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ABSTRACT

The self-similarity paradigm enables the analysis of scale-free tem-
poral dynamics and has been widely used in a large set of real-world
applications. However, in a multivariate setting, delays amongst
components significantly impair the estimation of scale-free parame-
ters. The first framework for the modeling, detection and estimation
of delay parameters and for the joint estimation of scale-free param-
eters is proposed here. It is assumed that a single realization of a
multivariate, self-similar time series is available. Use is made of
C-valued wavelets and, based on the imaginary part of the wavelet
coherence, an original bootstrap-based delay estimation procedure
based is constructed. Moreover, a consistent wavelet eigenanalysis-
based semiparametric estimation for scale-free parameters that ac-
counts for delay is defined. Monte Carlo experiments conducted over
various instances of the model show that the proposed methodology
enables the detection of delays with high probability and provides
very satisfactory estimates of the delay and scale-free parameters.

Index Terms— multivariate self-similarity, delay, complex
wavelet coherence, bootstrap.

1. INTRODUCTION

Context: Multivariate self-similarity. Self-similarity [1] pro-
vides a framework for describing and modeling scale-free temporal
dynamics, and it has been used with great success in a diverse range
of real world applications (see, e.g., [2–4] and references therein).
Fractional Brownian motion (fBm), the quintessential scale-free
model, is the only Gaussian, stationary-increment stochastic pro-
cess [5]. It underpins a robust and versatile data modeling paradigm
where the dynamics are mainly driven by a single self-similarity pa-
rameter 0 < H < 1. Knowledge of H allows carrying out various
classical signal processing tasks such as characterization, diagnosis,
classification, detection. . . Accordingly, the central practical task is
to estimate H . Though several estimation procedures are available,
it has now been well documented that wavelet analysis provides a
theoretically well-grounded, robust and accurate methodology for
the estimation of the parameter H [2, 6].

Nevertheless, the success of self-similarity modeling has mostly
remained constrained to the univariate context. In the modern era
of data deluge, data are often recorded as several joint time se-
ries. This generally renders univariate-like methods inappropriate
and calls for the construction of modeling protocols that are inher-
ently multivariate. Operator fractional Brownian motion (ofBm)
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was recently proposed as a model for multivariate self-similarity
[7–10]. In essence, ofBm consists of a mixture of correlated fBm
processes, each with possibly distinct self-similarity exponents Hm,
m = 1, . . . ,M . In [4, 11], a wavelet eigenvalue regression method-
ology is constructed and studied for the joint estimation of H =
(H1, . . . , HM ). OfBm has been successfully applied in many fields
such as in Internet traffic modeling [4] and dendrochronology [12].

Related work: Time irreversibility and delay. The modeling
and analysis of multivariate self-similarity has remained constrained
by the assumption of time reversibility. A stochastic process Y
is called time reversible when its finite-dimensional distributions
satisfy the equality {Y (−t)}t∈R

fdd
= {Y (t)}t∈R. When Y is a mul-

tivariate Gaussian, stationary-increment process, time reversibility
implies that the matrix-valued spectral density ΓY (f) of Y is entry-
wise real for almost every frequency f [9]. However, in many real
world situations, data spectra display features – e.g., non-trivial
phases – only appearing in a multivariate context and breaking
time reversibility. Notably, delays amongst components constitute
a simple, common and plausible cause for time irreversibility in
real-world data, and must thus be taken into account when analyzing
multivariate scale-free dynamics. In neuroscience, for instance, it is
well documented that the assessment of brain functional connectiv-
ity is only meaningful for components with non-zero delays. These
are due to physiological constraints and to the so-called volume
conduction effects, caused by the propagation of information from
a source to multiple sensors [13, 14]. Hence, neuroscientific data
modeling requires the reliable detection of non-zero delays and the
accurate estimation of the joint parameters for delayed components.
Accordingly, the estimation of parameters associated with time
irreversibility has received considerable attention recently [15–21].

Goal and contributions. In the present work, we put forward a
framework for the detection of delay amongst components in a mul-
tivariate scale-free dynamics context as well as for the joint esti-
mation of delay and self-similarity exponents. We focus on the bi-
variate setting for simplicity. In Sec. 2, we recap the definition of
classical ofBm and wavelet eigenvalue-based estimation of H . In
Sec. 3, we define the proposed time irreversible and asymptotically
self-similar bivariate model. We also detail the methods for delay
detection and for the joint estimation of delays andH . Starting from
complex-valued wavelet coefficients, this involves the combined use
of the imaginary part of the wavelet coherence function, of a Fisher
z-transform and of a wavelet domain multivariate bootstrap proce-
dure. In Sec. 4, Monte Carlo simulations assess the practical rele-
vance and statistical performance of the proposed procedures, both
with respect to delay and to correlation amongst components. Ran-
dom process synthesis and estimation are carried out by means of
MATLAB routines, made available at the time of publication.



