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Hybrid regularized Lattice-Boltzmann modelling of

premixed and non-premixed combustion processes.

M. Tayyaba, S. Zhaoa, Y. Fenga, P. Boivin1a

aAix Marseille Univ, CNRS, Centrale Marseille, M2P2, Marseille, France

Abstract

A Lattice-Boltzmann model for low-Mach reactive flows is presented, built

upon our recently published model (Comb & Flame, 196, 2018). The ap-

proach is hybrid and couples a Lattice-Boltzmann solver for the resolution

of mass and momentum conservation and a finite difference solver for the

energy and species conservation. Having lifted the constant thermodynamic

and transport properties assumptions, the model presented now fully ac-

counts for the classical reactive flow thermodynamic closure: each component

is assigned NASA coefficients for calculating its thermodynamic properties.

A temperature-dependent viscosity is considered, from which are deduced

thermo-diffusive properties via specification of Prandtl and component-specific

Schmidt numbers. Another major improvement from our previous contribu-

tion is the derivation of an advanced collision kernel compatible of multi-

component reactive flows stable in high shear flows. Validation is carried

out first on premixed configurations, through simulation of the planar freely

propagating flame, the growth of the associated Darrieus-Landau instability

and three regimes of flame-vortex interaction. A double shear layer test case
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including a flow-stabilized diffusion flame is then presented and results are

compared with DNS simulations, showing excellent agreement.

Keywords: lattice Boltzmann; reacting flows; combustion; detailed kinetics

1. Introduction

Motivated by the rapid development of Lattice-Boltzmann (LB) methods

in the field of low-Mach external aerodynamics and aeroacoustics [1], and

particularly its potential as an engineering tool [2–7] we recently proposed a

hybrid LB framework able to tackle combustion in low-Mach flows [8] in line

with the quest of extending the LB capabilities to reactive flows [9–15].

Based on nearest neighbor lattices, the model previously proposed in [8] is

easy to implement, but was derived under constant heat capacity and single-

step chemistry assumptions, a stark limitation compared to state-of-the-art

combustion softwares. A second limitation resides in the simple collision

model, merely derived from the BGK model, known to have serious limita-

tions in complex flows [16–22].

This contribution aims at lifting these two limitations as to make the

model fully functional for the simulation of reactive flows, including detailed

chemistry description.

Lifting the first limitation is attained through integration of the classical

thermodynamic closure based on NASA polynomial coefficients [23], as used

in Chemkin [24], or Cantera [25]. Detailed chemistry is also accounted for,

through a 12-step mechanism for H2-air combustion [26] derived from the San

Diego mechanism [27]. Each of the nine species is assigned a Schmidt num-

ber relating its diffusion properties with a temperature-dependent viscosity
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coefficient, and thermal diffusion is defined via a constant Prandtl number

as in [28].

The second limitation is equally lifted, after derivation of a new collision

model compatible with thermal, multicomponent flows. This was achieved

following Jacob et al [29], who recently proposed a robust collision model in

the context of single-component athermal LBM showing promising results

for a wide range of applications [30–34]. As further discussed in this study,

the collision kernel adopts a regularization strategy [35] in which the non-

hydrodynamic moments of the distribution function (or ghost modes) relax

infinitely fast to equilibrium. This strategy is similar to the popular Multiple

Relaxation Time (MRT) models [36–39], in which these modes relax at a

finite rate.

Validation is carried out by comparisons with Cantera computations

[25] for the planar premixed flame propagation. To further demonstrate

the capability of the model in premixed configurations, the Darrieus-Landau

instability is simulated, and the associated growth-rate is compared with

asymptotic descriptions [40–42], showing good agreement for the linear onset

of the instability. To conclude the validation regarding premixed combustion,

vortex-flame interactions are simulated, allowing to recover three regimes

classically observed experimentally and numerically [43–47].

Next, the capabilities of the model are presented through comparison

with Direct Numerical Simulations (DNS) on a double periodic shear-layer

including auto-ignition and establishment of a diffusion flame in between the

streams. That test case – besides being highly challenging numerically –

highlights the accuracy of the proposed model at a reasonable CPU cost.
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The paper is organized as follows. First, the LB combustion model is pre-

sented, with extensive implementation details. The model is then validated,

in premixed and non-premixed combustion test cases. Following the valida-

tion, cost and stability issues are discussed prior to drawing conclusions.

2. Governing equations: continuous formulation

2.1. Mass and momentum conservation: Lattice Boltzmann approach

The Boltzmann equation models the gas kinetics with the particle ve-

locity distribution function (VDF) f(x, ξ, t), which presents the probability

density of finding (virtual) gas particles at position x with velocity ξ at

time t. Using the single-relaxation-time collision model of Bhatnagar-Gross-

Krook (BGK) [48], the evolution of VDF through phase space and time can

be written as
∂f

∂t
+ ξα

∂f

∂xα
= −1

τ
(f − f eq) , (1)

where τ is the relaxation time associated to the dynamic viscosity of the

fluid and f eq is the Maxwell-Boltzmann equilibrium distribution function

associated to the local thermodynamic state

f eq =
ρ

(2πrT )D/2
exp

(

−|ξ − u|2
2rT

)

, (2)

with ρ and u being respectively the mixture mass volume and velocity,

D the spatial dimension, T the temperature and r the gas constant of the

mixture

r = R/W. (3)

R = 8.3145 J/mol/K is the universal gas constant and W is the molecular

weight. In principle, (2) is valid for mono-constituent gas, for which the
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molecular weight is constant. Here, however, we’ll consider an identical equi-

librium distribution function for multi-component gas mixtures introducing

the mean molecular weight

W =
1

∑

k Yk/Wk
, (4)

where Yk is the k-th component mass fraction and Wk its molecular weight.

