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ABSTRACT

Self-similarity has become a well-established modeling framework
in several fields of application and its multivariate formulation is of
ever-increasing importance in the Big Data era. Multivariate Hurst
exponent estimation has thus received a great deal of attention re-
cently, in particular by means of the wavelet eigenvalue regression
method. The present work tackles the issue of the presence of signif-
icant finite-sample bias in wavelet eigenvalue regression stemming
from the eigenvalue repulsion effect, whose origin and impact are an-
alyzed and quantified. Furthermore, an original wavelet domain bias
reduction technique is developed assuming a single multivariate time
series is available. The protocol consists of a bootstrap resampling
scheme that preserves the joint covariance structure of multivariate
wavelet coefficients. Extensive numerical simulations show that this
proposed method is effective in counteracting the bias at the price
of a small increase in variance. This leads to wavelet eigenanalysis-
based estimation of multivariate Hurst exponents with significantly
improved finite-sample performance than earlier state-of-the-art for-
mulations.

Index Terms— multivariate self-similarity, wavelet spectrum,
eigenvalue distribution, bootstrap

1. INTRODUCTION

Self-similarity. Over the last many decades, self-similarity has be-
come a canonical paradigm in the analysis and modeling of dynamic
behavior in a wide range of applications [1]. The most popular
self-similarity model is fractional Brownian motion (fBm), namely,
the only Gaussian, self-similar, stationary-increment stochastic pro-
cess [2, 3]. In the fBm framework, dynamics are parsimoniously
characterized by means of a single parameter, the so-named Hurst
exponent H ∈ (0, 1). In applications, this parameter can be used in
classification, detection, diagnosis, and various other classical signal
processing tasks. This generates a strong demand for accurate and
robust statistical estimation of H and, accordingly, a large body of
work on the subject has been developed [4, 5]. It is now well estab-
lished that wavelet analysis can be used in the construction of esti-
mation protocols for H that are accurate, efficient and robust both in
theory and in practice [6,7]. Nevertheless, until recently, the focus of
the statistical literature was on the modeling and analysis of single,
or univariate, time series. This explains why success in modeling has
mostly remained restricted to univariate data settings. By contrast,
in an ever-increasing number of areas, data are recorded by multi-
ple sensors that jointly monitor physical systems over time. This has
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lead to the availability of large and complex data sets, which, in turn,
call for new statistical protocols that are multivariate from inception.

Self-similarity in multivariate data. Operator fractional Brown-
ian motion (ofBm) was recently proposed as a framework for multi-
variate self-similarity [8–11]. For modeling purposes, ofBm can be
viewed as a mixture of M correlated fBm processes, each with pos-
sibly distinct self-similarity exponents Hm, m = 1, . . . ,M . OfBm
has now been successfully applied in many fields such as in Internet
traffic modeling [12] and dendrochronology [13].

For ofBm, univariate-like statistical methods such as the en-
trywise analysis of sample covariance matrices, Fourier or wavelet
spectra does not yield relevant results. In [12, 14], a wavelet eigen-
value regression methodology is constructed for the joint estimation
of the vector of ordered Hurst exponents H = (H1, . . . , HM ). The
protocol relies on the striking fact of the joint eigenvalue scaling
property. This property states that, as N � 2j → ∞, the random
eigenvalues λm of sample wavelet covariance matrices S(2j) jointly
scale according to power laws driven by their respective Hurst expo-
nents, i.e., ϑm(S(2j))

P∼ Cm2j(2Hm+1), m = 1, . . . ,M .

However, over finite sample sizes N and scales 2j , bias is al-
ways present as a function of the underlying ofBm parameters. In
addition, wavelet eigenvalues driven by equal Hurst exponents tend
to differ only by a constant factor. Hence, they are particularly sus-
ceptible to the so-named eigenvalue repulsion effect. As described
in the random matrix literature [15, 16], eigenvalues of random Her-
mitian matrices tend to behave as if there was some force preventing
them from getting too close to each other. For S(2j), this effect
becomes more pronounced over large scales, for which the ratio be-
tween the dimensionM and the number of sum termsN/2j entering
the average S(2j) is large (cf. [17]). Yet, scaling analysis requires
the use of large scales 2j as to reveal the underlying low frequency
dynamics.

