although

we could not obtain the atomic resolution on the oxygen dosed NPs by STM like in Ref.

[ 60], we strongly anticipate that the oxygen atoms form the well-known 2× 2 structure,

which was frequently observed by LEED43–47 and RT STM46: initially, this structure was

assigned to an oxygen coverage of 1/4ML43, which was questioned by a following work that

found rather a 1/2ML coverage44. However, the 2× 2 related 1/4ML coverage got confirmed

by more recent work45,46. The 2× 2 structure starts to appear after a few Langmuir43,44,46

and is completed after a few tens of Langmuir46 . The structure is stable after an oxygen

dosage of 105 L44, which is much higher than the one used for the experiments shown in

Figure 1 (771L). No other oxygen structures appear at RT and during continued oxygen

dosages46. Note that we exclude a possible
√
3×
√
3R30° structure, which is supposed to

coexist with the 2× 2 structure at RT up to a dosage of 500L and which is stabilized by CO

and hydrogen43. We also exclude a 1× 1 structure, which seem to appear only after very

high oxygen dosages (>105 L)44.

Overall, we can conclude that in our experiments, the oxygen coverage was at around

1/4ML. Comparing the experimental WF increase of +0.6 eV (Figure 1e) with the values ob-

tained from theory (see Table 1) we find a good quantitative agreement at 3/12ML coverage

where theory predicts a WF change of +0.69 eV for Pd(111) and +0.84 eV for Pd6C(111). A

quantitative agreement is also obtained when considering work done with the macroscopic

Kelvin probe technique34: a saturation of the WF increase was observed after a few Langmuir

(pO2=2.7× 10−8mbar) at RT, with a maximum WF change of +0.8 to +0.9 eV.

Nevertheless, our experimental values of the WF shift are a bit too small, by 0.1 to

0.2 eV, which might be due to a tip-NP convolution effect61–64: because the size of the tip

apex is comparable to the size of the NP, the convolution effect reduces the relative WF

difference between the PdNPs and HOPG, with a possible but so far unknown impact on
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also WF changes induced by oxygen. Because the tip dimension and tip-surface distance,

which strongly influence the convolution, are unknown in our experiments, it is difficult

to estimate the relative deviation from the true values of WF differences. In future, the

influence of the convolution and other possible effects need to be studied in more detail.

The WF decrease in Figure 1f and Figure 4b, which appears after an oxygen adsorption

experiment is stopped, can be related to a loss of atomic oxygen on the (111) facets of the

NPs. In principle, when the oxygen supply is stopped there is no adsorption/desorption

equilibrium anymore and only oxygen desorption may appear. However, this is contrary

to the general finding that at room temperature, atomic oxygen should be quite stable on

Pd(111): the binding energy is between -1.3 and -1.5 eV50,55. We therefore believe that rather

a chemical reaction with molecules from the residual UHV gas removes the oxygen because

with the UHV system used here, best UHV conditions (∼ 10−10mbar) are not immediately

obtained when stopping the oxygen supply: after closing the oxygen valve, the residual

pressure of the UHV first immediately decreases onto ∼ 10−8mbar, decreases then within

a few minutes onto 2× 10−9mbar and decreases furthermore but very slowly within a few

hours. Although we cannot exclude a reaction between the adsorbed oxygen with residual

CO65, we rather believe that it is due to a reaction with hydrogen: with hydrogen being

the largest contributor to the residual gas of the UHV, the surface is dosed with ∼ 3L of

hydrogen during the image acquisition of Figure 1f. Therefore it could be that hydrogen

reacts off a part of the oxygen on the PdNPs, presumably forming water at RT43,66–68.

Comparison with Oxygen Adsorption on G@PdNPs. In comparison to the as-

prepared PdNPs from above, similar oxygen adsorption phenomena can be observed on the

G@PdNPs (Figure 3). However, there are three main differences: (a) a much higher pressure

(∼ 100×) is needed to observe a similar saturated WF increase at the G@PdNPs, (b) the WF

increase seems to need more time at G@PdNPs, unlike the immediate increase on as-prepared

PdNPs and (c) the oxygen removal is much slower in the G@PdNP case.

Because oxygen is generally not adsorbing on graphene, the WF increase observed in
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our experiments (Figure 3) can be assigned to oxygen, which is intercalated between the

graphene wall and the facets of the NPs. This is quite similar with respect to oxygen

adsorption experiments conducted on single crystal surfaces like Ir(111)30,69, Pt(111)70 and

Ru(0001)52,71. The WF contrast at the NPs is relatively homogeneous, which shows that

oxygen is evenly distributed on the facets. An intercalation of oxygen is strongly supported

by our DFT calculations, which show that the WF increases when oxygen is intercalated

between graphene and the NP’s facets (Table 1). As in the case of the as-prepared PdNPs,

the WF increases with increasing oxygen density (Table 1), and for a coverage between

1/4 and 1/3ML a WF shift between rougly +0.5 and +0.7 eV is found on Pd(111) and

Pd6C(111), which is in quantitative agreement with our experimental observations (+0.5 eV).

Although we could image a graphene moiré pattern (Figure 2d) we could not obtain the

atomic resolution, which normally can be used to estimate the density of the oxygen atoms30.