It will be shown further that the multi-component macroscopic conservation

equations are nonetheless recovered.

Under this formalism, the macroscopic variables ρ and u are obtained

from the VDF through

ρ =

∫

fdξ ,

ρu =

∫

fξdξ . (5)

The Chapman-Enskog (CE) expansion [1] in the low-Mach number limit

leads to the following macroscopic mass and momentum equations

∂ρ

∂t
+

∂

∂xα
(ρuα) = 0,

∂ρuα

∂t
+

∂

∂xβ
(ρuαuβ) = − ∂p

∂xα
+

∂Tαβ

∂xβ
,

(6)

where

p = ρrT (7)

is the classical ideal gas thermodynamic closure, and Tαβ is the viscous stress

tensor

Tαβ = 2µSαβ = µ

[

∂uβ

∂xα

+
∂uα

∂xβ

]

, (8)

with µ the dynamic viscosity. Note that the bulk viscosity is neglected, as

often in the combustion community [49, 50].
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The CE expansion, provided in AppendixA, differs from the classical

one [1] in that the perfect gas equation of state is recovered instead of the

athermal EOS. It also differs from our recent study [31] as (i) the gas is

multi-component, e.g. r in (3) is not a constant and (ii) additional equations

for gas components and energy are required to close the system, to account

for non-unity Prandtl and Lewis numbers, as well as source terms between

the gas components. AppendixA should be read along with Section 3, as it

provides most technical details as well as a detailed discussion.

2.2. Energy and species conservation

Mass conservation of species k is considered following

ρ
∂Yk

∂t
+ ρuα

∂Yk

∂xα
=

∂

∂xα
(−ρVk,α) + ω̇k , (9)

where ω̇k is the net chemical production rate of species k, and Vk,α is its

diffusion velocity [49].

The energy conservation is considered by the balance equation of the

enthalpy. Following the multi-component ideal gas thermodynamic closure,

the enthalpy of a gas mixture consisting of N species is defined as

h =
N
∑

k=1

hkYk , hk =

∫ T

T0

Cp,k(T )dT +∆h0
f,k, (10)

where Cp,k(T ) is the constant pressure heat capacity of species k at tem-

perature T , and ∆h0
f,k its formation enthalpy [49]. The conservation law of

enthalpy reads

ρ
∂h

∂t
+ ρuα

∂h

∂xα
=

Dp

Dt
− ∂qα

∂xα
+ Tαβ

∂uα

∂xβ
. (11)
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where Dp
Dt

= ∂p
∂t

+ uα
∂p
∂xα

is the substantial derivative of pressure, usually

neglected in low-Mach combustion applications. The heat flux qα reads

qα = −λ
∂T

∂xα
+ ρ

N
∑

k=1

hkYkVk,α, (12)

with λ the thermal conductivity.

3. Model implementation

3.1. Discretization on standard lattices

Following classical LB models, the particle velocity ξ in Eq. (1) is dis-

cretized as a finite dimension velocity space. Our choice lies with nearest

neighbors lattices (D2Q9, D3Q19) for their low associated cost. Such dis-

cretization strategy being found throughout the LBM literature (e.g. [51]),

let us simply indicate that the choice of lattice DnQm set defines, besides

the discrete velocities ci (i = 1, · · · , m), the lattice sound speed cs and wi,

the Gaussian weights associated to each discrete velocity ci.

With these definitions,

fi(x, t) =
wi

ω(ci)
f(x, ci, t), (13)

and Eq. (1) can be written at the accuracy of the quadrature as

∂fi
∂t

+ ciα
∂fi
∂xα

= −1

τ
(fi − f eq

i ) . (14)

This equation is further discretized in space and time with second-order

accuracy [51] as

f i(xα + ciαδt, t + δt) = f i(xα, t)−
δt

τ
[f i(xα, t)− f eq

i (xα, t)], (15)

7



where the time step δt is classically linked to the spatial discretization

through definition of the set of lattices DnQm [1]. Note that introduction of

f i and τ in (15) as

f i = fi −
δt

2
Ωi = fi −

δt

2

[

−1

τ
(fi − f eq

i )

]

, (16)

and

τ = τ +
δt

2
, (17)

is a necessary change of variable to ensure the second-order accuracy in time

[51]. In practice, all physical quantities are normalized in the LBM code

using the grid size δx for length, the time step δt for time and a reference

density ρ0 (combined with δx) for mass.

3.2. Hybrid regularized collision model

Single relaxation time models often lead to numerical instabilities in

shear-flows [52], and are unable to tackle the test case of Fig. 5. To increase

numerical stability in such flows, a possibility is to include multiple relaxation

times models (see, e.g. [36–39]), in which relaxation times for the higher-order

moments (neither corresponding to the mass conservation nor the momen-

tum) are carefully tuned to optimize the stability properties. On the same

idea, it was later proposed [17] to simply suppress the non-equilibrium part of

these modes, in so-called regularized collision kernels. Here a regularization

step is adapted from [16, 18, 29] to the multi-component flow model. The

regularization strategy reconstructs f i before collision by considering

f i = f eq
i + f

neq

i , (18)

with both the equilibrium (f
eq

i ) and off-equilibrium part (f
neq

i ) of the VDF

confined in the Hermite basis. Following [8, 18, 29], the equilibrium VDF are
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truncated up to third order to reduce the non-Galilean defect

f eq
i = wi

[

a(0),eq +
a
(1),eq
α

c2s
H(1)

α (ci) +
a
(2),eq
αβ

2c4s
H(2)