Goal, contributions and outline. In this work, we tackle the
issue of the presence of bias in finite-sample wavelet eigenvalue re-
gression. We develop and study a bias reduction procedure assum-
ing a single finite-length multivariate time series is available for the
ofBm model and wavelet eigenvalue regression method, which are
defined in Section 2. At the core of the procedure is an original
bootstrap resampling scheme in the wavelet domain that preserves
the joint covariance structure of multivariate wavelet coefficients,
described in Section 3. Comprehensive numerical simulation re-
sults demonstrate that the proposed method is operational and ef-
fective in counteracting the bias originated in eigenvalue mutual re-
pulsion, leading to significantly improved finite-sample estimation
performance, cf. Section 4. We provide conclusions and future work
directions in Section 5.



2. MULTIVARIATE SELF-SIMILARITY

2.1. Model: operator fractional Brownian motion

In this work, we make use of a subclass of time reversible ofBms
that is sufficiently flexible for most practical situations (see [10] for
a general definition of ofBm). Let X , {XH1(t), . . . ,XHM (t)}t∈R
be a collection of M possibly correlated fBms with self-similarity
exponents H = (H1, . . . , HM ), 0<H1≤ . . .≤HM < 1. Also, let
W be a real-valued, invertible M×M matrix. The M -variate ofBm
is defined as the stochastic process

Y , {Y H,ΣX ,W
1 (t), . . . , Y

H,ΣX ,W
M (t)}t∈R ,

W {XH1(t), . . . , XHM (t)}t∈R = WX. (1)

In (1), ΣX = EX(1)X(1)∗ denotes the pointwise covariance matrix
of X . Its entries can be reexpressed as (ΣX)m,m′ = σmσm′ρm,m′ ,
where σ2

m and ρm,m′ are the variances of each component and their
respective correlation coefficients. H and ΣX can in general not be
chosen independently [10]. Definition (1) implies that Y has station-
ary increments and satisfies the multivariate self-similarity relation

∀a > 0 : { Y H,ΣX ,W
1 (t), . . . , Y

H,ΣX ,W
M (t) }t∈R

fdd� { aH(Y
H,ΣX ,W
1 (t/a), . . . , Y

H,ΣX ,W
M (t/a)) }t∈R. (2)

In (2),
fdd� stands for the convergence of finite dimensional distri-

butions, and H , Wdiag(H)W−1 is the so-called Hurst matrix,
where aH ,

∑+∞
k=0 logk(a)Hk/k!.

2.2. Wavelet based joint estimation of Hm, m = 1, . . . ,M

Given a M -variate time series Y , the goal of self-similarity analysis
is to infer the vector of exponents H = (H1, . . . , HM ) from the
data. If it can be assumed that each component Ym is a fBm (i.e., the
mixing matrix W and, consequently, the Hurst matrix H are diago-
nal), it is possible to estimate H using conventional, univariate-like
approaches [18,19]. However, in the general case when components
are mixtures of fBms, i.e., when W is non-diagonal, univariate-
like estimation of H is, in general, strongly biased. In [12, 14],
a wavelet-based multivariate statistical strategy is proposed. The
multivariate discrete wavelet transform coefficients are computed as
(D(2j , k)) , DY (2j , k) = (DY1(2j , k), . . . , DYM (2j , k)), ∀k ∈
Z, ∀j ∈ {j1, . . . , j2}, with ∀m ∈ {1, . . . ,M}: DYm(2j , k) =

〈2−j/2ψ0(2−jt − k)|Ym(t)〉 [20, 21]. Their sample covariances,
or wavelet spectra, are given by the M × M symmetric positive
semidefinite random matrices

S(2j) ,
1

nj

nj∑
k=1

D(2j , k)D(2j , k)∗, nj = 2−jN, (3)

with N the sample size and j the octave. Now let {λ1(2j), . . . ,
λM (2j)} be the eigenvalues of S(2j), and let

ϑm(2j) , log2(λm(2j))

be the corresponding log-eigenvalues. Over analysis scales 2j1 , . . . , 2j2 ,
the wavelet estimator (Ĥ1, . . . , ĤM ) for (H1, . . . , HM ) is defined
by means of weighted linear regressions of ϑm(2j) as

Ĥm =

(
j2∑

j=j1

wjϑm(2j)

)/
2− 1

2
, ∀m = 1, . . . ,M, (4)

where wj are linear regression weights [12,14]. It can be shown that
(Ĥ1, . . . , ĤM )

P→ (H1, . . . , HM ) under mild assumptions.

