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Abstract 24 

Proteins are dietary components that contribute to nutritional needs of the body through the 25 

provision of nitrogen and amino acids. Protein status is tightly and continuously controlled to prevent 26 

or counteract protein deficiency and to maintain or restore an adequate protein status. Animals 27 

learn to detect and avoid diets deficient or devoid in protein or in at least one indispensable amino 28 

acid and when given a choice reject these diets. Diets restricted marginally in protein or in one or 29 

more amino acids more often induce hyperphagia, interpreted as an attempt to increase protein or 30 

amino acid intake and to meet the need for protein and amino acids. The increase in energy intake 31 

induced by a low protein diet is compensated for by an increased energy expenditure that restrains 32 

the gain in adiposity. The status of protein and/or amino acid insufficiency induced by protein or 33 

amino acid restricted diets is characterized by a profile of peripheral and central signals that 34 

contribute to modulate peripheral metabolic adaptations and central pathways involved in the 35 

control of feeding behaviour. These processes impact on the motivation for food and food choice, 36 

with an appetite for protein and/or for the limiting amino acid(s) associated with a reward driven 37 

sensitivity to protein and amino acid content of food and diets, which leads to restore or maintain an 38 

adequate protein status. In contrast to a protein-restricted diet, high-protein diets are usually 39 

reported to decrease food intake in both animals and humans, at least for a transient period, in 40 

relation to a reported satiating effect of proteins through activation of anorexigenic pathways.  41 

  42 
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Introduction 43 

Proteins are dietary components that contribute to nutritional needs of the body through the 44 

provision of nitrogen and amino acids. The maintenance of normal physiological function and survival 45 

in animals and humans requires a continuous supply of amino acids to tissues to support protein 46 

turnover and other amino acid–dependent metabolic processes. These phenomena depend on a 47 

daily intake of an adequate quantity of protein provided by a diverse array of foods. Protein status, 48 

characterized by amino acid sufficiency in the body to support metabolic functions, is tightly and 49 

continuously controlled and influences both protein and energy metabolism and feeding behavior 50 

(including food motivation, food choice, or food aversion) to prevent or counteract protein deficiency 51 

and to maintain or restore an adequate protein status. In this context, the different diets are 52 

considered, according to their protein content, as severely restricted (2-3% energy), moderately 53 

restricted (5-8% energy), with adequate content (10-20% energy) or with generous or high protein 54 

content (above 25-30% energy). These different diets have various consequences on food intake, 55 

food choice, metabolism, body weight and body composition in relation with the capacity of the 56 

organism to adapt or accommodate or not to the supply of protein provided by these diets.  57 

Severely deficient protein or amino acid diets are rejected 58 

Animals learn to detect and avoid diets severely deficient or devoid in protein or in at least one 59 

indispensable amino acid and when given a choice reject these diets (Rogers, Leung, 1973). These 60 

severely deficient protein diets induce a protein-deficient status characterized by low plasma protein 61 

concentration, and low body weight, fat mass, and lean mass (Du et al, 2000; Chaumontet et al, 62 

2018). Very low-protein diets (2-3% protein) more usually depress food intake (Du et al, 2000). 63 

Animals also avoid diets that are severely imbalanced in at least one amino acid and selectively find 64 

and consume the missing amino acid when offered a choice between different foods (Gietzen et al, 65 

2007). In Humans, consumption of an incomplete protein diet may be detected also and results in a 66 

signal to stop eating, being rather a signal of hunger suppression than of satiation or satiety 67 

(Veldhorst et al., 2009; Nieuwenhuizen et al, 2009). 68 

The decrease in food intake induced by an extremely low protein diet is believed to originate from 69 

imbalanced plasma and brain amino acid patterns and the induction of a taste aversion to the amino 70 

acid devoid diet (Feurté et al, 1999, 2002; Even et al, 2000). It has been established that consumption 71 

of a meal inadequate in at least one essential amino acid reduces the concentrations of the deficient 72 

or limiting amino acid in plasma, in cerebrospinal fluid and in the brain where this amino acid 73 

depletion is sensed by general control nonderepressible 2 (GCN2) binding of deacylated tRNA and 74 