However, we can assume similar oxygen coverages as in the case of the as-prepared PdNPs

from above due to the following reasons: (a) increasing the coverage requires higher pressures

which would be quite limited here due to the presence of the nanocontainer formed by

graphene and the NP’s facets, (b) on, e.g., Rh(111) the coverage of intercalated oxygen

resembles much the one of oxygen on the pristine surface51.

Because perfect graphene is impermeable for all gases72 and does not adsorb42 or dis-

sociate73 oxygen at RT, the oxygen needs to pass defects of the graphene to access the Pd

facets. Indeed, defects in the graphene could be recently observed on G@PdNPs by STM5,6

and can be also expected to be present at the edges formed by the NP’s facets. Molecular

oxygen certainly dissociates with the help of those active Pd atoms that are not covered by

graphene, i.e., below the graphene defects (Pda atoms) such that the oxygen atoms can then

adsorb and diffuse on the facets and below the graphene sheet51,74. The dissociation and

adsorption process of oxygen is such that the graphene remains intact, which is because we

still observe the moiré pattern in the presence of oxygen by STM (Figure 2c and d).

The oxygen intercalation via defects in the graphene explains the observation that a high

20



oxygen partial pressure is needed to adsorb oxygen inside the nanocontainer formed by the

graphene and the NP’s facets: because only the small amount of Pda atoms contributes to

the oxygen adsorption, the number of impinging oxygen molecules (pressure) needs to be

increased at the Pda atoms such that the same oxygen adsorption can be observed within the

same time, during which observations were done on the as-prepared PdNPs. Probably, the

process of oxygen dissociation, adsorption and diffusion into the nanocontainer is kinetically

limited, which explains why the overall adsorption needs a longer time compared to the case

where adsorption takes place instantaneously on the facets of as-prepared PdNPs. Note that

a quite similar phenomena is observed on crystalline metal surfaces where, e.g., on Ir(111)

the oxygen dosage needs to be more than a magnitude higher (up to 105 L30) than what is

necessary to reach saturation coverage on pristine Ir(111)69.

If it is assumed that the adsorption is proportional to the number of the Pda atoms, the

relative pressure increase of two orders of magnitude can then be calculated from the density

of the Pda atoms below the defects and the overall density of palladium atoms forming the

entire top (111) facet (see Figure S5 and S6 in the Supporting Information). If it is assumed

for simplicity, that defects in the graphene can be found in particular at the edges of the

NPs, a factor of 100 is indeed obtained for the case, that each second palladium atom at the

edge takes place in the dissociation process (see Supporting Information).

The WF decrease in Figure 3d and e and in Figure 4a, which appears after an oxygen

adsorption experiment is stopped, can be assigned again to a loss of atomic oxygen in the

nanocontainer. As for the as-prepared NP, we believe that the very slow WF reduction is

due to a reaction with hydrogen from the residual gas of the UHV. Because hydrogen as well

as the final product molecule (e.g., water) need to pass the graphene defects, the process of

oxygen removal is mass-transfer limited and slow. Indeed, the WF reduction is much slower

(Figure 4a) compared to the one observed at the as-prepared PdNPs (Figure 4b). In other

words, once oxygen is adsorbed inside the nanocontainer, it is more or less well passivated

from a gaseous environment.
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The oxygen removal can be much accelerated, when annealing the G@PdNPs at very high

temperatures in UHV: as shown before32, adsorbed oxygen on PdNPs starts to recombine

to molecular oxygen at temperatures higher than ∼ 600°C desorbing from the NPs. This

seems to be the same here because the initially low WF of the G@PdNPs is recovered after

an anneal at 670 °C (Figure 3f) - a clear signature that oxygen has left the nanocontainer.

CONCLUSIONS

Thanks to the high lateral resolution at the nanometer scale and the high resolution in

work function (WF) of Kelvin probe force microscopy (KPFM), adsorption and desorption

phenomena of atomic and molecular species can be observed on single nanoparticles (NP)

by measuring changes of the NP’s WF. We exemplify this with oxygen adsorption KPFM

experiments conducted at room-temperature and under UHV conditions, at as-prepared pal-

ladium NPs (PdNPs) and graphene encapsulated palladium NPs (G@PdNPs) supported on

highly oriented pyrolytic graphite (HOPG). Our results deliver unambiguously the direct

proof for the adsorption of oxygen under the graphene cover of G@PdNPs.

When a few Langmuir (L) of molecular oxygen are dosed on PdNPs, oxygen adsorbs

dissociatively and immediately increases the NP’s WF by up to +0.6 eV, which is in agree-

ment with our DFT calculations. A similar WF increase is observed at G@PdNPs, which

clearly shows that oxygen is intercalated in the nanocontainer formed by graphene and the

NP’s facets. However, the oxygen adsorption and desorption characteristics are quite dif-

ferent comparing PdNPs with G@PdNPs: (a) a very high oxygen partial pressure is needed

(∼ 10−5 mbar) for G@PdNPs to observe the intercalation of oxygen in the nanocontainer. In

comparison, a two orders of magnitude smaller pressure is needed for PdNPs (∼ 10−7mbar).

(b) The oxygen adsorption on G@PdNPs needs more time in comparison to the immediate

oxygen adsorption on PdNPs. (c) On G@PdNPs, oxygen is more protected from reactions

with the residual gas of the UHV in comparison to PdNPs. We conclude that there is a
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limited facility for molecules to enter and leave the nanocontainer, which is simply due to

the fact that the molecules need to pass defects of the graphene.

