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ABSTRACT

Nonnegative matrix factorization (NMF) is a popular method for
audio spectral unmixing. While NMF is traditionally applied to
off-the-shelf time-frequency representations based on the short-time
Fourier or Cosine transforms, the ability to learn transforms from
raw data attracts increasing attention. However, this adds an impor-
tant computational overhead. When assumed orthogonal (like the
Fourier or Cosine transforms), learning the transform yields a non-
convex optimization problem on the orthogonal matrix manifold. In
this paper, we derive a quasi-Newton method on the manifold using
sparse approximations of the Hessian. Experiments on synthetic and
real audio data show that the proposed algorithm outperforms state-
of-the-art first-order and coordinate-descent methods by orders of
magnitude in terms of speed. A Python package for fast TL-NMF is
released online at https://github.com/pierreablin/tlnmf.

Index Terms— Nonnegative matrix factorization (NMF), trans-
form learning, source separation, non-convex optimization, mani-
folds, audio signal processing.

1. INTRODUCTION

Nonnegative matrix factorization (NMF) consists in decomposing a
nonnegative data matrix V ∈ RM×N+ into [1]:

V ≈WH (1)

where W ∈ RM×K+ and H ∈ RK×N+ are two nonnegative matri-
ces referred to as dictionary and activation matrix, respectively. The
rank K of the factorization is generally chosen to be smaller than
min(M,N) so that the approximation is low-rank. In audio signal
processing, V is typically a magnitude |X| or power |X|◦2 spectro-
gram, where X is the short-time Fourier or Cosine transform of some
signal y(t) (the notation ◦ denotes element-wise operations through-
out the paper). The short-time frequency transform X is computed
by applying an orthogonal frequency transform Φ to the frames ma-
trix Y ∈ RM×N which contains windowed segments of the original
temporal signal y(t) in its columns. M is the length of the window
and N is the resulting number of time frames. As such, we have
X = ΦY. Factorizing V as in (1) can lead to a meaningful decom-
position where the dictionary W captures spectral patterns and the
activation matrix H contains data decomposition coefficients. This
decomposition can then be used to solve a variety of signal process-
ing problems such as source separation [2, 3, 4] or music transcrip-
tion [5, 6]. In the latter works, V is computed with a given off-
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the-shelf short-time frequency transform. This sets a limit to the ac-
curacy of the factorization. To adress this issue, transform-learning
NMF (TL-NMF) was introduced in [7, 8]. It computes an optimal
transform from the input signal: the transform Φ is learned together
with the latent factors W and H. TL-NMF has been employed suc-
cessfully for source separation examples: it leads to better or com-
parable performance as compared with traditional fixed-transform
NMF [7, 8, 9].

The contribution of this article is to propose a faster solver for
TL-NMF. In [7], an orthogonal transform is learned using a pro-
jected gradient descent onto the orthogonal matrix manifold. In [8],
a faster Jacobi approach (in which Φ is searched as a product of
Givens rotations) is proposed. In a different framework, [9] opti-
mizes a nonsingular transform (not constrained to be orthogonal)
with majorization-minimization (MM). In all cases, the cost of TL-
NMF remains prohibitively large compared to standard NMF. The
estimation of the transform is the computational bottleneck of the
algorithms, and takes orders of magnitude more time than standard
NMF. The present work aims at reducing the gap in terms of execu-
tion time between TL-NMF and traditional NMF in the orthogonal
transform setting (which gently relaxes Fourier or Cosine transforms
while still imposing orthogonality). To that purpose, we propose a
quasi-Newton method on the orthogonal manifold.

The article is organized as follows. Section 2 introduces the op-
timization problem behind TL-NMF and presents the standard MM
updates used for W and H. Section 3 starts with a brief introduc-
tion to optimization on the orthogonal manifold, introduces previ-
ous work and presents the new quasi-Newton algorithm. Finally,
Section 4 describes comparative experiments with synthetic and real
data. Exploiting the reduced computational load, we highlight a pre-
viously unnoticed energy concentration phenomenon of the learned
transform, and study the structure of the local minima of the objec-
tive function.