subsequent glutamatergic signalling (Hao et al, 2005). As an initial signal amino acid deficiency 75 
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induces an increase in uncharged tRNA that binds to GCN2 with subsequent phosphorylation of eIF2 76 

and of the glutamate receptor, GluR1. The associated loss of GABAergic/inhibitory control 77 

contributes to activating glutamatergic excitatory circuits which project to different brain regions 78 

leading to the modification of feeding behaviour (Anthony, Gietzen, 2013). 79 

Marginally restricted protein or amino acid diets induce hyperphagia 80 

In contrast to severely deficient protein diets, marginally restricted protein or amino acid diets (3-8% 81 

energy) more often induce hyperphagia, interpreted as an attempt to increase protein or amino acid 82 

intake and meet the need for protein and amino acids (Beaton et al, 1965; White et al. 1994, 1998; 83 

Du et al, 2000; Sorensen et al, 2008; Carreiro et al, 2016). In addition, there are a large number of 84 

studies indicating that diets with marginally reduced dietary protein content increase total food 85 

intake in different species, but also increase energy expenditure, reduce growth, alter metabolic 86 

pathways within tissues and organs and modify body composition (Du et al, 2000; Sorensen et al, 87 

2008; Blais et al, 2018). In rats fed low-protein diets body fat is increased and body proteins are 88 

decreased, and when protein intake is increased the gains in carcass protein and serum protein 89 

concentrations are directly related to the protein intake and reach a plateau for an intake considered 90 

to indicate protein requirement (Du et al, 2000). 91 

When the protein in the diet is moderately restricted, food intake is primarily determined by the 92 

attempt to meet protein needs and animals fed a low-protein diet more usually eat more than the 93 

control group fed an adequate protein diet to preserve the protein intake (Blais et al, 2018; Chalvon-94 

Demersay et al, 2016; Sorensen et al, 2008; Du et al, 2000; Leung, Rogers, 1986). Additional evidence 95 

also indicates that amino acid composition influences feeding, such that animals increase their 96 

consumption of diets that are moderately restricted in one or a few indispensable amino acids, as 97 

observed for instance with methionine (Forney et al., 2017). Growing animals restricted in dietary 98 

protein enhance their food intake to meet their protein requirement for maintenance and growth of 99 

lean tissues but with a risk of depositing excess energy as fat (Blais et al, 2018; Sorensen et al, 2008; 100 

White et al. 1994 and 1998). There is however a probable limitation in the increase in energy intake 101 

because in most cases, it is far from being enough to compensate for the decrease in the dietary 102 

protein content (Du, 2000; Blais et al. 2018). In addition, the increases in energy intake induced by a 103 

marginally low-protein diet are compensated for by an increased energy expenditure that decreases 104 

food efficiency and dissipates for a part the excess energy, and as a result fat mass accumulates 105 

much less than expected thus preventing a gain in adiposity (Donald et al, 1981; White et al. 1994; 106 

Du et al, 2000; Pezeshki et al, 2016; Chalvon-Demersay, 2016; Blais et al, 2018). In Humans, dietary 107 

protein content of the diet was negatively associated with total energy intake irrespective of whether 108 
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carbohydrate or fat were the diluents of protein (Gosby et al, 2004) but overfeeding of a low-protein 109 

diet (3%) also increased energy expenditure (Vinales et al, 2018), and this could also prevent, as 110 

observed in rodent, the gain in adiposity suspected to be induced by the overfeeding. 111 

The increase in energy expenditure in low-protein fed animals is generally considered as a response 112 

to dissipate the surfeit of energy intake, but other studies observed that this increase can occur also 113 

in the absence of hyperphagia and therefore could represent a primary and specific response to 114 

protein restriction and that the increase in energy intake would be a secondary adjustment to 115 

compensate for the increase in energy expenditure (Rothwell  et al, 1987; Hill et al, 2017, 2018; 116 

Laeger et al, 2016). This increase in energy expenditure and the changes in metabolic efficiencies 117 

produced by protein deficient diets have been associated tentatively with the stimulation of adaptive 118 

diet-induced thermogenesis with increased activity of brown adipose tissue, possibly white adipose 119 

tissues, and in muscles (Chartoumpekis, 2011; de Franca, 2009, 2016; Fisher, 2012; Pezeshki, 2016). 120 