With respect to the oxygen intercalation, atomic resolution STM or nc-AFM can be used

in future to observe the intercalated oxygen underneath graphene and to quantify also the

defects in the graphene. STM71 or AFM spectroscopy75 could further check weather or not

the graphene is decoupled and exhibits same electronic properties like free-standing graphene.

The general and most important motivation of our work is to accomplish adsorption and

desorption KPFM experiments also with other reactant molecules (e.g., hydrogen, CO and

water) and other NP materials, which opens large perspectives to study phenomena related

to catalysis and surface chemistry at the single NP level.
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Experimental methods

Surface Preparation of HOPG. Fresh substrate surfaces are prepared by cleaving highly oriented py-

rolytic graphite (HOPG) samples in air. Afterwards, the samples are quickly transfered into the ultra-high

vacuum (UHV) chamber within a few minutes and the pumping as well as the bakeout of the UHV chamber

(∼ 100 °C) are immediately started. Note that most of the surface contaminants, which adsorb from the

air in the time between the cleavage and the transfer into the UHV chamber, are removed probably by

the bakeout alone1. However, to guarantee utmost cleanness of the HOPG sample, the HOPG samples are

cleaned by heating in an UHV oven2 kept at ≥ 650 °C during several hours. At the end of the annealing,

with the sample still at ∼ 650 °C, the base pressure of the UHV is lower than 5× 10−10 mbar. This cleaning

procedure is done a few times. As stated before3,4, such UHV annealed air-cleaved HOPG samples are as

clean as UHV cleaved HOPG samples.

Growth of PdNPs. Palladium nanoparticles (PdNPs) are grown by evaporating palladium (Pd wire
∗To whom correspondence should be addressed
†Chalmers University of Technology, Department of Physics and Competence Centre for Catalysis, SE-41296 Göteborg,

Sweden
‡Aix-Marseille Université, CNRS, CINaM UMR 7325, 13288 Marseille, France
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with 99.95% purity, Goodfellow, Cambridgeshire, United Kingdom) at ∼ 1550 °C (measured with a 10%Rh-

Pt/Pt thermocouple) from a homemade Knudsen cell onto a HOPG sample, which is located in the UHV

oven and kept between 470 and 500 °C. Due to the Knudsen cell principle, only neutral palladium atoms are

evaporated. With the calibrated deposition rate of 0.228 nm/min (∼ 1 mono-layer (ML)/min), a coverage

with a nominal thickness of 1ML is obtained for a deposition time of 1 minute. During the growth, the

base pressure never exceeds a total pressure of 3× 10−9 mbar. Immediately after the preparation of the NPs,

the sample is extracted from the oven. At high temperatures (e.g., at 500 °C), the temperature decreases

by a few hundreds of degrees in the first 2 seconds and within a minute onto an estimated temperature of

< 100 °C.

Growth of Graphene on PdNPs. With the UHV oven kept at a temperature between 670 and

740 °C, the PdNP/HOPG sample is placed inside the hot oven. After 7 minutes, the sample has reached the

same temperature as the UHV oven. The UHV chamber is then back-filled with ethylene (99.8%, Ethylene

2.8, Linde MINICAN, Munich, Germany) via a leakage valve while constantly monitoring the pressure. An

ethylene pressure between 1.0 and 2× 10−6 mbar is used whereas the dosage is determined by the exposure

time. The ion getter pump is switched off and only a turbo molecular pump is keeping the desired ethylene

partial pressure. Typical exposure times are between 10 and 20 minutes. After the ethylene exposure, the

sample is immediately extracted from the oven to avoid further reactions on the NPs at high temperatures.

In the first 2 seconds the temperature decreases from, e.g., 670 °C by some hundreds of degrees and within

a minute onto an estimated temperature of < 200 °C.

Oxygen Dosage Experiments. For such experiments, only the UHV chamber with the AFM is

used whereas the other parts of the UHV system are separated by a closed valve and remain at their best

UHV pressure (∼10−10 mbar). The AFM/STM UHV chamber is back-filled with molecular oxygen (Oxygen

4.5, Linde MINICAN, Munich, Germany) via a leakage valve at a partial pressure between 3.0× 10-7 and

4.0× 10-5mbar, whereas the dosage is determined by the exposure time. The ion getter pump is switched

off and only a turbo molecular pump keeps the oxygen partial pressure at a desired value.

SPM System. Scanning probe microscopy (SPM) experiments are performed in an UHV cham-

ber (1× 10−10 mbar base pressure)2 with a room temperature (RT) Omicron AFM/STM (ScientaOmi-

cron, Taunusstein, Germany). The AFM/STM is equipped with the SCALA electronics (ScientaOmicron,

Taunusstein, Germany), which is controlled by the SCALA 4.1 and IDL 5.1 software running under SUN

Solaris 2.5 on a SUN UNIX derivative. The graphical output of the SUN is sent to a Lubuntu5 GNU/Linux

computer to increase the speed of the SCALA graphics6.

After the coarse approach of the surface to the tip, the surface is imaged for a relatively long time
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(≥ 1/2 hour) without recording any image. After this time most of the drift of the scanner is reduced and

maximum stability is reached. Because of its relatively small influence with respect to an image frame of ∼

500× 500 nm2, the residual lateral drift is only occasionally corrected by manually moving the image frame

in the SCALA software.