3. BOOTSTRAP-BASED BIAS-REDUCED ESTIMATION

3.1. Repulsion effect of wavelet log-eigenvalues ϑm(2j)

The study of the repulsion effect of eigenvalues of Hermitian matri-
ces has a long history [22, 23] and it appears in the random matrix
literature for a number of canonical models [16]. In addition, even in
the case of sample covariance matrices formed from i.i.d. entries, the
so-named level spacings between ordered eigenvalues are often non-
negligible in the nonclassical setting where the dimension M of the
system is comparable to the sample sizeN (cf. [24–27]). For random
wavelet covariance matrices, the separation effect is supposed to be
naturally more pronounced for eigenvalues driven by equal Hurst ex-
ponents, for which they tend to differ only by a constant factor. For
this reason, we focus on this case.

A study of wavelet log-eigenvalue repulsion is depicted in Fig. 1
(left) for M = 2 (top) and M = 12 (bottom) and Hm = H =
0.6, m = 1, . . . ,M ; for greater readability, the theoretical slopes
j(2Hm + 1) have been subtracted from ϑm(2j). Details on the
numerical simulation are given in Section 4 below. In light of the
proven consistency of wavelet log-eigenvalues for Hurst exponents
[12, 14], the naive expectation would be to observe nearly parallel
straight wavelet log-eigenvalue lines as the octave j increases. How-
ever, what the plots show is rather different. In general, for a fixed
M , wavelet log-eigenvalue lines tend to divert away from each other
as the octave j increases. In turn, the average vertical distance be-
tween ϑ1 and ϑM also grows as a function of M . For any M , unre-
ported studies further reveal that wavelet log-eigenvalues drift apart
as the sample size N or the effective sample size nj = N/2j de-
creases. This provides a computational demonstration of a repulsion
effect of wavelet log-eigenvalues as a function of the parameters M ,
N and j. In Fig. 1 (right column), wavelet log-eigenvalues are de-
picted for ρm,m′ = 0.5,m 6= m′, showing that the repulsion effect
is also present, but weaker, when the components ofBm are corre-
lated or have non-equal energy. In most practical situations where
both N and M are fixed, this further implies that repulsion is more
conspicuous at coarser scales. This increasing positive (for large m)
or negative (for small m) bias of ϑm(2j) as a function of j intro-
duces, in turn, bias in the estimation of Hurst exponents Hm.

3.2. Multivariate wavelet bootstrap-based bias reduction

Due to the general unavailability of closed-form expressions for
wavelet log-eigenvalues, we resort to a bootstrap approach to obtain
estimates of the bias of θ̂ ∈ {ϑm(2j), Ĥm},m = 1, . . . ,M . The
main idea is to replace the ensemble equation E[θ̂] − θ defining the
bias for θ̂ with a sample version Ê[θ̂∗]− θ̂ that can be computed from
a single realization of data, where Ê[θ̂∗] denotes the average over a
large number of bootstrap replicas θ̂∗ of θ̂ [28]. To obtain bootstrap
replicas of ϑm(2j) and Ĥm, we construct a wavelet-domain boot-
strap procedure that preserves the joint covariance structure of the
wavelet coefficients. This is achieved by resampling the vector coef-
ficients D(2j , k), k = 1, . . . , nj in a (circular) block-bootstrap pro-
cedure, instead of resampling the wavelet coefficients of each com-
ponent independently, which would destroy their covariance struc-
ture [29]. More precisely, R block bootstrap resamples D∗(r)

j =

(D∗(r)(2j , 1), . . . , D∗(r)(2j , nj)), r = 1, . . . , R, are drawn by
sampling with replacement dcard(Y )/LBe overlapping blocks of
size LB , (D(2j , k), . . . , D(2j , k + LB − 1)), k = 1, . . . , nj , from
the periodically extended samples (D(2j , 1), . . . , D(2j , nj)). This
procedure is repeated for each scale j of interest, and bootstrap
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Fig. 1. Log-eigenvalues vs. scale. Averages and std of log-
eigenvalues ϑm(j) for 1000 independent realizations as a function
of j, with ground truth j(2Hm + 1) subtracted: M = 2, H = 0.6
(top row), M = 12, H = 0.6 (bottom row) with ρm,m′ = 0 (left
column) and ρm,m′ = 0.5 (right column).

estimates S∗(r)(j), ϑ∗(r)
m (2j) and Ĥ

∗(r)
m are computed for each

resample D∗(r)
j as in (3-4). Finally, subtracting the bootstrap-based

estimates for the bias, Ê[ϑ∗m(2j)]−ϑm(2j) and Ê[H∗m]−Hm, from
the estimates ϑm(2j) and Ĥm yields the bootstrap bias corrected
estimates [28]