2. TIME REVERSIBLE BIVARIATE SELF-SIMILARITY

OfBm. Hereinafter, we make use of a restricted definition of ofBm
that implies time reversibility but is satisfactory for practical pur-
poses. Readers are referred to [9] for a general definition. Let
X ≡ {XH1(t), XH2(t)}t∈R be a pair of possibly correlated fBms
with individual self-similarity exponentsH = (H1, H2), 0 < H1 ≤
H2 < 1. The entries of the pointwise covariance matrix ΣX =
EX(1)X(1)∗ are given by (ΣX)m,m′ = σmσm′ρm,m′ , with σ2

1 ,
σ2

2 and ρ ≡ ρ1,2 denoting the variances of each component and
their respective correlation coefficients. Let W be a 2 × 2, real-
valued, invertible matrix. Bivariate ofBm Y is defined as (in short,
Y = WX):

{Y H,ΣX ,W
1 (t), Y

H,ΣX ,W
2 (t)}t∈R = W{XH1(t), XH2(t)}t∈R.

(1)
In general, H and ρ cannot be selected independently [9].

LetH = Wdiag(H)W−1 be the so-named Hurst matrix. Then,
the stationary-increment stochastic process Y satisfies the bivariate
self-similarity relation, ∀a > 0:

{Y H,ΣX ,PW
1 (t), Y

H,ΣX ,W
2 (t)}t∈R

fdd�

{aH(Y
H,ΣX ,W
1 (t/a), Y

H,ΣX ,W
2 (t/a))}t∈R, (2)

where
fdd� stands for the convergence of finite dimensional distribu-

tions and aH ,
∑+∞
k=0 logk(a)Hk/k!.

Wavelet estimation of H. When the mixing matrix W is diago-
nal, the estimation of H can be conducted by means of univariate-
like approaches [17, 22]. Otherwise, i.e., when W is non-diagonal,
such approaches yield dramatically poor estimates. In [4, 11], an
intrinsically multivariate wavelet-based procedure is proposed and
studied. It relies on the multivariate discrete wavelet transform co-
efficients (D(2j , k)) ≡ DY (2j , k) = (DY1(2j , k), DY2(2j , k)),
∀k ∈ Z, ∀j ∈ {j1, . . . , j2}, with ∀m ∈ {1, 2}: DYm(2j , k) =

〈2−j/2ψ0(2−jt− k)|Ym(t)〉 [23, 24].
The sample wavelet spectrum, or variance, at octave j, is defined

as the 2× 2 symmetric positive semidefinite random matrix

S(2j) =
1

nj

nj∑
k=1

D(2j , k)D(2j , k)∗, nj =
N

2j
, (3)

whereN is the sample size. Let {λ1(2j), λ2(2j)} be the eigenvalues
of S(2j). The estimator (Ĥ1, Ĥ2) of (H1, H2) is defined by means
of weighted log-regressions across scales 2j1 , . . . , 2j2 [4, 11]:

Ĥm =

(
j2∑
j=j1

wj log2 λm(2j)

)/
2− 1

2
, ∀m = 1, 2, (4)

where wj are linear regression weights. Under mild assumptions [4,
11], it can be shown that λm(2j)

P∼ Cm2j(2Hm+1), ∀m = 1, 2, for
some Cm > 0 as j,N →∞, and thus that (Ĥ1, Ĥ2)

P→ (H1, H2).