All STM images are analyzed and prepared with the Gwyddion software7, whereas the color-maps from

Matplotlib8 under Python9 are used for the 3D color space of the images.

STM. The scanning tunneling microscopy (STM) images are acquired in the constant current mode.

The bias voltage is applied to the sample whereas the tip is at ground. STM experiments are conducted with

electrochemically etched tungsten tips. Tungsten wires with a thickness of 0.38mm are etched in a NaOH

solution (8.5 g NaOH in 50ml water, 6.5mA cutting current at +4.0V).

nc-AFM. Noncontact atomic force microscopy (nc-AFM) is accomplished in the frequency modulation

mode (self-excitation). Two conducting silicon cantilevers (PPP-QFMR, n+-Si, 0.01 to 0.02Ω cm, NanoWorld

AG, Neuchatel, Switzerland) with a resonance frequency of 71.4 (Figure 1 in the main article) and 78.7 kHz

(Figure 3 in the main article) are used, which amplitudes are kept constant during imaging. In the Omicron

SCALA software, we use an amplitude of 0.1V, which corresponds to a rough guidance value of 25± 10 nm.

The latter value is a mean value taken from 5 previously used tips of same type. To precisely measure the

frequency shift4f , a digital demodulator (EasyPLL, NanoSurf, Liestal, Switzerland) replaces the analogeous

demodulator from the SCALA electronics.

KPFM. Kelvin probe force microscopy (KPFM) is done in the frequency modulation mode10 where the

dc bias voltage (Ubias) and ac voltage (Uac, between 500 and 650mV) with a frequency of fac =630Hz are

applied at the sample (tip grounded). The electrostatic tip-surface interaction is minimized at each point

on the surface by the bias voltage, which yields the contact potential difference (CPD) between tip and

surface defined as CPD= Ubias,0 = (φsample − φtip)/e for the set-up used here. If at two different locations

on the surface (Position 1 and 2) the CPD is measured, the CPD difference 4CPD = CPD1 − CPD2 =

((φ1 − φtip)− (φ2 − φtip)) /e = (φ1 − φ2)/e = 4φ/e yields the work function difference 4φ1−2 = φ1 − φ2

between the two surface locations (WF contrast)4,11. KPFM is applied during the constant frequency nc-

AFM imaging mode so that a topography and WF image of the CPD are simultaneously obtained. A bright

and in particular orange/yellow contrast in WF images corresponds to a high WF whereas a violet and dark

contrast corresponds to a low WF. Note that for a better data reading, the CPD values for HOPG are shifted

onto zero such that the values of profiles are directly related to the WF difference between the PdNPs and

HOPG (Figure 1 and 3 in the main article).

Analysis of Moiré Patterns. For all moiré patterns it is assumed that they have a perfect hexagonal
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structure. Furthermore, it is assumed that the edges of the NP’s top (111) facet run along equivalent

<11̄0>Pd surface directions12 and that the epitaxy between graphene and the (111) facets is commensurate

as it is generally assumed for bulk Pd(111) surfaces13,14. More details about the analysis can be found in

the Supporting Information of Ref. [ 12] and [ 4].

DFT CALCULATIONS

The density functional theory (DFT) is used as implemented in the Dmol3 program15,16. The one-electron,

Kohn-Sham orbitals are expanded using a local numerical basis set. The basis functions are atom-centered

and stored on a radial grid15,16. A double numerical basis-set with polarization functions (dnp) is used for all

atoms and a real space cut-off of 5 Å is applied for all basis functions. A semi-core scalar relativistic pseudo-

potentials is used to describe the interactions between the valence electrons and the core for palladium17.

Thus, 18 electrons are treated in the valence for palladium and 6 for carbon. The Kohn-Sham equations

are solved self-consistently with an integration technique of weighted overlapping spheres located at each

atomic center. The direct Coulomb potential is obtained by projection of the charge density onto angular

dependent weighting functions also centered at each atom. The Poisson equation can in this way be solved by

one-dimensional integration. The calculations are performed either within the local density approximation

(LDA)18 or with the generalized gradient approximation (GGA) using the functional proposed by Perdew,

Burke, and Ernzerhof (PBE)19. LDA is used for evaluation of the work-fuction as this functional, thanks to

error cancellation, is known to provide good results for surface properties20,21.

The Pd(111) surface is modeled with 7 layers using four different surface cells;
√

3 ×
√

3 , 2
√

3 × 2
√

3,

p(2×2) and p(5×5). The slabs are separated by at least a 14 Å vacuum including a dipole layer22. Integration

over the Brillouin zone is approximated by finite sampling using a Monkhorst-Pack grid of (8,8,1), (6,6,1),

(6,6,1) and (3,3,1) for
√

3 ×
√

3, 2
√

3 × 2
√

3, p(2 × 2) and p(5 × 5), respecively. Geometry optimization is

performed using the BFGS method23–26 and the structures are regarded optimized when convergence criteria

of 0.003 eV/Å, 0.0003 eV, and 0.003 Å are meet for the largest gradient, total energy, and largest change in

coordinates, respectively.

