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Heartbeat Dynamics Analysis under Cold-Pressure Test using Wavelet
p-Leader Non-Gaussian Multiscale Expansions

V. Catrambone*!, H. Wendt?, E. P. Scilingo!, R. Barbieri®, P. Abry?, and G. Valenza'

Abstract— Multiscale and multifractal (MF) analyses have
been proven an effective tool for the characterisation of heart-
beat dynamics in physiological and pathological conditions.
However, pre-processing methods for the unevenly sampled
heartbeat interval series are known to affect the estimation
of MF properties. In this study, we employ a recently proposed
method based on wavelet p-leaders MF spectra to estimate
MF properties from cardiovascular variability series, which
are also pre-processed through an inhomogeneous point-process
modelling. Particularly, we exploit a non-Gaussian multiscale
expansion to study changes in heartbeat dynamics as a response
to a sympathetic elicitation given by the cold-pressor test. By
comparing MF estimates from raw heartbeat series and the
point-process model, results suggest that the proposed mod-
elling provides features statistically discerning between stress
and resting condition at different time scales. These findings
contribute to a comprehensive characterization of autonomic
nervous system activity on cardiovascular control during cold-
pressor elicitation.

I. INTRODUCTION

Human cardiovascular dynamics is known to be the out-
put of a nonstationary nonlinear system [1]-[3], probably
because of the multiple interaction mechanisms with other
physiological systems including the nervous and respiratory
ones. Such an interaction occurs at functional, anatomi-
cal, and biochemical levels, thus motivating the scientific
community to investigate signal processing methods going
beyond linearity defined in the time and frequency domains
[1], [3]. Common nonlinear estimates include entropy rates
and non-Gaussian metrics [2]-[5], as well as multiscale and
fractal indices [2], [3], [6], [7].

Indeed, heartbeat dynamics has been proven to display
time-varying singularity behaviours, thus going beyond a
simple self-similarity characterized by a single Hurst expo-
nent. A comprehensive assessment of such cardiovascular
dynamics is provided by the multifractal (MF) spectrum,
capturing transient regularity fluctuations and local non-
Gaussian structures [8]. The MF spectrum can be estimated
by different multiscale formalisms, the wavelet transform
modulus maxima method [9] and the MF Detrended Fluctu-
ation Analysis [10] being often used examples. More recent
state of the art MF analyses rely on discrete wavelet trans-
forms and include the so-called wavelet leader multifractal
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formalisms [11] and its generalization using p-leaders [12].
Recently, it has been proposed to use such wavelet p-leader
analyses as the basis for defining a family of nonlinear
indices characterizing non-Gaussian dynamics [13], without
the need of a strict power-law models.

To uncover the potential physiological meaning of MF
estimates from heartbeat dynamics, autonomic manoeuvres
including tilt-table test, handgrip, lower body negative pres-
sure, Valsava manoeuvre, or cold-pressor test (CPT) maybe
employed. Particularly, CPT is an experimental cold stim-
ulus, widely exploited in clinical studies as stress test (see
[14]-[16] for further details). Despite CPT typically provokes
a sustained increasing in the blood pressure and a vaso-
constriction [15], the response of the heart rate can vary
broadly, being reported to increase or stay stationary in
different studies [16]. Nevertheless, a comprehensive charac-
terization of autonomic nervous system activity on cardiovas-
cular control during CPT elicitation including MF quantifiers
is still missing. To this end, we aim to exploit a wavelet
p-leader analyses to obtain nonlinear indices characterizing
non-Gaussian heartbeat dynamics during CPT.

Recently we have proven the reliability of a multiscale
MF analysis on heartbeat dynamics when properly com-
bined with inhomogeneous point-process modelling [6].
This model interpolates the heartbeat interval series through
physiologically-plausible probability density functions char-
acterizing and predicting the timing of each event [17].
Therefore, the unevenly spaced heartbeat intervals became
observations of a state-space model in the continuous time,
representing cardiac dynamics at each moment in time.

Accordingly, we aim to discern between CPT and resting
sessions through multiscale non-Gaussian p-leader expansion
of raw heartbeat data, as compared with point-process inter-
polated heartbeat series. More specifically, we investigate the
combined use of novel non-Gaussian multiscale expansions
and the point process model for the characterization of heart-
beat during CPT [14], [15], [18], [19], which is considered
as a sympathetic stress and, consequently, may induce an
indirect baroreflex activation.