αβ(ci) +
a
(3),eq
αβγ

6c6s
H(3)

αβγ(ci)

]

,

(19)

with the Hermite polynomial tensors associated to each discrete velocity ci

defined as

H(1)
α (ci) = ciα ,

H(2)
αβ(ci) = ciαciβ − δαβc

2
s ,

H(3)
αβγ(ci) = ciαciβciγ − c2s(ciδ)αβγ ,

(20)

and the associated equilibrium coefficients a(i),eq reading

a(0),eq = ρ, (21a)

a(1),eqα = ρuα, (21b)

a
(2),eq
αβ = ρ

[

uαuβ + cs
2 (θ − 1) δαβ

]

, (21c)

a
(3),eq
αβγ = ρ

[

uαuβuγ + cs
2 (θ − 1) (uδ)αβγ

]

, (21d)

where θ is the normalized temperature, defined as in our initial model [8]

θ =
rT

cs2
, (22)

and the tensor uδ reads

(uδ)αβγ = δαβuγ + δγβuα + δαγuβ . (23)

Note that, consistently with the Hermite space, the lattice sound speed is

linked to the space-time discretization as cs ≡ δx/δt/
√
3 [53].

The non-equilibrium part of VDF are truncated up to second order to

recover a correct viscous tensor [29]

f
neq

i =
wia

(2),neq
αβ

2c4s
H(2)

αβ(ci). (24)

9



In the present regularized collision model, the off-equilibrium coefficients

a
(2),neq
αβ are evaluated through two different approximations, hence its given

name: hybrid regularized collision model [29].

The first approximation arises from direct projection of f
neq

i as

a
(2),neq,PR
αβ =

m
∑

i=1

[

(

f i − f eq
i

)

H(2)
αβ(ci)

]

(25)

while the second approximation is computed as to best approximate the

viscous tensor Sαβ in Eq. (8). That term is assessed via finite difference

method (hence the FD subscript)

a
(2),neq,FD
αβ = −2pτSFD

αβ . (26)

As shown by Jacob et al. [29] and further demonstrated in this article, ex-

cellent numerical stability of the collision model is obtained through combi-

nation of (25) and (26) as

a
(2),neq
αβ = σa

(2),neq,PR
αβ + (1− σ)a

(2),neq,FD
αβ (27)

where σ ∈ [0, 1] is a free parameter.

3.3. Correction term and final model

Last, let us introduce an additional forcing term to be included in the

LBM equation (15). That correction corresponds to the deviation due to

defect of symmetry of lattices (D2Q9, D3Q19, D3Q27) on the third order

moment [8, 54], and reads

si =
wi

2c4s
H(2)

αα(ci)∂α
[

ρuα(3c
2
s − 3c2sθ − u2

α)
]

, (28)

10



affecting the LB equation (15) as

f i(xα + ciαδt, t + δt) = f eq
i (xα, t) +

(

1− δt

τ

)

f
neq

i +
δt

2
si. (29)

The correction term’s first two moments being mass and momentum pre-

serving, the reconstruction of the macroscopic variables from the distribution

functions remain unaffected:

ρ =
m
∑

i=1

f i, ρuα =
m
∑

i=1

ciαf i . (30)

Note that, as shown in [31], additional correction terms are necessary for

high-Mach flows with the D3Q19 stencil. They are neglected here as the

Mach numbers encountered remain moderate.

3.4. FD solver specifics

In parallel of the LB solver, we use a FD solver to solve the species (9) and

energy (11) conservation equations. The flowchart of the code is identical to

that presented in our initial model [8]. Through systematic testing of the

different finite differences methods, we retained the method presented in this

Section.

The advection-diffusion part of (9) and (11) (e.g. without source term)

is solved using the following strategy, arguably the simplest and most robust

one could think of:

1. The LB and FD solver use the same time-step, and first order forward

Euler integration is used. It is important to note that strong-stability-

preserving Runge-Kutta (SSPRK) methods [55] up to fourth order have

been implemented, with no apparent effect on the validations carried

out.
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2. Second order central difference operators are used for convection and

diffusion. Note that introducing 10% of first-order up-winding on the

convective operator was found to enhance numerical stability in high

shear flows (as in Section 5)

The chemical source term is applied through a Strang-method splitting

[56, 57], allowing the use of sub time-steps for the chemical integration when

necessary (as for an implicit chemical solver). Similarly, the diffusion term

may be easily split from the advection step, should it become necessary.

3.5. Boundary conditions

This model being new, future work is required to present implementation

of complex boundary conditions. Following our initial strategy [8], we picked

validation test cases requiring rather simple boundary conditions. Besides

the trivial periodic boundary condition of the double shear layer test case,

only basic velocity inlet and zero-gradient outlet boundary conditions were

necessary for this work.

A non-equilibrium bounce back scheme with a regularization procedure [17]

is employed at the inlets for the LB solver, allowing to set all velocity com-

ponents and the pressure (or density). (h, Yk) are hard-coded at inlets for

the FD solver accordingly with the target temperature and composition.

Outlets are treated as zero-gradient boundaries on microscopic distribu-

tion functions fi as well as h and Yk variables.

4. Premixed combustion validation test cases

Let us now present validations and discussions of the hybrid model pre-

sented above. To that aim, the model was implemented in the ProLB solver
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[18, 29, 54, 58] considering the following aspects:

Thermodynamic closure is ensured via the classical NASA polynomial

formulation for each gaseous constituent [23], as in Chemkin [24].

Viscosity is set via a temperature power-law (B.2).

Transport of heat and species are defined via constant Prandtl (B.1) and

individual Schmidt numbers (B.4), as done for instance in the AVBP

solver [28].