The work function (φ) is the energy needed to remove an electron from the bulk of palladium to the

vacuum. It is calculated according to:

φ = Vvacuum − εF ,

where Vvacuum is the electrostatic potential in the vacuum region and εF is the Fermi energy.
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WF and Lattice Constant Values for Pd and HOPG

We only consider experimental WF values, which were obtained exclusively in UHV, either by STM field

emission using the Fowler-Nordheim analysis (STM_FE), target-current spectroscopy (TCS), two-photon

photoemission spectroscopy (2PPS), time-resolved photoemission spectroscopy (TPS), ultraviolet photoelec-

tron spectroscopy (UPS), angle resolved UPS (ARUPS) or metastable impact electron spectroscopy (MIES).

The lattice constant of palladium was experimentally measured by X-ray scattering techniques (X-Ray) or

by neutron scattering (NS). We compare values with the ones from theory, which were obtained by DFT,

either computed with the local density approximation (LDA), generalized gradient approximation (GGA) or

with other functionals.

HOPG. The WF values are listed in Table S1. A mean experimental literature value of φHOPG, lit,exp=

4.53 eV is found, which compares well with the theoretical value described in Ref. [ 27] (φHOPG, theo=4.51 eV).

In our recent work4, we calibrated our HOPG surface against the Ag(001) surface and found a value of

φHOPG, theo=4.3± 0.1eV, which agrees with the literature value from above. For the entire work, we use our

own calibrated value.

PdNPs. The WF of the Pd(111) surface can be used because all considered NPs made from palladium

have a (111) top facet and a size still large enough to assume Pd bulk electronic properties. Table S2 shows

that the experimental mean value of φPd(111), lit, exp=5.64 eV is in very good agreement with values from

DFT theory. We also use a mean value for the lattice constant of palladium (Table S3). The experimental

value (aPd,lit,exp=3.8898Å) agrees well with values from theory.
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Table S1: Experimental and DFT literature values for the work function φ (eV) of the HOPG surface. A
mean value is listed for the experimental values (φHOPG,lit,exp). Graphite here means natural graphite.

Surface φ Work Reference

Graphite 4.6 ARUPS 28

Graphite 4.7 TCS 29

HOPG 4.5± 0.1 2PPS 3

HOPG 4.4 UPS 30

HOPG 4.4 UPS 31

HOPG 4.65 UPS 32

HOPG 4.50± 0.05 TPS 33

HOPG 4.6 UPS 34

HOPG 4.5 STM_FE 35

HOPG 4.45 2PPS 36

Exp. mean value 4.53=φHOPG,lit,exp

HOPG 4.4 to 5.2 LDA 37

HOPG 4.51 LDA 27∗

Table S2: Experimental and DFT literature values for the work function φ (eV) of the Pd(111) surface. A
mean value is listed for the experimental values (φPd(111),lit,exp).

Surface φ Work Reference

Pd(111) 5.6± 0.2 UPS 38

Pd(111) 5.90± 0.1 UPS 39

Pd(111) 5.95± 0.1 UPS 40

Pd(111) 5.6 UPS 41

Pd(111) 5.55 MIES 42

Pd(111) 5.44± 0.03 2PPS 43

Pd(111) 5.50± 0.01 2PPS 44

Exp. mean value: 5.64=φPd(111),lit,exp

Pd(111) 5.53 LDA 45

Pd(111) 5.9 LDA 46

Pd(111) 5.75 LDA† 47

Pd(111) 5.42 GGA (PW) 48

Pd(111) 5.74 LDA 49

Pd(111) 5.86 LDA 50

Pd(111) 5.64, 5.22 LDA, GGA (PBE) 51

Pd(111) 5.67 LDA 52, 53

Pd(111) 5.59 LDA 14

Pd(111) 5.39 SCAN‡ 21

∗This work comments the theory work in Ref. 37
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Table S3: Experimental and DFT literature values for the lattice constant aPd of palladium (Å). A mean
value is listed for the experimental values (aPd,lit,exp).

Material a Work Reference

Pd 3.958 X-ray 54

Pd 3.878 X-ray 55

Pd 3.859± 0.003 X-ray 56

Pd 3.881 X-ray 57

Pd 3.879 X-ray 58

Pd 3.8824 X-ray 59

Pd 3.889± 0.001 X-ray 60

Pd 3.889 X-ray 61

Pd 3.893 X-ray 62

Pd 3.89 Neutron scattering 63

Pd 3.8894 Neutron scattering 64

Exp. mean value: 3.8898= aPd,lit,exp

Pd 3.96 GGA (PW91) 65

Pd
3.85 LDA

51
3.95 GGA

Pd 3.889 LDA 66

Pd 3.88 See note § 67

Pd 3.87 See note ¶ 68

Pd 3.90 See note ‖ 69

Pd 3.954 GGA 70

Pd 3.896 See note ∗∗ 21

Supporting experiments

The WF of the AFM Tip During O2 Exposure. Figure S1 shows the same KPFM images of the

as-prepared PdNPs, which can be seen in Figure 1 of the main article. Apart from the topography images

in the top row, which are identical, the WF images show raw values unlike in Figure 1 of the main article.

Note that the absolute contrast of a WF image (a specific colour) is directly related to the CPD between the

surface and tip: CPD= (φsample − φtip)/e.