Notation. Scalars are written in lower-case (e.g., v ∈ R), vectors
in bold lower-case (e.g., v ∈ RM ) and matrices in bold upper-case
(e.g., V ∈ RM×N ), while tensors are in calligraphic upper-case
(e.g., H ∈ RM×M×M×M ). Entry (m,n) of a matrix V is denoted
as vmn or [V]mn while entry (i, j, k, l) of a tensor H is denoted
as Hijkl. The identity matrix of size M is denoted as IM . The
element-wise operations between two matrices A and B are writ-
ten A ◦B and A

B
for the multiplication and division while A◦p and

|A| denote the element-wise exponentiation and modulus, respec-
tively. The l1 norm of a matrix ||H||1 is the sum of the coefficients
of |H|. The orthogonal matrix set OM is the set of M ×M ma-
trices such that MM> = IM . The Frobenius scalar product is de-
noted as 〈A|B〉 =

∑
i,j aijbij . Given a fourth-order tensor H of

size M ×M ×M ×M , the weighted Frobenius inner product is
〈A|H|B〉 =

∑
i,j,k,lHijklaijbkl. The tensor H can be seen as



Algorithm 1: Alternate minimization for TL-NMF
Input : Frames matrix Y, dictionary size K, minimization

algorithm for transform learning A, number of
iterations of the TL minimization L, total number of
iterations Nit

Initialize Φ,W,H.
for n = 1, · · · , Nit do

NMF
Compute the current spectrogram V = |ΦY|◦2
Decrease Cλ w.r.t. (W,H) (step ?)
TL
Compute V̂ = WH
Update Φ← A(V̂,Y,Φ, L)

end
Output: Φ,W,H

a (M ×M) × (M ×M) matrix acting on squares matrices seen
as (M × M) vectors. The Itakura-Saito divergence is given by
dIS(x, y) = x

y
− log(x

y
) − 1. Finally, δij is the Kronecker delta

function of (i, j) equal to 1 if i = j and 0 otherwise.

2. NMF WITH TRANSFORM LEARNING

2.1. Objective function

TL-NMF consists in solving a NMF problem while learning a data-
adapted transform [7]. This is done by minimizing some measure of
fit between the transformed data |ΦY|◦2 and the factorized expres-
sion WH where we here assume that Φ is a real-valued orthogonal
matrix (of size M ×M ). In addition, a penalty is added to promote
sparsity of the activation coefficients. The TL-NMF problem thus
writes:

min
Φ,W,H

Cλ(Φ,W,H) = DIS(|ΦY|◦2
∣∣WH) + λ

M

K
||H||1

s.t. W ≥ 0,H ≥ 0, ∀k, ||wk||1 = 1,ΦΦ> = IM , (2)

where wk is the k-th column of W andDIS(·|·) is the Itakura-Saito
(IS) divergence defined as DIS(A|B) =

∑
m,n dIS(amn|bmn) =∑

m,n
amn
bmn
− log amn

bmn
−1. Note that any other measure of fit could

be used with no loss of generality. However, the IS divergence is
particularly relevant for decomposing power spectrograms [10]. The
M/K factor makes the measure of fit and the penalty term of com-
parable orders of magnitude.

The problem (2) is solved using alternate minimization, summa-
rized in Algorithm 1. It alternates between two steps. In the NMF
step, the current “spectrogram” V = |ΦY|◦2 is fixed and the algo-
rithm decreases Cλ with respect to (w.r.t.) W and H. This is done
using classical NMF MM update rules, described in the next section.
In the transform-learning part, the factorization V̂ = WH is fixed,
and the algorithm decreases Cλ w.r.t. Φ, using an optimization algo-
rithm denoted as A. This article proposes a fast algorithm A for the
minimization of Cλ w.r.t. Φ.

2.2. Majorization-minimization updates of W and H

We update W and H (step ? in Algorithm 1) with the standard mul-
tiplicative updates derived from a majorization-minimization proce-
dure [11]. The sum-to-one constraint on the columns of W (which is
necessary to avoid degenerate solutions) can be rigorously enforced
using a change of variable, like in [12, 13]. The updates read:

H← H ◦

[
WT

(
(WH)◦−2 ◦ |ΦY|◦2

)
WT (WH)◦−1 + λM

K
1K×N

]◦ 1
2

,

W←W ◦

[ (
(WH)◦−2 ◦ |ΦY|◦2

)
HT

(WH)◦−1HT + λM
K

1M×NHT

]◦ 1
2

.