We focus on the time course of the first-order moment
(mean) derived from the point process model, exploiting a
dataset of 24 right-handed healthy volunteers undergoing to
resting and CPT sessions. Our results indicate that multiscale
non-Gaussian indices calculated on the time series recon-
structed by point process model reveal changes to which
analyses applied directly on HRV series are blind.



II. MATERIALS AND METHODS
A. Experimental Setup

Thirty right-handed healthy subjects (15 males, 26.7 years
on average) voluntarily took part to the experiment after
signing informed consent. Signals of six participants were
rejected due to significant artefacts recordings. The exper-
imental protocol comprehended a resting state of 3 min,
followed by a CPT session where the subjects were guided
by the experimentalist to submerge their non-dominant hand
(i.e. the left one), up to the wrist, in iced water. The
solution was maintained at a temperature between 0°C-
4 °C. Experimentalist asked to the participants to hold their
hand for up to 3 min, the average time threshold before
pain elicitation in healthy people [15]. In case of early
pain, subjects were allowed to pull off their hand thus
finishing the CPT and moving to the next protocol phase. The
experimental procedures were approved by the University of
Pisa ethical committee. More details are in [18].

Throughout the protocol, a set of physiological signals
were gathered, including one-lead ECG sampled at 500Hz.
Throughout the experiment, volunteers were sat on a com-
fortable chair, to minimize movements and to achieve hemo-
dynamic stabilisation.

B. Point-Process Models of Heartbeat Dynamics

1) Model: Point-process (PP) interpolation is achieved
using a parametrized linear combination of the RR time
interval series. For ¢t € (0,77, the observed time window,
and 0 < up < - < U < Uy < o < ug < T
the time events, we define N(t) = max{k : ux < t} as
the associated counting process sample path. Its derivative,
dN(t), is a continuous-time function, that is dN(t) = 1
when there is an event, and dN () = 0 otherwise. The left
continuous sample path is formulated as N(¢t) = N(t7) =
lim, ;- N(7) = max{k : up <t}

Given the ECG, and the R-wave events {u;}7_,, RR; =
u;—uj—1 > 0 indicates the 4" R-R interval. With the
assumption of history dependence, the waiting time t—u;
probability distribution for the next R-wave event behaves
as an inverse Gaussian model [17]

F(tHE(1) = {zw(?—(tlj)?)] 5

_léo(t)[t - uj - H(taHtaf(t))]Q
<o {3 )

with j = N(t) the index of the previous R-wave event
precedent to time f.

Here, we exploit the formulation in which the time-varying
statistic moment of the first-order (mean) y of the distribution
is defined as:

P
HRR(t,Ht,g(t)) = Y% + Z’Yl(zvt)RRﬁ(t)fl (2)
i=1
with H; = (’U,j,RRj,Rijl,...,RR,j,p+1), f(t) =
[€o(t),v0(t), 71 (1,¢), ..., 71(p, )] the vector of the instan-
taneous parameters, and &y(t) > 0 the inverse Gaussian
distribution’s shape indexes.

A more comprehensive description if this method can be
found in [17] and references therein.

2) Parameter Estimation, Model Selection, Goodness-of-
Fit: We exploit the Newton-Raphson procedure to compute
the local maximum-likelihood estimate, needed to extract
the vector of parameters £%(t). The procedure started at
time ¢ with the antecedent local maximum-likelihood es-
timate at time ¢ — A, since the presence of significant
overlapping between close local likelihood intervals. The
choice of the optimal order {p} was performed exploiting the
Akaike Information Criterion, and by prefitting the PP model
goodness-of-fit with a subpart of the signal [17], based on the
Kolmogorov-Smirnov (KS) test and associated KS statistics
[17].

Given the knowledge of precedent history of the signal,
the model, due to its recursive and causal nature, can predict
new observations, independently at each iteration, thus being
continuously updated without priors.

Therefore, each time instant RR; is tested w.r.t. one
instance of a time-varying model that has been trained using
points {RR;} with j < k.