However, according to other studies, the increase in total energy expenditure in low-protein fed mice 121 

could also result from changes in the pattern of spontaneous activity (in particular less time spent 122 

resting and more time spent fidgeting and active) (Blais et al, 2018). Interestingly, the apparently 123 

increased thermogenic response to feeding was observed only in mice housed at 22°C, but not at 124 

thermal neutrality (30°C, Blais 2018). Detailed analysis of the evolution of the cost of 125 

thermoregulation, the cost of activity and the thermogenic response to feeding suggests that the 126 

apparently higher thermogenic response to feeding in low-protein fed mice was due to a slower 127 

decrease in the energy expended for thermoregulation after ingestion of a test-meal. When this 128 

phenomenon was taken into account, the thermogenic response to feeding appeared similar in low- 129 

and normo-protein fed mice both at 30°C and 22°C.  130 

Protein and amino acid deficient status induces an appetite for protein 131 

Protein deficiency induces a specific appetite for protein, observed both in animals and in humans. 132 

The status of protein and/or amino acid insufficiency induced by protein or amino acid restricted 133 

diets is characterized by a profile of peripheral and central signals that contribute to modulate 134 

peripheral metabolic adaptations and central pathways involved in the control of feeding behaviour. 135 

These processes impact on motivation for food and food choice, with an appetite for protein and/or 136 

for the limiting amino acid(s), associated with a reward driven sensitivity to the protein and the 137 

amino acid content of foods in the diet, inducing a preference for these foods that can participate in 138 

the restoration and/or maintenance an adequate protein status (Figure 1).  139 

In rodents a low-protein diet induces both low plasma concentrations of leptin, insulin and insulin-140 

like growth factor-1 (IGF1), and high plasma concentrations of ghrelin and Fibroblast growth factor 141 
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21 (FGF21); and in the hypothalamus high levels of Neuropeptide Y (NPY) and Corticotropin Releasing 142 

Hormone (CRH) levels and low levels of Proopiomelanocortin (POMC). In low protein fed rats, the 143 

fasting concentration of the orexigenic hormone ghrelin was higher, and the fasting concentrations 144 

of the anorexigenic hormones insulin and leptin were lower, in comparison to rats fed a normal 145 

protein diet (Chaumontet et al, 2018). These profiles are associated also with higher expression of 146 

the orexigenic neuropeptide NPY and of the stress-related neuropeptide CRH in the hypothalamus in 147 

low protein fed rats, which is in line with an overall increased motivation for food and higher stress in 148 

protein-deficient animals (White et al, 1994; Chaumontet et al, 2018). Indeed, orexigenic ghrelin 149 

notably increases food intake reward with central NPY and opioid signalling as the necessary 150 

mediators (Skibicka et al, 2011; Dickinson et al, 2011). Conversely, leptin and insulin contribute to 151 

decreasing food reward by modulation of dopamine-signalling pathways and this process is 152 

downregulated in low protein fed animals (Pfaffly et al, 2010; Chaumontet et al, 2018). Amino acid 153 

and protein deficiency also induce activation of the sympathetic nervous system via increased CRH 154 

with increased energy expenditure and activation of lipolysis genes (Cheng et al, 2011). 155 

Hepatic FGF21 production and plasma concentrations, which are stimulated by low protein-high 156 

carbohydrate diets and blunted under a high protein-low carbohydrate diet in rodents, have been 157 

proposed as a signal of protein deficiency (Chaumontet el al, 2019), but could be also controlled by a 158 

combination with glucose (Chalvon-Demersay et al, 2016) and high triglyceride concentrations in the 159 

liver (Chalvon-Demersay et al, 2017). It was shown recently also in human that plasma FGF21 160 

concentration increased only after overfeeding of very low-protein (3%) diets irrespective of whether 161 

the diet was high in carbohydrate (75%) or high in fat (46%), with larger increases in FGF21 being 162 

associated with greater increases in 24 hour energy expenditure (Vinales et al, 2018). The expression 163 

of FGF21 seems to be controlled in part by the serine/threonine-protein kinase General control 164 