They should be followed by a joint normalization of the columns of
W and rows of H [12, 13].

3. QUASI-NEWTON UPDATE OF THE TRANSFORM Φ

3.1. Optimization on the orthogonal manifold

This section focuses on the minimization of Cλ with respect to
Φ. In the following, we define V̂ = WH, and let L(Φ) =

DIS(|ΦY|◦2|V̂). We may write:

L(Φ) =

M∑
m=1

N∑
n=1

fv̂mn([ΦY]mn), (3)

where we define fv(x) = dIS(x2, v) = x2

v
− 2 log(x

v
) − 1. The

orthogonality constraint imposed to Φ implies that (3) should be
minimized on the orthogonal matrix manifold OM . This manifold
appears in many optimization problems and its geometry is well-
studied [14]. To derive an iterative algorithm that minimizes (3), we
propose to parametrize the neighborhood of an iterate Φt via the
matrix exponential (following, e.g., [15]). We set:

Φt+1 = exp(E)Φt, (4)

where E is an anti-symmetric matrix. If Φt is orthogonal, this up-
date enforces that Φt+1 remains orthogonal. It thus provides a nat-
ural framework for iterative optimization over the orthogonal mani-
fold.

3.2. Previous methods

A projected gradient method is presented in [7]. Iterates are of the
form:

Φ← Π((IM − ηG)Φ), (5)

where G is the natural gradient [16] of L, η is a step-size, and Π

is the projection to the manifold, given by Π(C) = (CC>)−
1
2 C.

The main drawback is that, as a first order method, it is hard to have
a proper step size policy, and the convergence is at most linear [17].

A variant was proposed in [8] where the transform was updated
using Givens rotations as:

Φ← Rpq(θ)Φ (6)

where Rpq is a unidirectional rotation matrix with axis (p, q) and an-
gle θ. This update rule results in an acceleration because the single-
axis rotations are cheap to compute. However, finding the best angle
θ given an axis (p, q) was shown to involve a highly non-convex
problem with the presence of many local minima. As such θ is se-
lected by grid search which is not entirely satisfactory.

3.3. Derivatives of the objective function

In this section, the derivatives of L with respect to the parametriza-
tion (4) are computed. The gradient is an M ×M matrix denoted as
G, and the Hessian is aM×M×M×M tensor denoted asH. They
are obtained from the following second-order Taylor expansion:

L(exp(E)Φ) = L(Φ) + 〈G|E〉+
1

2
〈E|H|E〉+O(||E||3). (7)



Using X = ΦY, the gradient is given by

Gij =

N∑
n=1

f ′v̂in(xin)xjn = 2

N∑
n=1

(
xin
v̂in
− 1

xin
)xjn (8)

and the Hessian is given by

Hijkl = δik

N∑
n=1

f ′′v̂in(xin)xjnxln + δjkGil. (9)

Newton’s method. Newton method on the manifold would take
E = −ΠA(H−1G), where ΠA is the projection onto the anti-
symmetric matrices:

ΠA(C) =
C−C>

2
. (10)

Note that this projection is much cheaper to compute than Π. New-
ton’s method provides fast convergence, but is not practical for sev-
eral reasons. First, it requires the computation of the Hessian. The
complexity of this operation is O(M3 × N). Besides, the cost of
computing a gradient is O(M2 ×N). Thus, a gradient method can
roughly performM iterations when Newton’s method performs one.
Second, because the problem is non-convex, the Hessian should be
regularized to enforce its positive-definiteness, thereby guaranteeing
that−H−1G is a descent direction. A standard regularization proce-
dure consists in adding µI to the Hessian where µ > max(0,−λmin)
and where λmin is the smallest eigenvalue of H. The Hessian is
sparse because of the δik and δjk factors, but its sparsity structure
does not help in computing the key quantity λmin. As such one would
have to compute the smallest eigenvalue of aM2×M2 matrix which
is prohibitively expensive. Finally, solving theM2×M2 linear sys-
tem HE = −G using, e.g., Gaussian elimination has complexity
O(M6), which is orders of magnitude higher than the computation
of the gradient.