Chemistry for hydrogen-air is accounted for via a 12-step skeletal mecha-

nism [26] involving nine species (see Tab. B.4).

Details about these four points are gathered in AppendixB. Since they were

not necessary in the development of Sections 2 and 3, they may be easily

changed in future works.

The solver being based on the D3Q19 lattice, 1D results presented below

use periodic conditions along the y and z axis (with a single cell in either

direction), and 2D results use periodic conditions along the z axis. 3D results

will be presented in future publications.

4.1. 1D premixed flame

Let us now consider the standard freely propagating flame configuration,

following the setup of [8].

The computational domain is pseudo one-dimensional of length L = 10

mm, with grid size of 10−5m. At the left of the domain, the velocity is set

to an arbitrary value Uf , and the right boundary is left open (zero gradient).
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Periodic boundary conditions are applied to the other boundaries (corre-

sponding to the y and z directions). The time step is δt = 7.21× 10−9s.

Initial conditions consist of two half-domains initially at u = Uf , and

a sharp transition at L/2, separating the fresh and burnt gases. The left

side of the domain corresponds to the fresh gases, whereas the right side

corresponds to the burnt gases initialized at the corresponding Cantera-

computed thermo-chemical equilibrium – provided in Table B.5 of AppendixB.

As in our previous contribution [8], we measure the flame speed as

SL = lim
t→∞

(

Uf −
ρfUf − ρbUb

ρf − ρb

)

, (31)

where the subscript f represents fresh and b burnt state of the gases, re-

spectively the first and last cell of the computational domain. History of

this expression (31) is monitored until it converges to the flame velocity,

independently of the inlet velocity Uf [8].

The results obtained for Uf = 0 are compared with Cantera reference

computations in Fig. 1.a. The temperature and mass fractions profiles show

an excellent agreement, including for the minor species H and HO2, whose

profiles in the flame appear indistinguishable from the reference.

The dependence of SL with equivalence ratio is shown in Fig. 1.b, also

showing a good agreement – below 10−3 relative error at ϕ = 1 – besides

the important effective Lewis number variation for this range of equivalence

ratio [59].

4.2. 2D Darrieus-Landau instability

To further demonstrate the capabilities of our model, let us study the

intrinsic instability of the very flame presented above. The pseudo one-

dimensional computational domain is now extended to a fully two-dimensional
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Figure 1: Freely propagating flame: a) Temperature profile (thick line), H2 (△), O2 (▽),
H2O (∗), H (�), HO2 (◦) mass fractions. Fresh gases are in stoichiometric proportion, at
300K and atmospheric pressure. b) Variation with equivalence ratio of the corresponding
flame speed. Cantera reference (plain line), and present model (red dashed line).

domain with grid size of 10−5m. At t = 0, the 2D domain is initialized with

the profiles obtained from the 1D computation reported in Fig. 1.a. The front

position, defined as the maximum temperature gradient position is then per-

turbed with a wavenumber (k) of 600m−1. The evolution of the front position

is reported in Fig. 2.a.

Qualitatively, it is interesting to note that the evolution produces the

expected behavior, and that the coupling between the LB and FD solvers is

robust to more complex flame front shapes. More quantitatively, Figure 2.b

concludes the validation of this test case by comparing the growth rate in the

linear regime with the analytical solution [40–42]. As expected, the amplitude

A of the perturbation grows exponentially from its initial value A0 according

to

A = A0e
ωt, (32)

with ω the perturbation growth rate. Theory indicates that, in the linear
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Figure 2: 2-D Darrieus Landau instability. a) Representation of the expansion with interval
δt = 10−4s and k = 600m−1. The front is initially at x ≈4.5mm. The vertical line marks
the end of the linear regime depicted in plot b. b) Comparison of analytical (solid line) and
simulated growth rate (dashed line) in the linear region delimited ending at the vertical
line in plot a.

regime [40–42],

ω = SLk
−σ +

√
σ3 + σ2 − σ

σ + 1
, (33)

with k the wave number and σ = ρf/ρb = 6.822 the ratio between the fresh

and burnt gases density.

4.3. Flame-vortex interaction

Let us conclude the validation of the model for premixed combustion by

testing the classical flame-vortex interaction.

For this study, we will consider the propane-air single-step chemistry

C3H8 + 5O2 → 3CO2 + 4H2O detailed in our previous study [8]. Parameters

for the thermodynamic closure are the classical NASA polynomials [60], and

all species are assigned unity Lewis numbers

Sck = Pr = 0.682, ∀k. (34)

16



A two-dimensional 4mm×2mm domain is discretized (δx = 10−5m) and ini-

tialized with the results of a planar premixed flame computation at equiv-

alence ratio 0.8, corresponding to an expansion ratio of
ρf
ρb

= 7.16. The

pre-exponential factor is adjusted to obtain a flame speed of sL = 0.5m/s

and a flame thickness of δL = 0.25mm. Next, two counter rotational vortices

are added to the flow-field upstream of the planar flame as














ux = U0 − ǫ
(

y−y0
R0

)

exp

(

− (x−x0)2+(y−y0)2

2R2
0

)

,

uy = ǫ
(

x−x0

R0

)

exp
(

− (x−x0)2+(y−y0)2

2R2
0

)

,

(35)

where ǫ is the vortex strength, R0 the characteristic radius and (x0, y0) are

the coordinates of the vortex center. Three values of the vortex strength

ǫ = (5, 30, 65) were adopted, corresponding to weak, moderate and strong

interactions – referred hereafter as cases A, B and C. The initial distance of

the vortex center to flame is 0.5mm (= 2δL) at t = 0. A summary of the

initialization setup is provided in the sketch of Fig. 3.