nonderepressible 2 (GCN2) that senses amino acid deficiency, and signalling through the Activating 165 

transcription factor 4 (ATF4) pathway (Hill et al, 2018). FGF21 is involved in numerous metabolic 166 

processes, such as hepatic lipid oxidation, ketogenesis (Kharitonenkov et al, 2005; Hotta et al, 2009), 167 

and glucose uptake in different organs, such as brown adipose tissue and skeletal muscle (Mashili et 168 

al, 2011; Markan et al, 2014). High FGF21 is believed to be involved in the stimulation of adaptive 169 

diet-induced thermogenesis in response to low-protein diet feeding {Chalvon-Demersay, 2016; Hill, 170 

2018; Laeger, 2014} and would also mediate the thermogenic responses to essential amino acid 171 

leucine and methionine restriction (Lees, 2014; Wanders, 2015, 2017). FGF21 is involved also in 172 

feeding behaviour, as intracerebroventricular infusion of FGF21 increases both energy expenditure 173 

and food intake without affecting body composition (Sarruf et al, 2010), and the increase in food 174 

intake induced by low-protein diets is not observed in FGF21-knockout mice (Laeger et al, 2014). 175 
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After food or protein deprivation, a specific appetite for protein and a preference for protein-rich 176 

foods has been observed in rodents (Booth et al, 1974; Gibson, Booth, 1986). Animals offered a 177 

marginally protein-deficient diet tend to meet their target protein needs with different strategies, 178 

including an increase in food intake or when given a choice a preference for protein-rich foods (Blais 179 

et al, 2018; Chaumontet et al, 2018). In rats fed a protein-deficient diet, the neuronal activation of 180 

the Nucleus Accumbens is significantly and positively related to the protein content of the meal 181 

when rats are offered calibrated meals with different protein contents. Whereas when rats are fed a 182 

diet with an adequate protein content the Nucleus Accumbens is not sensitive to the protein content 183 

of the meal (Chaumontet et al, 2018). Under protein-deficient conditions, when there is a need to 184 

increase protein intake to compensate for protein deficiency and reach an adequate protein status, 185 

the Nucleus Accumbens activity is positively correlated to the protein content in meals whereas 186 

animals show an increased motivation for protein. In Humans, studies have also shown a higher 187 

appetite for protein-rich foods after protein restricted diets (Griffioen-Roose et al, 2012, 2014), as 188 

well as a preference for foods associated with a protein-rich flavor after a low-protein preload 189 

(Gibson et al, 1995). Moderately deficient protein status has been shown to increase the response of 190 

central reward regions to savory food cues in Humans (Griffioen-Roose et al 2014). 191 

High protein diets decrease food intake 192 

In contrast to protein-restricted diets, high-protein diets are usually reported to decrease food intake 193 

in both animals and humans, at least for a transient period, in relation to a reported satiating effect 194 

of proteins through activation of anorexigenic pathways (Journel et al, 2012; Westerterp-Plantenga 195 

et al, 2009; Fromentin et al, 2012; Davidenko et al, 2013) (figure 2).  196 

Rodents fed a high protein diet (above 25% energy) compared with rats fed a normal protein diet 197 

(10-20% energy) have a lower daily energy intake in relation to higher satiety and lower body weight 198 

gain associated with lower fat mass without a difference in lean mass (Jean et al, 2001; Bensaid et al, 199 

2003). Food intake depression induced by a high-protein diet is not due to palatability factor but to 200 

higher satiety in the rat (L’Heureux-Bouron et al. 2004). Under conditions of protein sufficiency, with 201 

a normal protein diet there is no specific motivation for protein intake, only the energy component is 202 

involved, and the homeostatic control relates mainly, or even only, to energy control. This effect is 203 

further reinforced with a generous intake of protein, which could explain the slight decrease in 204 

energy intake observed with a high protein diet compared with a normal protein diet. This could be 205 

through conditions of a lack of motivation for a protein-rich food sustained by inhibition of the 206 

reactivity of the reward system to protein-rich foods. Interestingly, in diet selection experiments, 207 

animals with the possibility to self-select macronutrients match their protein intake and even choose 208 
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an appropriate and specific quantity of energy from protein at a level most often about two times 209 

above their protein requirement defined from nitrogen balance (Jean et al, 2002; Makarios-Lahham 210 

et al, 2004; Azzout-Marniche et al, 2016). It can be hypothesized that at this relatively high level of 211 

intake of protein there is no appetite for protein.  212 

In rats, high protein feeding activates satiety-related neuronal pathways in the brainstem and 213 

hypothalamus, with neuronal activity increased in the nucleus of the solitary tract (NTS) and 214 

decreased in the ventromedial hypothalamus and amygdala (Faipoux et al, 2008; Darcel et al, 2005). 215 