3. TIME IRREVERSIBILITY AND DELAYS IN BIVARIATE
SCALE FREE DYNAMICS: MODELING AND ANALYSIS

3.1. Model

Technically, the broad definition of ofBm proposed in [9] permits
defining exactly self-similar, time irreversible processes. Neverthe-
less, modeling time irreversibility caused by pure delays amongst
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ẑı(2

j) ∆ = 0

j

ρ=0
ρ=0.1
ρ=0.4
ρ=0.8

j
2 4 6 8 10 12

-1

-0.5

0

0.5

1
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Fig. 1. z-score of imaginary wavelet coherence.Monte Calo aver-
ages for several ρ and for ∆ = 0 (left) and ∆ = 16 (right).

components requires departing from exact self-similarity. Yet, this
preserves the intuition of scale-free dynamics via the notion of
asymptotic self-similarity and addresses the practical needs involved
in the modeling of real-world data, particularly from neuroscience.
A time irreversible model Y can be defined as an ofBm as in def-
inition (1) where the stationary increments of component X2 are
delayed in time by ∆ > 0. It is easy to show that Y is asymptot-
ically self-similar in the sense that the key relation (2) holds in the
coarse scale limit 0 < a → ∞. Yet, a delay ∆ > 0 introduces bias
in the wavelet eigenvalue-based estimation of H as defined by (4)
when j1 < log2(∆). Hence, it is necessary to both reliably detect
the presence delays and jointly estimate delays and H .

3.2. Detection of delays and estimation of ∆ and H

Complex Wavelets. Delayed information is classically obtained
by inspection of the phase of a complex bivariate representation.
Therefore, we make use of a complex-valued discrete wavelet trans-
form (instead of the real-valued one described above). Hereinafter,
we use a C-valued mother wavelet function ψ0, with Nψ ∈ N
vanishing moments, produced by the q-shift construction proposed
in [25, 26]. From the now complex-valued wavelet coefficients
(D(2j , k)) ≡ DY (2j , k) = (DY1(2j , k), DY2(2j , k)), we com-
pute the wavelet spectrum {S(2j)} as defined by (3) above, whose
non-diagonal entries are potentially complex-valued. The complex
wavelet coherence function is defined by

γ̂(2j) = S12(2j)
/(
S11(2j)S22(2j)

) 1
2 ,

where γ̂ı(2j) = =(γ̂(2j)) denotes its imaginary part [27].
Fisher transform. The Fisher z-transform of γ̂ı(2j) is given by

ẑı(2
j) =

1

2
log

(
1 + γ̂ı(2

j)

1− γ̂ı(2j)

)
,

and analogously so for its population counterpart zı(2j). Under mild
conditions on Y and as a consequence of the decorrelation prop-
erty of the wavelet transform [28], ẑı(2j) is approximately Gaussian
with mean zero when γı(2j) = 0. For the Fisher z-transform of
the modulus of γ̂(2j), the variance is known to approach asymptoti-
cally 1

nj−3
. However, this is not the case when considering only the

imaginary part (cf. Section 4 below). For this reason, we propose
estimating the standard deviation of ẑı(2j) by means of a bootstrap
procedure.
Multivariate wavelet domain bootstrap. To approximate the
distribution of ẑı(2j), a wavelet-domain bootstrap method can
be constructed that preserves the joint covariance structure of the
wavelet coefficients. To this end, rather than bootstrapping in-
dependently on the wavelet coefficients of each component, the
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Fig. 2. Standard deviation of ẑı(2j). Bootstrap estimates com-
pared to Monte Carlo ensemble average and to the classical approx-
imation 1√

nj−3
, for several ρ and for ∆ = 0 (left) and 16 (right).

vector coefficients D(2j , k), k = 1, . . . , nj , are used in a (cir-
cular) block-bootstrap procedure [29]. For each scale j, from the
periodically extended samples (D(2j , 1), . . . , D(2j , nj)), R block
bootstrap resamples D∗(r)j = (D∗(r)(2j , 1), . . . , D∗(r)(2j , nj)),
r = 1, . . . , R, are generated by a drawing-with-replacement pro-
cedure of dcard(Y )/LBe overlapping blocks of fixed size LB ,
(D(2j , k), . . . , D(2j , k + LB − 1), k = 1, . . . , nj . Then, for
each resample D∗(r)j , bootstrap estimates S∗(r)(j) and ẑ

∗(r)
ı (2j)

are computed, whence the bootstrapped standard deviation σ∗zı of
the latter is obtained.
Delay detection. Let Φ be the standard normal cumulative dis-
tribution function and define tπ = Φ−1(π). The bootstrap test for
ẑı(2

j) = 0 for a single scale 2j is defined by

dα(2j) =

{
1 : p(2j) < α (zı(2

j) = 0 rejected);
0 : p(2j) ≥ α (zı(2

j) = 0 accepted),
(5)

where p(2j) = 2 min(Φ(ẑı(2
j)/σ∗zı), 1−Φ(ẑı(2

j)/σ∗zı)) is the p-
value of ẑı(2j). Furthermore, over multiple scales j = j1, . . . , j2,
the bootstrap tests are corrected for multiple hypotheses using a false
discovery rate (FDR) adjustment, which effectively defines an ad-
justed significance αFDR. The test for non-zero delay ∆ is then for-
mulated based on the adjusted test decisions for the multiple scales
j = j1, . . . , j2 as

d∆
α =

{
1 : ∃j∈(j1, j2) : dαFDR (2j) = 1 (∆ = 0 rejected)
0 : ∀j∈(j1, j2) : dαFDR (2j) = 0 (∆ = 0 accepted).