Figure 3: Numerical set-up for the the premixed flame / vortex interaction simulations.

To characterize the three regimes (A, B and C), we measure the following

parameters at the instant the vortices start interacting with the flame:
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• Vm

sL
, with Vm the effective vortex strength,

• σ
δL

, with σ the effective vortex radius.

Following [44], the Karlowitz number is defined as the ratio of these quantities

Ka =
VmδL
sLσ

. (36)

The effective vortex strength, radius and Karlowitz number for the three

cases are reported in Table 1.

Vm/sL σ/δL Ka
Case A 3.80 1.32 2.88
Case B 20.00 1.16 17.24
Case C 52.00 1.12 46.43

Table 1: Effective vortex strength, radius and Karlowitz number for the three configura-
tions (A, B and C) of vortex – flame interaction.

Figure 4 presents the temperature contours as obtained with our model

at two successive instants (with the time normalized by δL/sL). Accordingly,

each case leads to very different topologies of interaction:

Case A Flame wrinkling appears and decays as the vortex intensity de-

creases.

Case B Moderate interaction leads to the formation of an unburnt gas

pocket, which detaches and burns at a later time.

Case C For strong vortices, a significant elongation of the unburnt region

appears into the burnt gases, before eventually separating and burning.

These observations are in line with the results reported in the literature [43–

47].
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Figure 4: Contours of the temperature in a premixed flame - vortex interaction. From top
to bottom: case A at t= 2.12 and t=2.83; case B at t=1.42 and t=1.80; case C at t=0.90
t=1.09.
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5. Non-premixed combustion in a double mixing layer

5.1. Design and numerical set-up of the test case

To illustrate the potential of the method, an ad-hoc test case illustrated

in Fig. 5 was adapted from the athermal test case presented in [52] to show

the stability of the collision model derived in Sec. 3.2. Doubly periodic shear

t = 0

Fuel

Oxidizer

Fig. 8

Fig. 9

tc

t = tc

tc

t = 2.tc

1000

1200

1400

1600

1800

2000

2200

Figure 5: Temperature contours for the double shear layer configuration at t = 0, t = tc,
t = 2.tc. The lines along which are plotted the profiles of Figs. 8 and 9 are indicated on
the initial condition.

layer appeared to be a reasonable choice as it is known to be challenging to

LB collision kernels [52], the classical BGK model almost always leading to

failure.

For the results to resemble the incompressible test case presented in [52],

we decided to keep the same initial velocity field, Reynolds number (30000)

and momentum ratio between the streams. Next, we set the initial temper-

ature and composition of the two streams so that a diffusion flame would

auto-ignite and stabilize in between (e.g. one oxidizer and one fuel stream,

as shown in Fig. 5). This test case was imagined to be as close as can be to

a jet diffusion flame, whilst keeping simple (periodic) boundary conditions.
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Under these considerations, we considered a [0, L] × [0, L] 2D domain,

with L = 5cm, in which initial conditions are fully defined through

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H2

(

1 + tanh
(

λ
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1
4
− | y
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− 1

4
|
)))

/2,

YO2
(x, y) = Y O

O2

(

1− tanh
(

λ
(

1
4
− | y

L
− 1

4
|
)))

/2,

YN2
(x, y) = 1− YH2

(x, y)− YO2
(x, y),

(37)

corresponding to the smooth profiles illustrated in the first contour of Fig. 5,

using the parameters summarized in Tab. 2. Note that use of these parame-

ters leads to a temperature of T F = 853K in the fuel stream and TO = 1200K

in the oxidizer stream. Using the fuel stream conditions, and following the

Y F
H2

28.5× 10−3

Y O
O2

266× 10−3

U0 96m s−1

p0 101 325Pa
ρ0 0.2926 kgm−3

ǫ 0.05
λ 80

Table 2: Physical parameters for the double shear layer test case.

definition proposed in [52], the Reynolds number can be obtained as

Re =
ρ0U0L

µ
= 30 000, (38)

using the fuel stream parameters from Table 2, and the viscosity obtained

from (B.2) at T F . Note that the alternative value of 37 300 may be obtained
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based on the less viscous oxidizer stream. It is also useful for the discussion

to define the convective time tc as

tc =
L

U0
, (39)

The flow evolution was simulated up to 2tc on a 10242 cartesian grid, using

both our hybrid LB solver and the DNS solver Ntmix [61], leading to the

temperature contours displayed in the second and third plots of Fig. 5.

Ntmix is an in-house parallel DNS flow solver developed at CERFACS,

Toulouse. Space is discretized through 6th or 8th order centered finite

differences schemes, and time integration is performed with a 3rd order

Runge-Kutta. Ntmix is coupled with a Chemkin version for the com-

putation of transport, thermodynamics and kinetics properties. The

simulations conducted for this work use the 8th order discretization,

mixture-averaged transport properties [62], the 12-step H2-air chem-

istry [26], and neglect the Soret effect.

For the results to be comparable with both codes, the pressure term in (11)

Dp
Dt

was approximated as ∂p
∂t

, as to obtain a good agreement on the pressure

and temperature fields in this confined configuration.