Before the oxygen dosage starts (Figure S1a and b), the NPs are imaged in UHV (blue arrows). The WF

†With Ceperley-Alder exchange-correlation potential
‡Several different functionals. We only consider the SCAN value.
§Several different functionals (LDA, PBE, PBEsol, etc.). We only consider the four values in bold of table I.
¶Several different GGA functionals. We calculated the averaged value from the three values in bold in Table II.
‖Several different functionals (LDA, PBE, etc.). An average value is used from RPA and RPA+.

∗∗Several different functionals. We only consider the SCAN value.
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Figure S1: As-prepared PdNPs imaged by KPFM during an exposure of O2 at room temperature
(pO2=3× 10−7 mbar, exposure time 57min≡ 771L). The WF images (bottom row) show the raw data
from the images in Figure 1 of the main article whereas the topography images (top row) are the same as
in Figure 1. One KPFM experiment is represented by a pair of two vertically arranged images. The orange
arrows show the O2 exposure time whereas blue arrows correspond to the imaging in UHV (no O2). NP
growth: 2.0ML at 476 °C, KPFM parameters: 4f = -8.2Hz, v=0.5Hz, Uac=350mV and fac=650 Hz.

of the NPs and the HOPG surface do not change, as well as not the WF of the tip. However, from the start

of the oxygen dosage in Figure S1b (yellow arrow), the WF of the NPs seems to increase (from dark orange

to bright orrange) whereas the WF of HOPG seems to decrease (from white to dark violet). The temporal

development of the CPD above the HOPG surface can be also seen by the CPD vs time curve in Figure S2a.

Whereas the NPs do indeed change their WF (see below), the apparent WF decrease on the HOPG

surface is not due an adsorption of oxygen on HOPG because the terraces of the surface are inert towards any

adsorption of gas molecule at RT80. It is rather the WF of the tip, which changes during the oxygen dosage

experiment: the AFM tip is made from crystalline silicon, which is conducting due to the n+ implantation

that was done during the industrial production of the tip. The tip apex carries a some nanometer thick

native oxide since the tip is exposed to the ambient air before it is transferred into the UHV chamber.

During the nc-AFM imaging of a PdNP/HOPG sample surface, the tip is sometimes in contact with the

sample (tip-change), in particular with the NPs, due to instabilities in the tip-surface interaction, which

regularly appear from time to time and which cannot be avoided. Therefore, the tip apex may be composed

by either some silicon oxide or even silicon at places at the tip apex, where the oxide has been broken during

a tip-change. The tip apex might be also contaminated by some palladium, which originates from the NPs.

When such a tip is exposed to oxygen, the tip apex certainly oxidizes. When, e.g., silicon and/or palladium
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Figure S2: The temporal development of the CPD measured between the HOPG surface and the AFM
tip upon the O2 exposure shown in Figure S1, Figure S3 and Figure S4, displayed by the black curve (a), and
the blue and red curve (b), respectively. The CPD vs time values were extracted from the raw WF images
shown in the latter three Figures. More details can be found in the text.

get oxidized at RT they increase their WF (see Table S4), which is evident for Pd as shown in this work.

Because the CPD is proportional to -φtip (CPD= (φsample − φtip)/e), the CPD decreases what can be seen

in Figure S2a and b (blue curve). However, if the tip is already oxidized, there are no visible changes in the

CPD, as it will be discussed further below with Figure S4 and Figure S2b (red curve).

Because the WF of the HOPG terraces does not change and because of the tip’s WF decrease in oxygen,

a line leveling can be done as follows: with the ’Path Leveling Tool’ in the Gwyddion software7, only straight

lines on the HOPG terraces are selected in the entire WF image. The WF on the HOPG terraces is then

leveled, removing the WF decrease. The result is that all places on the HOPG terraces are on the same WF

(same colour) and that the absolute CPD values at the NPs are corrected, from the WF increase of the tip.

Overall, this procedure yields the correct WF difference between the NPs and the HOPG surface, as it can

be seen in Figure 1 of the main article. Note that for a better data reading, the CPD values for HOPG are

shifted onto zero such that the values of the profiles (Figure 1 of the main article) are directly related to the

WF difference between the PdNPs and HOPG.

The same leveling procedure is done for the WF data in Figure 3 of the main article. Figure S3 shows

the raw data of the WF images (middle row) where a similar increase of the tip’s WF upon oxygen exposure

can be seen (see blue curve in Figure S2b).

Figure S4 shows the same G@PdNPs during a second oxygen dosage experiment under similar conditions.

Because the tip has been already fully oxidized in the first dosage experiment (Figure S3), no dramatic WF

changes can be seen in the raw WF images in Figure S4 (middle row). The red CPD vs time curve in

Figure S2b shows only slight WF changes in the order of a few tens of mV.
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Table S4: Work function (φ) values in eV for silicon and palladium as well as for adsorbed oxygen. If
applicable, the WF difference between the clean material and adsorbed oxygen (4φ) is listed.