3.4. A fast algorithm based on Hessian approximation

To derive a practical quasi-Newton algorithm, one can observe that
the Hessian of L has two terms. The second term, δjkGil, cancels
when the algorithm is close to convergence, so we may ignore it. As
an approximation of the first term, we impose that it cancels when
j 6= l, leading to the following Hessian approximation:

H̃ijkl = δikδjl

N∑
n=1

f ′′v̂in(xin)x2jn (11)

= 2δikδjl

N∑
n=1

(
1

v̂in
+

1

x2in
)x2jn. (12)

Our approximation provides an even sparser version of the true Hes-
sian. Then, then proposed update for the transform reads:

Φ← exp(−ηΠA(H̃−1G))Φ (13)

where η is a step size. The step size is chosen to verify the Wolfe
conditions [18] and is computed using the classical interpolation
algorithm thoroughly described in [17, pp. 59-60]. Informally,
Wolfe conditions guarantee that the objective function is sufficiently
decreased by the step size, and that the projected gradient in the
search direction is also decreased. These conditions are critical to
obtain convergence of quasi-Newton methods, and in practice help
in achieving fast convergence.

Algorithm 2: Algorithm A: Fast transform learning

Input : Current factorization V̂, frames matrix Y, current
transform Φ, number of iterations L.

for l=1,. . . ,L do
Compute G and H̃ using Eqs. (8), (12)
Compute the search direction E = −ΠA(H̃

◦−1 ◦G)
Compute a step size η > 0 satisfying the Wolfe

conditions.
Update Φ← exp(ηE)Φ

end
Output: New transform Φ

Denote by H̃ the matrix with coefficients h̃ij = 2
∑N
n=1( 1

v̂in
+

1
x2in

)x2jn, so that H̃ijkl = δikδjlh̃ij . Our quasi-Newton’s method
solves all the aforementioned problems of Newton’s method. The
approximated Hessian is

• cheap: computing H̃ has the same complexity as computing
a gradient, i.e., O(M2 ×N).

• positive definite: the approximation boils down to a diago-
nal operator, i.e., H̃E = H̃ ◦ E. Hence, its eigenvalues are
the coefficients h̃ij , which are all nonnegative. As such, our
method does not require Hessian regularization.

• easy to invert: because it boils down to a diagonal operator,
we have H̃−1G = H̃

◦−1 ◦G. Inversion is O(M2), which
is negligible compared to the cost of computing the gradient.

The resulting optimization procedure is described in Algorithm 2.

3.5. Relation to independent component analysis (ICA)

This objective function (3) is reminiscent of maximum-likelihood
ICA where the maximum-likelihood objective is given by [19]:

L(Φ) = −N log |det(Φ)|+
M∑
m=1

N∑
n=1

f([ΦY]mn), (14)

where f is a pre-specified function. Under the orthogonal constraint,
log |det(Φ)| becomes constant. As such, the ICA objective function
shares the same dependency in Φ with TL-NMF and the algorithm
proposed in this paper is inspired by the ICA acceleration techniques
proposed in [15].

4. EXPERIMENTS

The following experiments are run on a single core of a laptop
equipped with an Intel Core i7-6600U @ 2.6 GHz processor and 16
GB of RAM. The Python code is available online.1

4.1. Synthetic data

We first focus on the sole optimization of L, and not on the full TL-
NMF procedure. For this experiment, we generate random normal
matrices Y of size M ×N , for N = 1000 and M ∈ [10, 100, 500],
and a random transform Φ∗ ∈ OM . We set V̂ = |Φ∗Y|◦2, so
that the minimum of L(Φ) is 0. Algorithms start from an orthog-
onal initialization Φ0 in the vicinity of Φ∗. More precisely, we set

1https://github.com/pierreablin/tlnmf
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Fig. 1: Convergence curves with synthetic data.
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Fig. 2: Convergence curves with real data. Left: minimization of
L(Φ) only. Right: full TL-NMF optimization.