The independence of the model-transformed intervals are
tested considering the autocorrelation plot [17]. Once the
order {p} is defined, the starting model coefficients are
estimated by the least squares method [17].

C. Multifractals and non-Gaussian Multiscale analyses

1) Discrete wavelet transform: First, the discrete wavelet
transform coefficients are computed as inner products of
the data X with an orthonormal collection of functions
V() = 2779(277t — k) ; 1) oo Obtained by translations
to position 27k and dilatations to scales j of an oscillatory
reference pattern with narrow time-frequency support, the
mother wavelet . dx(j, k) = (¢, X) (cf. [20]). Self-
similarity assumes modelling the wavelet spectrum as

1 :

Sux(Gig=2) = — ldx(j,k)]> ~ K2*" (3)

i =1
with power law exponent controlled by the Hurst parameter
H (and n; the number of dx(j, k) at scale 27). Estimates
of H can thus be obtained via regressions in log-coordinates
[21]. Similar to the Fourier spectrum, Sy, (j, ¢ = 2) quanti-
fies energy distribution across frequency bands and H hence
captures linear data properties only [7], [21].

2) Multifractality and wavelet p-leaders: Replacing the
sole parameter H in self-similar models by a whole collec-
tion of local self-similarity exponents H = h(t), multifrac-
tality provides a richer and more flexible model described
by the multifractal spectrum D(h), which quantifies the
temporal repartition of the level sets of h(t) [7], [11].
Estimation of D(h) from data requires substituting a range of
positive and negative moments instead of ¢ = 2 in (3), and
replacing wavelet coefficients with wavelet p-leaders o ),
defined as local ¢P norms of wavelet coefficients in a narrow
temporal neighbourhood over all finer scales

, y 1/p
Waw =22, 27 laxr) " @



with \; . = [k27, (k+1)27) and 3); x = Unnf—1,0,13 Ajskm-
An estimate of D(h) can then be obtained as follows: The
scale-wise cumulants of log-leaders behave as

CP(j) = Cumy,log (2 (5)) = &, + cmlog(27), (5)

where ¢; quantifies the mode of D(h), and ca, c3, ¢4 its
width, asymmetry, flatness, respectively, etc (see e.g. [11] and
references therein for details on multifractal analysis). While
c1 is closely related to H and hence linear data properties,
ca, C3, c4 are purely nonlinear features.

3) Non-Gaussian Multiscale Representation: Building on
(5), [13] proposed the multiscale non-Gaussian expansion

) =3 log<se;2<j,fgi_1>> ) 1og<se;2<;,q2i>>’ ©

=1

where Sy, (4, qi) = % v ¢ (j, k)% It can be shown
that the coefficients L27(j) allow to probe higher-order
cumulants, and thus non-Gaussian properties:

m—1

> ZP qm.fl — Gy,
Lgp(j) _ Z Cm(]) i=1 127—1 24 (7)
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where the moments ¢; can be of low order their precise
choice to tune the sensitivity of L2¥(j) to different natures
of departure from Gaussian, see [13] for details. Moreover,
since C'(j) does not appear in (7), L2 (j) quantifies only
nonlinear data properties.

III. EXPERIMENTAL RESULTS

Experimental results include LQ1 and LQ?2 indices from a
non-Gaussian multiscale expansion of raw heartbeat interval
series, as well as mean-RR from the point-process modelling,
at different time scales. A statistical comparison between
resting and CPT sessions was performed using Wilcoxon
non-parametric tests for paired data, whose null hypothesis
refers to the equal medians between groups.

A. Non-Gaussian Multifractal Analysis on raw Heartbeat
series

The multifractal analysis is performed using a Daubechies
wavelet, with Ny = 3 vanishing moments, and two non-
Gaussian multiscale expansion coefficients Lgp (s), defined
in TABLE I, and addressing different features of departure
from Gaussianity.