Material φ 4φ Notes Reference
Si, polycristalline 4.85 / Exp. 71
Si(100) 4.92 / Exp. 72

4.88 - 4.97 / DFT 73
Si(110) 4.89 / Exp. 72
Si(111) 4.77 / Exp. 72

4.64 - 4.96 / DFT 73
Si(111), p to n doping 4.7 to 4.9 / Exp., max. doping levels for n and p doped samples 74
O on Si(100) and Si(110) ∼5.2 +0.1 . . . +0.2 Exp., O2 dosage at RT until saturation 72
O on Si(111) ∼5.2 +0.3 . . . +0.4 Exp., O2 dosage at RT until saturation 72
O on Si(111) 7× 7 +0.9 (+0.2) Exp., after a few L (>50L) 75, 76
O on Si(100) +0.2. . .+1.0 Exp., thermal oxidation at high Ts (800 - 1000 °C) 77
Pd, polycristalline 5.1 / Exp. 71
Pd(111) 5.7 / Exp. See Table S2
Pd(100) 5.5 / Exp. 78, 21
Pd(110) 5.1 / Exp. 78, 21
O on Pd(111) ≥6.2 ≥+0.5 Exp., oxygen adsorbed on Pd(111) at RT This work
O on Pd(110) ∼5.5 ∼+0.4 Exp., oxygen adsorbed on Pd(111) at around RT 79

Figure S3: Graphene encapsulated PdNPs imaged by KPFM during an exposure of O2 at room temperature
(620L @ pO2=5.5× 10−7 mbar (a), 2.2× 104 L @ 1.5× 10−5 mbar (b) and 1.5× 105 L @ 4.3× 10−5 mbar (c),
total dosage: 1.7× 105 L). One KPFM experiment is represented by a pair of three vertically arranged images
with a representative WF profile underneath. The topography images (top row) are the same as in Figure 3
of the main article. The WF images in the middle show the raw data whereas the WF images at the bottom
are corrected from changes of the tip’s WF. The orange arrows show the O2 exposure whereas blue arrows
correspond to the imaging in UHV (no O2). NP growth: 1.5ML at 475 °C, Graphene growth: 847 L of
C2H4 (1× 10−6 mbar) at 670 °C, KPFM parameters: 4f = -9.5 (a,b), -10.55 (c), -12.65 (d), -13.61 (e,f) and
-15.3Hz (g), all: v=0.5Hz, Uac=500mV and fac=630Hz.
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Figure S4: Same sample as in Figure S3 with G@PdNPs imaged by KPFM during a second exposure of O2
at room temperature (1.4× 105 L @ pO2=4.6× 10−5 mbar, exposure time 66min). One KPFM experiment
is represented by a pair of three vertically arranged images. The images on the top represent the topography
(z) whereas the images in the second and third row represent the raw (second row) and leveled WF data
(third row). The orange arrows show the O2 exposure whereas blue arrows correspond to the imaging in
UHV (no O2). NP and graphene growth: see Figure S3, KPFM parameters: 4f = -10.2 (a-e) and -12.3Hz
(f), all: v=0.5Hz, Uac=500mV and fac=630Hz.

SUPPORTING THEORY

Model of Dissociation/Adsorption of Oxygen. In the main article it is shown that the dissociative

adsorption of oxygen on as-prepared PdNPs almost completely saturates within a few seconds at a partial

oxygen pressure of pO2,PdNPs=3× 10−7 mbar. In comparison, an almost two order of magnitude higher

partial pressure is needed for observing on the same time scale a similar oxygen adsorption on G@PdNPs

(pO2,G@PdNPs≈ 4× 10−5 mbar). The reason for this large difference is that graphene covers almost all pal-

ladium atoms where dissociation and adsorption of oxygen normally occurs on as-prepared NPs. It is clear

that oxygen can only dissociate at palladium atoms below the graphene defects so that atomic oxygen can

then diffuse inside the nanocontainer. Here we show, that the two order of magnitude higher pressure can

be explained if it is assumed that most of the graphene defects are, e.g., at the NP’s edges.

We consider the NP’s top (111) facet, which is formed by two types of palladium atoms: (a) atoms on

the facets and (b) atoms forming the edges of the facets. The ratio of the atom numbers of both atom types,

NFacet and NEdge, can then be assumed, in a first rough approximation, to be proportional to the ratio of

partial oxygen pressures observed at as-prepared PdNPs and G@PdNPs:
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Figure S5: The shape of the top (111) facet of a PdNP is a equilateral triangle (tetarhedron), which is
mostly truncated. (a) The truncation of the triangle with equilateral sub-triangles used for the calculation
of the surface area. (b-e) Frequently observed shapes of the top facet (blue, green, red and pink outline):
triangle (b), corner truncated triangle (c), hexagon with edges of comparable length (d) and assymetric
long-shaped hexagon (e).

r =
NFacet

NEdge
∼ pO2,PdNPs

pO2,G@PdNPs
≈ 100 (1)

The atom numbers can be calculated from the densities of atoms on the facet (%Facet, in atoms/cm2)

and at the edges (%Edge, in atoms/cm), and from the surface area of the facet (AFacet) and total length of

all edges (LEdge).

NFacet = AFacet %Facet (2)

NEdge = LEdge %Edge (3)

We consider real shapes of top (111) facets, which can be frequently observed at PdNPs. Due to their

3D shape of a top-truncated tetrahedron and their (111)Pd ‖(00.1)HOPG and [112]Pd ‖[11.0]HOPG epitaxial

orientation on HOPG, the facets exhibit shapes from triangles to hexagons via various truncated shapes,

with the NPs’ edges forming always angles of 60° and 120°. Some selected, frequently observed shapes are
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shown in Figure S5b-e (see thick outline in blue (b), green (c), red (d) and pink (e)).