5.2. Validation of the velocity field

In order to validate the flow-field, we successively simulated the cold-

flow (e.g. without kinetic source term) and the reacting flow. Figure 6

presents vorticity contours after one convective time t = tc, showing excellent

qualitative agreement. Let us now confirm this validation quantitatively by

plotting the profiles along the diagonal lines of the domain identified in Fig.
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Figure 6: Doubly periodic shear layer at Re = 3.104. Vorticity contours (magnitude of
the z-component) at t = tc. Ntmix contours (left) compared with the LBM contours
(right), for the compressible “cold” flow (top) and the “hot” flow (bottom), e.g. including
the chemical source term, on a 1024× 1024 grid.
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5. This is done in Fig. 7: for each simulation, we plotted both velocity

components (ux, uy) – easily distinguishable given the flow configuration –

both for the cold and hot test case, and at two successive convective times

(t = tc, t = 2tc). Superimposed in light gray is the domain diagonal along
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Figure 7: Velocity profiles (ms−1) at t = tc (top) and t = 2tc (bottom) as obtained with
Ntmix (solid line) and LB solver (dashed line) along the diagonal lines superimposed as
illustrated in Fig. 5, for the cold (left) and hot (right) case.

which the profile is plotted. Besides small discrepancies appearing at 2tc, the

agreement is overall excellent, hereby confirming the results of Fig.6.

5.3. Reacting flow validation

Let us now focus on the reactive case. Figures 8 and 9 present profiles

of temperature, as well as H2, H and H2O mass fractions along the two

domain diagonals. Again, agreement along the diagonal passing through the
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two vortices (Fig. 8) is seen to be excellent after both one and two convective

times. The profiles on the second diagonal (Fig. 9) are equally good after one
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Figure 8: Temperature (K), YH2
, YH and YH2O (from left to right) profiles as obtained

with Ntmix (solid line) and LB solver (dashed line) along the diagonal identified in Fig.
5, after one (top) and two (bottom) convective times.

convective time, but start showing discrepancies at two convective times. The

authors believe those departures to be explained by three factors, in order of

likelihood:

1. Any small error on the flow leads to significant errors on this axis since

the vorticity contour is almost aligned with the profile line, as clearly

visible in the second plot of Fig. 5.

2. The pressure work is of prime importance in this configuration. Ap-

proximating Dp
Dt

as ∂p
∂t

in (11) may be too stark after two convective
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Figure 9: Temperature (K), YH2
, YH and YH2O (from left to right) profiles as obtained

with Ntmix (solid line) and LB solver (dashed line) along the diagonal identified in Fig.
5, after one (top) and two (bottom) convective times.
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times.

3. Transport models are different in both solver: constant Lewis numbers

are assumed in the LB solver, whereas Ntmix solver assumes mixture-

averaged properties.

Factor 1, in our opinion, is responsible for most of the departure appearing

in Fig. 9 after two convective times. The agreement remains, however, very

good for the Lattice-Boltzmann simulation of such a complex reactive flow

configuration.

6. Robustness, accuracy and computational cost

Let us conclude this study by a discussion on robustness and accuracy.

Figure 10 shows the relative error obtained for the flame velocity of Fig. 1 as

a function of the number of point per flame thickness. Here, we have defined
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-1

δL/δx

E
rr
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Figure 10: Relative error on the flame velocity as a function of the number of point per
flame thickness δL
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the flame thickness as

δL =
Tb − Tf

max
∣

∣

∂T
∂x

∣

∣

, (40)

with Tf and Tb the temperature of the fresh and the burnt gases, respectively,

as given in Tab. B.5. The reference for the error is the velocity as obtained

on an over-refined 2000 points grid – which we found to be less than 0.1%

off the Cantera result presented in Fig. 1.a. Note that, following this

definition, the profiles of Fig. 1.a corresponds to
δL
δx

= 16 points per flame

thickness.

As identified by the line, the convergence is second-order with the spatial

discretization. This result is surprising, since the convection term is a simple

second-order central difference scheme including 10% of upwinding (which

should degrade the order of accuracy), and that the solvers coupling is first-

order. Note, however, that most test cases do not require any upwinding, and

that the diffusion scheme is second-order. We have also tested higher-order

schemes for the convection term and the FD temporal integration, without

appreciable difference in the convergence. This seems to indicate that the

obtained solver mostly keeps the low-dissipation feature characteristic of LB

methods [31, 58].

Another interesting result to be noted from Fig. 10 is the robustness

of the method: the algorithm does converge even with only 5 points in the

flame, an excellent result considering the stiffness of the H2 − O2 chemistry

– confirmed by the sharpness of the intermediate species in Fig. 1.

To further assess the robustness of the method, we ran again the double

shear layer while reducing the number of grid points. Figure 11 presents

comparisons of the vorticity contours obtained by repeating Fig. 6 on 5122,

28



2562 and 1282 grids. They all show convergence, despite the inevitable loss of

accuracy of the gradients. Note that the reference DNS fails to converge on

the 2562 and 1282 grids as the small scales become under-resolved. A detailed

-1

-0.5

0

0.5

1

10
5

-1

-0.5

0

0.5

1

10
5

Figure 11: Vorticity contours in the cold (top) and hot (bottom) double shear layer, for
different grids. From left to right: 128×128, 256×256, and 512×512.

assessment of our collision kernel associated hyper-viscosity, responsible for

this robustness, will be carefully conducted in future works.

To close this Section, let us add a note on the computational cost involved,

which may serve as perspective for practical Large Eddy Simulations appli-

cations [63]. In human time, computing one convective time – or 15000 time

steps – of the reactive flow on the 1024×1024 grids takes about 1.1 hours on

a 20-core Ubuntu desktop (2× Intel Xeon(R) CPU E5-2630 v4 2.20GHz).

This result is encouraging: it corresponds to 5.1 µs per grid point, which,
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assuming perfect scaling translates to less than 150 000 / cpuh to run 106

time-steps on 108 grid points.

Use of the hybrid regularized collision model costs a mere 15% more than

the conventional single relaxation time (SRT) model, which only provides the

required stability for the planar premixed flame propagation presented in Fig.