(6)

Delay estimation. When a non-zero delay is detected, an estimate
of the delay log2(∆̂) is obtained as the median minus 1 of the set of
the up to 5 finest scales for which p(2j) < α̂FDR, j = j1, . . . , j2.
Here, the choice of the median is natural for making the estimator
robust. Subtracting one compensates for the finite frequency selec-
tivity of the wavelet, and the use of at most five detected non-zero
scales counteracts the increased number of detected scales when ρ is
increasing, cf., Fig. 3, bottom row. Numerical experiments reported
in Sec. 4 assess the robustness of the estimator with respect to ρ and
∆.
Estimation ofH . To arrive at a consistent estimator forH for ∆ >
0, the linear regression (4) must be modified. First, the octaves

ǰ = (log2(∆̂), log2(∆̂) + 1)

are excluded. Second, the presence of delay induces a vertical offset
of λ1(2j) for scales 2j < ∆, cf. Fig. 5. This makes it necessary
to use two independent intercept parameters (for j < log2(∆) and
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Fig. 3. Bootstrapped based delay detection. Bootstrapped test
decisions (left) and p-values (right) averaged over 500 realizations,
for ∆ = 0 (top) and ∆ = 16 (bottom, test significance α = 0.1).

j > log2(∆)). Tedious but straightforward calculations, not re-
ported here, lead to modified linear regression weights w̃j ,

Ĥ(bi)
m =

( ∑
j∈(j1,j2)\ǰ

w̃j log2 λm(2j)

)/
2− 1

2
, ∀m = 1, 2.

(7)
By similar arguments to those in [4, 11], it can be shown under mild
assumptions that the estimator (7) is consistent.

4. STATISTICAL PERFORMANCE ASSESSMENT

Simulation setup. To assess the detection and estimation perfor-
mance of the procedures proposed above, Monte Carlo simulations
were conducted using NMC = 500 independent realizations of the
model Y as described in Sec. 3.1. The path length was N = 218

with parameter values H = (0.4, 0.6), ΣX =

(
1 ρ
ρ 1

)
for mul-

tiple values of ρ, and W orthogonal matrices drawn independently
for each realization. A q-shift complex wavelet of length NF = 10
was used. A total of R = 500 bootstrap replicates were generated,
with a block size LB = 8. Bootstrap test significance and FDR
level, respectively, were set to α = 0.1.
Fisher z-transform of the imaginary wavelet coherence ẑı(2j).
Fig. 1 (left) displays averages of ẑı(2j) for ρ = (0, 0.2, 0.8) and
illustrates the fact that the imaginary part of the wavelet coherence
is identically zero for all scales when ∆ = 0 or when ρ = 0. To the
converse, it also takes on non-zero values when ∆ 6= 0 and ρ 6= 0
at octaves j in a neighborhood of log2(∆). This confirms that the
imaginary part of the wavelet coherence can be used in the detection
and estimation of delays.
Scale-wise bootstrap test for non-zero ẑı(2j). Fig. 2 reports es-
timates of the standard deviation σ∗zı . Averages over bootstrapped
standard deviation estimates (dotted line with symbols) are com-
pared to averages over Monte Carlo estimates, acting as ensemble
averages (solid lines), as well as the classical approximation 1√

nj−3

(dashed line). The bootstrap variance estimates are observed to be
accurate whatever the correlation level ρ, and to be much closer to
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Fig. 4. Delay estimation performance as functions of log2 ∆̂ for
different values of ρ (left to right) and ∆ (top to bottom). True ∆:
dashed red vertical line.

the Monte Carlo ensemble values than the approximation 1√
nj−3

.

Variances are slightly underestimated at largest scales only, when nj
and LB are of the same order of magnitude.