ϑ(bc)
m (2j) , 2ϑm(2j)− 1

R

R∑
r=1

ϑ∗(r)
m (2j) (5)

Ĥ(bc)
m , 2Ĥm −

1

R

R∑
r=1

Ĥ∗(r)
m . (6)

4. BIAS REDUCTION PERFORMANCE ASSESSMENT

Simulation setup. To illustrate the eigenvalue repulsion effect
in the wavelet domain and to assess the performance of the pro-
posed bias reduction procedure, we resort to numerical simulation
using NMC = 1000 independent realizations of M -variate ofBm
of length n = 216, with Σ = Toeplitz(1, ρ, ρ2, . . . , ρ(M−1)).
The mixing matrices W are orthogonal random matrices generated
independently for each realization. We study the casesM ∈ {2, 12}
for Hm = H = 0.6 and σm = 1, ∀m, with correlation levels
ρ ∈ {0, 0.25, 0.5, 0.75}. Complementary results were obtained
for instances where Hm 6= Hm′ ; they lead to qualitatively simi-
lar conclusions and are not reported here for space reasons. We use
Daubechies2 wavelets and scales (j1, j2) = (6, 11) for the Hurst
exponent estimation, and R = 500 bootstrap replica with block size
LB = 4 (≈ length of the wavelet) for the bias reduction procedure.
Repulsion effect and bias reduction. Corresponding to the bot-
tom left panel in Fig. 1, Fig. 2 (top row) provides a more detailed
depiction of the (log) eigenvalue ϑm(2j) repulsion effect for the
instance ρ = 0 and M = 12. The figure shows the histograms
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Fig. 2. Distribution of log-eigenvalues. Histograms of ϑm(j),
m = 1, . . . , 12 for ρ = 0 (j = 6, left column and j = 11, right
column), without (top row) and with (bottom row) bias correction;
vertical bars indicate the average estimates (ρ = 0, H = 0.6).

(over 1000 realizations) of ϑm(2j), for each component m sepa-
rately (blue and red solid lines) together with average values for
ϑm(2j) (vertical bars), for scales j = 6 and j = 11 (left and
right column, respectively). Also plotted are the overall histogram
and average obtained by pooling the log-eigenvalues for all compo-
nents (black solid lines and vertical bars). The repulsion effect of
ordered wavelet log-eigenvalues ϑm(j), m = 1, . . . ,M , is clearly
demonstrated: the individual histograms are spread out, resulting in
spaced apart modes. Without repulsion, these modes would collapse
onto one single value. A comparison of the results for j = 6 and
j = 11 shows that these gaps get wider as we move from fine to
coarse scales. For example, the distance between the averages of
ϑ1(j) and ϑM (j) increases from ≈ 0.6 at scale j = 6 to ≈ 4 at
scale j = 11. This is also reflected in an enlarged support for the
overall histogram at coarse scale.

Fig. 2 (bottom row) depicts the equivalent plots for bias cor-
rected log-eigenvalues ϑ(bc)

m (j). It shows that, for the bootstrap-
based estimates, the gap between the smallest and the largest log-
eigenvalue is reduced by about 40% to ≈ 0.35 at scale j = 6 and
≈ 2.5 at scale j = 11, without modifying the overall average (in-
dicated by vertical black bars). This demonstrates that the bootstrap
bias reduction procedure is effective in counteracting the repulsion
effect for wavelet log-eigenvalues, both at coarse and fine scales.

Fig. 2 also indicates that the supports of the sample distribu-
tions of each ϑ(bc)

m (j) are enlarged with respect to their homologues
ϑm(2j). Therefore, the reduction in bias comes at the price of a
slight increase in the variance.
Estimation of Hurst exponents H . Fig. 3 plots histograms of
the estimated exponents Ĥm (left column) and of the bootstrap-
based estimates Ĥ(bc)

m (right column) for ρ = {0, 0.25, 0.5, 0.75}
(top to bottom row, respectively) and M = 12. It demonstrates
that the scale-dependent strength of repulsion of the log-eigenvalues
ϑm(2j) discussed in the previous paragraph can result in signifi-
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Fig. 3. Distribution of Hurst exponents. Histograms of estimates
Ĥm, m = 1, . . . , 12 , without (left column) and with (right column)
bias correction, for ρ = {0, 0.25, 0.5, 0.75} (top to bottom row,
respectively); vertical bars indicate the average estimates (H = 0.6).