Protein and amino acid ingestion induce the secretion of gut neuropeptides in different parts of the 216 

small intestine, such as Cholecystokinin (CCK) in the duodenum or peptide YY (PYY) and Glucagon like 217 

peptide-1 (GLP-1) in the ileum. Some of these gut hormones (mainly CCK and GLP-1) then activate the 218 

vagus nerve. The involvement of this pathway in protein sensing and signalling to the brain goes 219 

along with the finding that infusion of proteins into the duodenum activates vagal afferent fibers in 220 

rats in a CCK-dependent manner (Tomé et al, 2009). In rats, activation of noradrenergic neurons and 221 

the increased expression of c-Fos in the Nucleus of the Tractus Solitary has been observed after high-222 

protein feeding compared with normal protein feeding (Faipoux et al, 2008; Schwarz et al, 2010). In 223 

another study, high-protein feeding in mice potentiated the vagally mediated NTS response to CCK, 224 

as shown by increased c-Fos activation (Fromentin et al, 2012). In addition, a high-protein load 225 

compared with a normal protein load leads to decreased messenger RNA expression of the vagal 226 

receptor of orexin-1 in nodose ganglia (Journel et al, 2012). 227 

High protein feeding is associated also with low ghrelin and high leptin plasma concentrations, and 228 

with low NPY and high POMC levels in the hypothalamus (Chaumontet et al, 2018). High-protein 229 

diets have been shown to regulate both catabolic and anabolic neuronal pathways in the arcuate 230 

nucleus. Proteins inhibit anabolic neuronal signalling (decreased NPY and agouti-related protein 231 

mRNA levels) and activate the catabolic signaling (POMC neurons producing a-melanocyte-232 

stimulating hormone) in the hypothalamus (Morrison et al, 2007; Kinzig et al, 2007; Faipoux et al, 233 

2008). A manganese-enhanced magnetic resonance imaging study showed that mice adapted to a 234 

high protein diet compared with a high carbohydrate diet and have lower basal activation in the 235 

hypothalamus, particularly in the paraventricular nucleus and the lateral hypothalamus (Zeeni et al, 236 

2010). This is associated with lower orexin neuron activity in the lateral hypothalamus (Journel et al, 237 

2012). Proteins are thought to stimulate satiety centers (the Nucleus of the Tractus Solitary and the 238 

arcuate nucleus), but also to reduce reward mechanisms in the brain.  In rats, the satiety effect of 239 

proteins is associated with a decrease in blood-oxygen-level-dependent signal (the blood-oxygen-240 

level-dependent contrast imaging the change in blood flow related to energy use by brain cells), 241 

specifically in the amygdala, which is a part of the limbic system and involved in the memory of 242 
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emotional reactions, including sensory stimuli and appetitive conditioning (Min et al, 2011). Basal 243 

neuronal activation in the Accumbens Nucleus after a meal is lower in high protein fed animals 244 

compared to normal protein fed animals with a lower sensitivity of dopamine-dependent reward 245 

pathways to protein (Chaumontet et al, 2018).  246 

High-protein diets have been proposed to prevent or treat obesity by improvements in body weight 247 

management through modulations in energy metabolism, appetite, and energy intake (Westerterp-248 

Plantenga et al, 2009; Leidy et al, 2015). In humans, higher protein preloads increase fullness ratings 249 

more than lower protein preloads (Dhillon, et al, 2016) and there is a protein threshold of at least 30 250 

g protein to elicit satiety responses (Paddon-Jones D, Leidy, 2014). In overweight “breakfast skipping” 251 

adolescent girls, the addition of breakfast, particularly one rich in protein, led to reductions in brain 252 

activation responses to food stimuli in limbic regions associated with food motivation and reward 253 