1. We also measured the relative cost of the cold and hot flow simulation with

the athermal simulation (e.g. θ ≡ 1, and no finite difference solver). Figures

are presented in Table 3. These results will be improved in the future as no

Flow model Cost

Athermal flow 1
Cold flow 2.77
Hot flow 3.63

Table 3: Relative computational costs of the method on the double shear layer. Athermal
flow : as in [29]; Cold flow: PR collision with the transport equations for energy and 9
species; Hot flow: cold flow configuration plus chemical sources evaluated using the 12-step
chemistry.

optimization of any kind was performed on the FD solver at this stage, but

are certainly promising: including a relatively simple chemistry adds about

30% computational cost, indicating a wide margin for progress. Also, the

ratio of the reacting simulation cost to the athermal flow is quite classical,

indicating that gains in cpu costs obtained in aerodynamics and aeroacoustics

[2–6] may be obtained in the field of combustion in the near future.

7. Concluding remarks

A new hybrid Lattice-Boltzmann model for low-Mach reactive flows was

presented following [8]. Mass and momentum conservation are addressed
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within a Lattice-Boltzmann solver, whereas the energy and species conserva-

tion are addressed via a classical finite difference solver.

To cope with the limitations of the standard BGK collision model [1], an

ad-hoc model model was presented as an extension to thermal multicompo-

nent flows of Jacob et al’s proposal [29].

We then presented major progress compared to our initial proposal [8]:

not only does the present work lift the constant Cp and single step chem-

istry assumptions, but stability and robustness are tested on challenging

two-dimensional flows.

The final discussion on accuracy, robustness and cpu cost clearly opens

the door to Large Eddy Simulation in that context. Future work will include

a detailed account on the model numerical viscosity as to allow the simulation

of 3D flames in turbulent flows by inclusion of a turbulence model.
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AppendixA. Chapman-Enskog expansion

The CE expansion of equation (1) is performed in the Hermite polynomial

space [53]. The Hermite tensor applied in the current study at order n reads

H(n)
α1···αn

(ξ) ≡ (−r0T0)
n

ω(ξ)
(∂α1

· · ·∂αn
ω(ξ)) , (A.1)

and the weight function ω(ξ) is defined as

ω(ξ) ≡ 1

(2πcs2)
D/2

exp

(

− ξ2

2cs2

)

, (A.2)

with ξ2 ≡ ξ · ξ and cs the reference speed of sound

cs ≡
√

r0T0 . (A.3)

where r0, T0 are the reference gas constant and reference temperature respec-

tively. It is worth noting that compared to weight functions used in thermal

LBMs [53, 54], a reference gas constant is introduced to overcome the difficul-

ties brought out by the non-constant molecular weights of the gas mixture.

The VDF f can be projected to its Hermite coefficients tensor through

a(n)α1···αn
(x, t) ≡

∫

f(x, ξ, t)H(n)
α1···αn

(ξ)dξ . (A.4)

According to the orthogonality of Hermite polynomials, the VDF can be

projected back from the Hermite space via

f(x, ξ, t) = ω(ξ)

∞
∑

n=0

1

(n)!cs2n
a(n)(x, t) : H(n)(ξ), (A.5)
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where the operator (:) stands for full contraction of two tensors. Apply-

ing the projection (A.4) to the equilibrium distribution (2), the equilibrium

coefficient tensors provided in Eq. (21) are obtained.

Projecting equation (1) to the Hermite space, one has

∂

∂t
a(n)α1···αn

+
∂

∂xj

(

ξja
(n)
α1···αn

)

= −1

τ

(

a(n)α1···αn
− a(n),eqα1···αn

)

(A.6)

Note that the index j repeats from 1 to D (the spatial dimension). Using

the Rodrigues recursive relation of the Hermite tensor

ξjH(n)
α1···αn

(ξ) = H(n+1)
jα1···αn

(ξ) + cs
2

n
∑

i=1

δjαi
H(n−1)

α1···αi−1αi+1···αn
(ξ) , (A.7)

equation (A.6) becomes

∂ta
(n)
α1···αn

+∂j

(

a
(n+1)
jα1···αn

)

+cs
2

n
∑

i=1

(

∂αi
a(n−1)
α1···αi−1αi+1···αn

)

= −1

τ

(

a(n)α1···αn
− a(n),eqα1···αn

)

.

(A.8)

The CE analysis is performed on this equation. The scale separation

respect to Knudsen number ǫ is achieved by setting the operator

∂t = ǫ∂t1 + ǫ2∂t2 ; ∂j = ǫ∂j1 , (A.9)

and the coefficients tensor

a(n) = a(n),eq + a(n),1, where a(n),1/a(n),eq ∼ O(ǫ) ≪ 1 . (A.10)

It is worth noting that a(0),1 = a
(1),1
α = 0 according to equation (5).