cant bias for Ĥm. For example, for ρ = 0, the average estimates
range from Ĥ1 = 0.45 to ĤM = 0.68, when theoretically Hm =
H = 0.6. When ρ increases, the bias becomes less dramatic but re-
mains present; interestingly, it is the smallest (in terms of ϑm(2j)

and hence Ĥm) components that are more affected by the repul-
sion effect. A comparison with Fig. 3 (right column) shows that the
proposed bootstrap-based bias reduction procedure is effective and
leads, e.g., for ρ = 0, to average estimates ranging from Ĥ

(bc)
1 =

0.5 to Ĥ(bc)
M = 0.64. The procedure also provides good results for

larger values of ρ and yields essentially bias-free estimates for ≈ 7
(ρ = 0.25), 9 (ρ = 0.5) and 10 (ρ = 0.75) out of the 12 compo-
nents, as compared to ≈ 1, 6 and 7 out of 12 components for Ĥm,
respectively. This reduction in bias comes at the price of slightly
broadened distributions, hence increased variability, for each indi-
vidual Ĥ(bc)

m as compared to Ĥm.
Performance analysis. The above results show that the estimates

M = 2, Hm = 0.6

av. bias Ĥm Ĥ
(bc)
m av. rmse Ĥm Ĥ

(bc)
m

ρ = 0.00 0.022 0.013 ρ = 0.00 0.030 0.026
ρ = 0.25 0.006 0.000 ρ = 0.25 0.024 0.024
ρ = 0.50 0.004 0.000 ρ = 0.50 0.024 0.024
ρ = 0.75 0.004 0.001 ρ = 0.75 0.024 0.023

M = 12, Hm = 0.6

av. bias Ĥm Ĥ
(bc)
m av. rmse Ĥm Ĥ

(bc)
m

ρ = 0.00 0.058 0.030 ρ = 0.00 0.060 0.035
ρ = 0.25 0.037 0.010 ρ = 0.25 0.041 0.022
ρ = 0.50 0.025 0.005 ρ = 0.50 0.034 0.023
ρ = 0.75 0.022 0.004 ρ = 0.75 0.033 0.023

Table 1. Average (over components m and independent Monte
Carlo realizations) absolute bias and rmse values (left and right,
respectively) for Ĥm and Ĥ(bc)

m , for several values for ρ and for
M = 2 (top) and M = 12 (bottom, best results appear boldfaced).

Ĥ
(bc)
m have smaller bias than Ĥm but also indicate larger variance.

To quantify the potential overall benefit of the proposed bootstrap-
based bias reduced estimates for H , we evaluate the performance
in terms of the average (over componentsm and independent Monte
Carlo realizations) absolute bias and root mean squared error (rmse),
for several levels of correlation ρ as well as M = 2 and M = 12
components. The results are summarized in Table 1 and lead to the
following conclusions. The proposed estimator Ĥ(bc)

m yields sys-
tematic performance improvements over the standard estimator Ĥm,
both in terms of bias and in terms of rmse. For the scenarios consid-
ered here, bias is reduced by up to an order of magnitude, and rmse
values by up to a factor 2. The improvements in bias and rmse values
are less visible for M = 2 than for M = 12 because the strength
of the repulsion effect for eigenvalues, and thus bias, grows with M .
For the same reason, the improvement in performance is more signif-
icant for smaller values for ρ. Overall, these results unambiguously
demonstrate the effectiveness and systematic practical benefits of the
proposed bias reduced estimation for multivariate self-similarity.

5. CONCLUSIONS

In this work, we study the repulsion effect of eigenvalues of wavelet
covariance matrices and its impact on the wavelet eigenanalysis-
based estimation of multivariate Hurst exponents. We construct and
assess an original wavelet domain bootstrap-based bias correction
procedure assuming a single finite-length multivariate time series
is available. Extensive numerical simulations show that the pro-
posed method significantly improves the finite sample performance
of the wavelet eigenvalue regression, with up to a tenfold (twofold)
reduction in bias (rmse). The work opens up several new method-
ological perspectives, including the study of the benefits of double-
bootstrapping for higher-order bias correction, and the construction
of statistical tests for the equality of self-similarity exponents in mul-
tivariate data. Future applied work includes the modeling of neuro-
scientific multivariate data (fMRI, E/MEG).
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