Fig. 3 displays average test decision (left column) and p-values
(right column) of the bootstrap method for the detection of non-zero
coherence as a function of scale j for ∆ = 0 (top row) and ∆ = 16
(bottom row) and ρ = (0, 0.2, 0.8). The results show that when
∆ = 0 or ρ = 0 (i.e., under the null hypothesis), average test de-
cisions are close to the preset nominal value α = 0.1, and that the
average p-value is close to 0.5. Thus, the proposed test procedure
satisfactorily reproduces the null distribution. When ∆ 6= 0 and
ρ 6= 0 (i.e., under the alternative hypothesis), the test detects the
non-zero values of the coherence for a range of scales j including
log2(∆). The size of this neighborhood is observed to decrease with
decreasing ρ. This is due to the decreasing average value and in-
creasing variance for the imaginary coherence, cf. Fig. 1. Yet, satis-
factorily, even at law correlation ρ = 0.2, the test always rejects the
null hypothesis for a range of scales j.
Delay estimation. Fig. 4 reports histograms of log2(∆̂). It shows
that, when the null hypothesis ∆ = 0 holds, the proposed procedure
rejects it in about 4% of the cases, in close agreement with the preset
choices α = 0.1, q = 0.1. On the other hand, when ∆ 6= 0, the
proposed procedure rejects ∆ = 0 in nearly all cases, thus showing
a very high power. The only exception is when ρ (and, therefore,
the imaginary part of the coherence) is small and ∆ is large (whence
the imaginary coherence is non-zero only at large scales j, in turn
associated with large variances; cf. Fig. 1). This leads to lower power
(see Fig. 4, bottom left). Once a non-zero ∆ is detected, though, its
estimates are accurate.
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Fig. 5. Functions log2 λj (Monte Carlo averages) for ∆ = 16 (left)
and ∆ = 64 (right), with average estimates Ĥm from standard linear
regression as in (4), versus newlt defined estimates Ĥ(bi)

m as in (7).

unweighted rmse for Ĥ1 rmse for Ĥ(bi)
1

ρ 0.10 0.40 0.80 0.10 0.40 0.80
∆ = 4 0.010 0.011 0.031 0.012 0.013 0.014
∆ = 16 0.010 0.020 0.095 0.017 0.017 0.027
∆ = 64 0.010 0.026 0.126 0.023 0.025 0.043
∆ = 256 0.010 0.024 0.113 0.012 0.016 0.031

weighted rmse for Ĥ1 rmse for Ĥ(bi)
1

ρ 0.10 0.40 0.80 0.10 0.40 0.80
∆ = 4 0.010 0.021 0.110 0.006 0.007 0.028
∆ = 16 0.011 0.041 0.193 0.010 0.015 0.045
∆ = 64 0.010 0.026 0.100 0.017 0.019 0.037
∆ = 256 0.009 0.015 0.040 0.010 0.012 0.015

Table 1. Estimation performance for the smaller exponent H1.
Rmse values as a function of ρ and ∆: standard estimator (4) (left)
and proposed estimator (7) (right, best results marked in bold).

Estimation of H . Fig. 5 plots Monte Carlo averages of λj . It
illustrates the change of intercept between fine and coarse scales for
the component with smaller exponent H1, which induces the afore-
mentioned bias in Ĥ1 for the standard estimator (4). Table 1 com-
pares the root mean squared error (rmse) of Ĥ1 and of the proposed
consistent estimator Ĥ(bi)

1 defined by (7). It clearly shows that the
use of (7), which takes into account the estimated delay ∆, is benefi-
cial, and significantly so when ρ is large (rmse values divided by up
to 4). When ρ is small, (7) leads to slightly larger rmse values than
(4), since the increase in variance caused by excluding scales for (7)
outweighs the larger bias of (4).

5. CONCLUSIONS

In this paper, the first framework for the modeling, detection and
estimation of delay parameters as well as for the estimation of self-
similarity parameters is constructed. It assumes a single multivariate
time series is available, and is based on an original combination of
C-valued wavelets, bootstrapping and wavelet eigenanalysis. Monte
Carlo experiments show that the proposed protocols display high de-
lay detection probability as well as accurate delay and scale-free pa-
rameters estimation for realistic sample sizes and correlation levels.

Future work includes the extension of the proposed methods to
the detection and estimation of delays not restricted to dyadic values
and the construction of procedures for the detection and estimation
of delay when multiple components are present. Applications in the
analysis of neuroscientific multivariate time series data are also un-
der investigation.
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