Inserting (A.9) and (A.10) into (A.6), the system can be written at different
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orders of ǫ as

ǫ∂t1a
(n),eq
α1···αn + ǫ∂j1

(

a
(n+1),eq
jα1···αn

)

+ cs
2

n
∑

i=1

(

ǫ∂αi1
a
(n−1),eq
α1···αi−1αi+1···αn

)

= −1

τ
a
(n),1
α1···αn ∼ O(ǫ1)

(A.11a)

ǫ2∂t2a
(n),eq
α1···αn + ǫ∂t1a

(n),1
α1···αn + ǫ∂j1

(

a
(n+1),1
jα1···αn

)

+ cs
2

n
∑

i=1

(

ǫ∂αi1
a
(n−1),1
α1···αi−1αi+1···αn

)

= 0 ∼ O(ǫ2)

(A.11b)

ǫ2∂t2a
(n),1
α1···αn = 0 ∼ O(ǫ3)

(A.11c)

Summing all the orders together and using the expression of the equi-

librium coefficients in equation (21), the following relationships are achieved

∂tρ+ ∂α(ρuα) = 0, (A.12a)

∂t(ρuα) + ∂β(ρuαuβ + pδαβ) = −∂βa
(2),1
αβ , (A.12b)

∂t(ρuαuβ + pδαβ − ρr0T0δαβ) + ∂γ [ρuγuαuβ + (p− ρr0T0)(uδ)γαβ]

+ cs
2 [∂α(ρuβ) + ∂β(ρuα)] + ∂ta

(2),1
αβ + ∂γa

(3),1
γαβ = −1

τ
a
(2),1
αβ . (A.12c)

Equation (A.12a) gives the mass conservation in (6). The next step is to

find an explicit expression of a
(2),1
αβ to fulfill the viscous tensor in the momen-

tum equation (A.12b). Using equations (A.12a) and (A.12b), the transport

equation for ρuαuβ can be written as

∂t(ρuαuβ) + ∂γ(ρuαuβuγ) + (∂αp)uβ + (∂βp)uα = −uβ∂γa
(2),1
αγ − uα∂γa

(2),1
βγ .

(A.13)
Inserting back to (A.12c),

δαβ [∂tp+ ∂γ(uγp)]+2pSαβ−uβ∂γa
(2),1
αγ −uα∂γa

(2),1
βγ +∂ta

(2),1
αβ +∂γa

(3),1
γαβ = −1

τ
a
(2),1
αβ ,

(A.14)
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where Sαβ ≡ 1
2
(∂βuα+ ∂αuβ) is the strain-rate tensor. Omitting the O(ǫ)

terms in the above equation, the viscous tensor appears in the momentum

equation (A.12b) as

a
(2)
1,αβ = −2pτS − τδαβ [∂tp + ∂γ(uγp)] , (A.15)

with the second term being negligible in the low Mach approximation.

Setting

τ =
µ

p
, (A.16)

then leads to recovery of the viscous tensor in equation (8). Note that, unlike

with mono-species thermal LBM, the second term in equation (A.15) can not

be linked to the bulk viscosity using the energy conservation for mono-species

∂tθ + uγ∂γθ +
2
D
θ∂γθ = 0, because this energy equation is generally invalid

for multi-species flow.

AppendixB. Thermochemistry & transport

H2-air combustion model

Throughout the paper, we consider the 12-step skeletal mechanism for

H2-air combustion [26] derived from the detailed San Diego mechanism [27].

The mechanism, summarized in Tab.B.4, involves eight reacting species, as

well as inert N2 for combustion with air. The associated thermodynamic

data was obtained from the San Diego mechanism website [27].

Thermodynamic closure

The thermodynamic properties required for the thermodynamic closure

are specified in the form of the classical NASA polynomials [23] for each
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1 H+O2 ⇋ OH+O 7 HO2 +OH → H2O+O2

2 H2 +O ⇋ OH+H 8 H+OH+M ⇋ H2O+M
3 H2 +OH ⇋ H2O+H 9 2 H +M ⇋ H2 +M
4 H+O2 +M → HO2 +M 10 2 HO2 → H2O2 +O2

5 HO2 +H → 2 OH 11 HO2 +H2 → H2O2 +H
6 HO2 +H ⇋ H2 +O2 12 H2O2 +M → 2 OH +M

Table B.4: The 12-step skeletal mechanism for the combustion of H2-air [26]. Up-to-date
rates are available [27].

species k. Computation of the temperature is done through a Newton itera-

tive procedure with the previous time-step temperature as initial condition.

Considering this thermodynamic closure, the thermodynamic equilibrium,

required to initialize the premixed flame presented in Fig. 1, is given in Ta-

ble B.5.

Table B.5: Initial conditions: 1-D domain is initialized with fresh gases corresponding to
(0 : L/2) and burnt gases (L/2 : L)

V ariables fresh gases burnt gases
T 300 K 2385 K
p 1 atm 1 atm
YH2

2.852× 10−2 1.145× 10−3

YH 0 6.983× 10−5

YO2
2.264× 10−1 7.474× 10−3

YOH 0 5.458× 10−3

YO 0 3.838× 10−4

YH2O 0 2.403× 10−1

YHO2
0 1.074× 10−6

YH2O2
0 1.444× 10−10

YN2
7.451× 10−1 7.451× 10−1
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Simplified transport model

The thermal diffusion coefficient, required in (12) is defined as

λ =
µ

Pr

N
∑

k=1

YkCp,k, (B.1)

with µ the dynamic viscosity, assumed here to follow temperature-dependent

power-law

µ = µ0

(

T

T0

)β

. (B.2)

The diffusion velocities are evaluated through a Fickian approximation

Vk,α = −Dk
∂Xk

∂xα

Wk

W̄
+ V c

αYk, (B.3)

with Xk the k-th species mole fraction and Dk its diffusion coefficient, which is

determined via the component specific Schmidt number Sck from the viscosity

Dk =
µ

ρSck
. (B.4)

A correction velocity [49] is applied to ensure mass conservation, reading

V c
α =

N
∑

k=1

Dk
∂Xk

∂xα

Wk

W
. (B.5)

The various parameters required for the computation of the viscosity

through (B.2) as well as species (B.4) and heat (B.1) diffusion properties are

those recommended in Cerfacs’ database [64] and validated for this mecha-

nism. They are reported in Tab. B.6.
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