The surface area and total edge length can be calculated by considering three parameters, e.g., the

height h, and the bottom b and top base length t (Figure S5a). From geometric considerations, which are

summarized in Figure S5a, the surface area and length can be obtained by:

AFacet =

√
3

4

(
a2 − (a− t)

2

2

− b2
)
, (4)

with a = b+
2h√

3
(5)

LEdge = t+ b+
4h√

3
(6)

The four model shapes from Figure S5b-e are used to calculate the ratio r, which the latter can be

obtained by inserting Eq. (4) and (6) into Eq. (2) and (3), respectively. In the following, we consider the

following conditions for the four shapes in Figure S5:

• b: a = t, b = 0 and h =
√
3
2 t

AFacet =

√
3

4
t2

LEdge = 3 t

• c: b = a1 =
(

2√
3
− 1
)
t and h = t

AFacet =

√
3

6

(
2
√

3− 1
)
t2

LEdge = 2
√

3 t

• d: b = 2
3 t and h = 5

2
√
3
t

AFacet =
37

36

√
3 t2

LEdge = 5 t

• e: b = h = t

AFacet =

(
1 +

√
3

6

)
t2
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LEdge = 2

(
1 +

2√
3

)
t

The parameters b and h are now a function of t, which the latter shall be a measure of the facet’s size.

With this, we obtain four equations in the form AFacet = AFacet(t
2) and four equations in the form LEdge =

LEdge(t). The related ratios r are then a linear function of t. Note that we have to normalize the lateral

size of the facets: the radius of a circle is calculated from the surface area AFacet,4 of the triangular facet

(Figure S5b) and is devided by the radius of a circle with surface area AFacet of a considered facet (Figure S5c-

e). The latter ratio is multiplied with the size t of the respective facet as follows:

tNorm = t×

(√
AFacet,4

π

/√
AFacet

π

)

For the densities, %Facet and %Edge, we assume that all palladium atoms on the facet and at the edges,

respectively, are active sites for the dissociation. With the next-neighbour Pd-Pd distance ePd = aPd/
√

2,

we have the following densities:

%Facet =
1

e2Pd sin (60°)
=

2

e2Pd
√

3

%Edge =
1

2
× 1

ePd

Note that we have to use a factor of 1
2 for the edge density because two facets form one edge, and each facet

has a 50% probablity to receive the oxygen adsorbates.

The four curves in the lower part of Figure S6 show the ratio r = NFacet/NEdge versus the normalized

lateral size of the facet, tNorm, for the four typical facets shown in Figure S5b-e. The ratio is a linear function

of the size (tNorm) for all facets, whereas only small differences can be seen. The triangular shape has the

smallest slope because there are relative more edge sites with respect to the number of edges of the other

shapes, which maximize the surface area with respect to their total edge length. A ratio of around 100 can

be found for lateral NP sizes between 70 and 80 nm.

The NP’s sizes, which can be seen in the images of Figure 3 (main article) or Figure S3, ranges between

10 and 50 nm. With this the calculated ratio r yields a value between 20 and 60, which is too small. It seems

that not all edge sites are active sites for the dissociation. If we now assume that only each second site at

the edges is an active site (4 curves in the upper part of Figure S6), we obtain a ratio of 100 for NP sizes of

around 35 nm, which falls into the range of NP sizes observed in our experiments.
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Figure S6: The ratio r = NFacet/NEdge versus the normalized lateral size t of the facets shown in Figure S5b-
e. The ensemble of curves in the lower part belongs to the case where all edge forming Pd atoms contribute
to the adsorption of oxygen. The ensemble in the upper part belongs to the case where each second Pd atom
contributes to the adsorption.

We clearly stress here that even half of the edge forming Pd atoms is already a quite high atom number:

we believe that the graphene should partially cover also the edges of the facets such that the actual number

of active Pd atoms is lower at the edge. On the other side, we observe some nanometer long linear graphene

defects on the top of the facets (see main article and Ref. [ 12]) where a large number of active Pd sites

can be possibly found. Nevertheless, the simple estimation here shall merely demonstrate that the ratio of

pressures pO2,PdNPs
pO2,G@PdNPs

≈ 100 can be explained in principle by the number of limited active Pd sites, which

are not covered by the graphene and which are needed to dissociate and adsorb oxygen. A more detailed

STM/nc-AFM study is needed where the number of defects at the edges and on the facets can be counted

with help of atomically resolved images.

Density Functional Theory Calculations. Figure S7 summarizes all atomic oxygen adsorption con-

figurations on Pd(111) and Pd6C(111), which are discussed in the main article. The gray rhombus shows

the 2
√

3× 2
√

3 unit cell used for the calculations. Figure S7a-d and Figure S7e-h show the four different

oxygen coverages (1/12, 2/12, 3/12 and 4/12 ML) on Pd(111) and
√

3×
√

3 graphene/Pd(111), respectively.

Figure S7i-l and Figure S7m-p show same coverages on the Pd6C(111) and
√

3×
√

3 graphene/Pd6C(111)

surface, respectively.

Figure S8 shows the well known 0.25ML 2× 2 oxygen coverage on Pd(111), which is frequently described

in literature. The WF of this surface is within 0.005 eV the same WF, which is found for the 0.25ML oxygen

coverage shown in Figure S7c.
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Figure S7: All details can be found in the text.
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Figure S8: All details can be found in the text.
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