(notably in the hippocampus, amygdala, anterior cingulated, and parahippocampus), and appeared 254 

as a useful strategy to improve satiety, reduce food motivation and reward, and improve diet quality 255 

(Leidy et al, 2011, 2013). These data indicate that activation of specific brain regions in the 256 

corticolimbic system are involved in the response to protein intake and that a high-protein diet leads 257 

to reduce reward-driven eating behavior. Accordingly, ingesting high-protein v. high-carbohydrate 258 

food differentially affects liking and wanting task-related brain signalling and subsequent 259 

macronutrient intake (Born et al 2013). In an intervention study in overweight and obese subjects 260 

that assessed the effects of a weight loss and subsequent weight maintenance period, changes in 261 

food reward-related brain activation were inversely associated with protein intake and dietary 262 

restraint during weight maintenance after weight loss and positively associated with changes in body 263 

weight and body-fat percentage (Drummen et al, 2018).  264 

Conclusion 265 

Protein status is tightly controlled and influences protein and energy metabolism but also protein 266 

and energy intake through reward driven sensitivity and an appetite for protein that participates in 267 

maintaining or restoring an adequate protein intake. With a status of protein deficiency induced by a 268 

protein deficient diet there are both a specific appetite for protein leading to a preference for 269 

protein-rich foods and also a higher motivation for foods that can lead to an increase, according to 270 

dietary conditions, in energy intake that is however compensated for in part by a concomitant 271 

increase in energy expenditure. The relation between protein intake, energy intake and energy 272 

expenditure is complex and it is likely that a low protein diet induces a specific increase in energy 273 

expenditure even in the absence of hyperphagia. When the protein content of the diet is increased in 274 

previously food restricted subjects, hyperphagia, reward driven sensitivity, an appetite for protein, 275 
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and high energy expenditure progressively decrease and are no longer observed when protein status 276 

is restored and protein intake is at a level meeting or even above protein and amino acid 277 

requirement as determined from nitrogen balance. This is particularly observed with a high-protein 278 

diet that reduces the reward-driven motivation for food and for protein, an effect associated with 279 

the satiating effect of protein. These processes involved in the control of the protein content of diets 280 

that efficiently allow maintaining an adequate protein status, are associated with complex 281 

interactions between peripheral and central signals that remains incompletely understood. It 282 

remains to identify the primary and secondary signals of protein and amino acid deficiency, how 283 

these primary and secondary mediators and signals to trigger a cascade of activation at the central 284 

level leading to the modulation of the reward system, what is the learned association between 285 

protein deficiency and central sensation and perception, and how these processes induce a 286 

conditioned preference for protein to adapt protein intake when needed. In addition, further 287 

research on how a low dietary protein diet could be used in the control of food intake, including the 288 

relation with thermoregulation, represents also an interesting question.  289 
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Legend to figures 501 

Figure 1: Protein deficiency is associated with a cascade of events from the periphery to the brain 502 

that involves lower amino acid concentrations, enhanced fasting ghrelin, enhanced FGF21, lower 503 

leptin, lower insulin, lower IGF1, enhanced hypothalamic NPY, and enhanced activity of the reward 504 

system in response to protein intake. FGF21, Fibroblast growth factor 21; CRH, corticotropin 505 

releasing hormone; NPY, neuropeptide Y; POMC, Proopiomelanocortin. 506 

Figure 2: Adequate to High Protein diet is associated with peripheral and central signals that involve 507 

enhanced amino acid concentration, enhanced gut neuropeptide CCK, GLP1 and PYY, enhanced 508 

plasma insulin and IGF1, low plasma FGF21, enhanced NTS activity, enhanced hypothalamic POMC 509 

level, low hypothalamic NPY level, low reward system activity in the Accumbens Nucleus. CCK, 510 

Cholecystokinin; GLP1, Glucagon like peptide 1; PYY, Peptide YY; FGF21, Fibroblast growth factor 21; 511 

CRH, corticotropin releasing hormone; NPY, neuropeptide Y; POMC, Proopiomelanocortin; NTS, 512 

Nucleus of the Tractus Solitary. 513 
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