TABLE I: Non-Gaussian expansion indices

\ moments q; cumulants C'y, active in (7)

LQl (0.25,2) m > 2
any departure from Gaussian

LQ2 (-2,2) m =24, ..

symmetric properties

Figures 1 and 2 show the performance of LQ1 and LQ2
indices in discerning resting and CPT sessions at different
scales using raw heartbeat interval series. On both indices,
a monotonic increasing behaviour w.r.t. time scales can be
observed at each experimental conditions, indicating that

LQ1,
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Fig. 1: LQ1 calculated from raw heartbeat interval series
during resting (blue line) and CPT (red line) sessions.
Values indicate the median across subjects, whereas vertical
bars refer to the median absolute deviation. No statistical
differences were found at any scale.
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Fig. 2: LQ2 calculated from raw heartbeat interval series
during resting (blue) and CPT (red) sessions. Values indicate
the median across subjects, whereas vertical bars refer to the
median absolute deviation. No statistical differences were
found at any scale.

the intrinsic non-Gaussian nature of heartbeat dynamics
tends to become more Gaussian at higher time scales. Also,
LQ1 and LQ2 indices tend to be higher during the CPT
phase, although no significant statistical difference has been
observed at any time scale.

B. Non-Gaussian Multifractal Analysis of mean-RR from
Point Process model

Figures 3 and 4 show the performance of LQ1 and LQ2
indices in discerning resting and CPT sessions at different
scales using meanRR from PP modelling of heartbeat dy-
namics. On both indices, a monotonic increasing behaviour
w.r.t. time scales can be observed at each experimental
conditions, suggesting that the intrinsic non-Gaussian nature
of heartbeat dynamics tends to become more Gaussian at
higher time scales. At all time scales, LQ1 and LQ2 indices
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sec
Fig. 3: LQI calculated on mean-RR series from PP model
during resting (blue) and CPT (red) sessions. Values indicate
the median across subjects, whereas vertical bars refer to
the median absolute deviation. Asterisks indicate statistically

significant differences between sessions.
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Fig. 4: LQI calculated on mean-RR series from PP model
during resting (blue) and CPT (red) sessions. Values indicate
the median across subjects, whereas vertical bars refer to
the median absolute deviation. Asterisks indicate statistically
significant differences between sessions.

are statistically higher during the CPT than resting. Results
also suggest different scaling behaviours at scales higher than
0.4s.

IV. DI1SCUSSION AND CONCLUSION

We characterized cardiac multifractal behaviours after
a cold-pressure test, also investigating the role of pre-
processing methods for heartbeat interval series. To this
end, we derived recently proposed non-Gaussian multiscale
indices from unevenly-spaced heartbeat dynamics, as well
as from high-resolution time series gathered from inhomo-
geneous point-process models. Data were recorded from 24
healthy right-handed volunteers undergoing a sympathovagal
elicitation through CPT, comparing results with respect to
resting conditions. From the best of our knowledge, the
investigation of multifractal estimates on heartbeat dynamics
following a CPT is a novelty of this study, especially
considering the recently proposed non-Gaussian multiscale
representation from wavelet p-leaders [13].

Results indicate that non-Gaussian indices of heartbeat
dynamics tend to a zero value at higher scales, thus high-
lighting a non-Gaussian-to-Gaussian transition going from
low-to-high scales. Results also point to the crucial role
of a physiology-based pre-processing method for heartbeat
series, particularly performed through inhomogeneous point-
process models. In fact, statistical differences, yet expected,
between resting and CPT sessions were associated with
point-process derived series exclusively, while no significant
differences were found on raw heartbeat data. This finding
is in agreement with previous evidences [6] showing the
importance of a proper interpolation prior to MF analysis.

We found that the absolute values of LQIl and LQ2
indices are higher at rest than CPT. As MF indices are
mainly related to the multiplicative and nonlinear nature
of a stochastic process, our results indicate that resting
state heartbeat dynamics are more non-Gaussian distributed
that CPT. At a speculation level, this might be related to
the indirect haemodynamic response to CPT (i.e. increasing
systolic and diastolic blood pressure, as well as mean arterial
pressure [16]), which may suppress some of the nonlinear
interactions occurring at the sinus node level [1].

Limitation of our study are mainly related to the study of
one variable from the point-process model, so other model-
derived indices will be investigated in the future.

In conclusion, our study exploits the recently proposed
wavelet p-leaders MF expansion [13] as a powerful tool to
detect non-Gaussian properties in heartbeat series, particu-
larly during CPT elicitations, and supports the important role
of inhomogeneous point-process interpolation prior to MF
estimates.
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