Φ0 = exp(E)Φ∗ where E = 10−3ΠA(N (0, IM )). Fig. 1 shows
the convergence curve of the proposed method, projected gradient
[7] and Jacobi search [8]. The proposed quasi-Newton approach
leads to a drastic improvement in speed of convergence.

4.2. Real data

Experimental setup. We consider a 108 seconds-long excerpt from
My Heart (Will Always Lead Me Back To You) by Louis Armstrong
and His Hot Five. The sampling rate is fs = 11025 Hz. Using a 40
ms-long analysis windows (M = 440) with 50% overlap between
two frames, we obtain N = 5407. The rank of the decomposition is
fixed to K = 10, which is known empirically to provide a satisfac-
tory decomposition with traditional NMF [10].

Comparison of the algorithms performance. In a first experiment,
we first run traditional IS-NMF on the DCT spectrogram of the input
signal and store V̂. Then the three transform learning algorithms
are run with fixed V̂ and from a random starting point for Φ. This
provides a realistic setting to compare their performance in optimiz-
ing L(Φ). Full TL-NMF (with free W and H) are computed in
a second experiment, using the same random starting points. The
three different transform learning algorithms are run with L = 5.
Results for the two experiments are shown in Fig. 2 and illustrate
the superiority of the proposed quasi-Newton algorithm.

We now discuss some features of the transform learned with
(full) TL-NMF using the quasi-Newton algorithm. We will refer to
the rows φ1, · · · ,φM of Φ as atoms (real-valued vectors of size
M ). The learned atoms are not shown here due to space limitation
but are similar to those obtained in [7, 8].

Energy concentration. The contributed energy of a single atom φi
is defined as ei =

∑N
n=1[φiY]2n. Fig. 3a shows the cumulative dis-

tribution of the energies for three different transforms: Φ estimated
by TL-NMF, the DCT, and a random orthogonal matrix. The energy
is evenly spread across the atoms of the random transform, while
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Fig. 3: (a): Cumulative distribution of the atoms contributing ener-
gies for three transforms Φ. (b): Similarity matrix between the 50
most-contributing atoms learnt from two different random initializa-
tions.

a few atom contain most of the energy for the DCT: this an energy
concentration phenomenon. The energy concentration phenomenon
is accentuated by transform learning. This behavior was observed
with other music datasets as well.

Reliability of the learned transform. The problem solved by TL-
NMF is non-convex, hence different initializations can lead to differ-
ent local minima. We investigate the structure of the local minima
returned by the proposed quasi-Newton algorithm using a technique
similar to ICASSO in ICA [20]. It appears that a subset of atoms are
reliably returned by the algorithm, regardless of initialization. To ob-
serve this behavior, we consider two transforms obtained from two
random initializations. We select the 50 most-contributing atoms
based of the values of ei, yielding two matrices Φ1 and Φ2 of size
50× 440. We compute the correlation matrix T = Φ1Φ2> of size
50× 50 and find a permutation matrix P such that PT is as block-
diagonal as possible. The absolute value of the resulting matrix is
displayed in Fig. 3b. It is well structured and shows in particular that
the first 6 atoms (top left) are the same. Furthermore, some pairwise
couplings are also uncovered. The diagonal blocks in Fig. 3b corre-
spond to sets of atoms such that Span(φ1

i ,φ
1
j ) = Span(φ2

i′ ,φ
2
j′).

5. CONCLUSION

We introduced a quasi-Newton method on the orthogonal manifold
to solve the TL-NMF problem. It relies on a sparse approximation of
the Hessian. The proposed method outperforms the state-of-the-art
methods by orders of magnitude. On the laptop used for the experi-
ments, the whole estimation took about 10 minutes for a∼2-minutes
signal, while NMF without transform learning takes roughly 2 min-
utes. This work is thus a step towards making TL-NMF a practi-
cal tool for music signal processing. The shortened time of estima-
tion also helps investigate properties of the learned transform with-
out prohibitive computational burden. Results on the concentration
of energy obtained by TL-NMF suggest that an algorithm that only
learns a few atoms instead of M could remain informative, while
drastically reducing the computational cost of TL-NMF, since the
number of parameters would plummet. We intend to study this mat-
ter in a future work.
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