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Abstract

We show how a joint multifractal analysis of a collection of signals unravels correlations between
the locations of their pointwise singularities. The multivariate multifractal formalism, reformulated
in the general setting supplied by multiresolution quantities, provides a framework which allows to
estimate joint multifractal spectra. General results on joint multifractal spectra are derived, and
illustrated by the theoretical derivation and practical estimation of the joint multifractal spectra
of simple mathematical models, including correlated binomial cascades.

Keywords: multifractal analysis, wavelets, spatial regularity correlations, Hausdorff dimension.

1. Introduction

1.1. Pointwise regularity exponents

The main purpose of multifractal analysis is to make explicit the properties of the sets of
points where a function f has a given pointwise regularity, quantified by a regularity exponent
hf (x0), x0 ∈ Rd. The term multifractal refers to the fact that the sets Ef (H) of points with same
regularity,

∀H ∈ R+ ∪ {+∞}, Ef (H) = {x ∈ Rd : hf (x) = H}, (1)

often are fractal. A relevant information on these sets is supplied by the multifractal spectrum

Df (H) = dim(Ef (H)), (2)

where dim denotes the Hausdorff dimension and, by convention, dim(∅) = −∞. The support of
the multifractal spectrum is {H : Ef (H) 6= ∅} = {H : dim(Ef (H)) 6= −∞}.

Different pointwise exponents hf (x0) can be used: The most widespread is the Hölder exponent,
cf., e.g., [1] and references therein; one recently studied notion for regularity are the p-exponents
hpf (x0), where p > 0 is a parameter, which allow to measure the regularity of non-locally bounded

functions, see [2, 3]. Two pointwise exponents fitted to a probability measure µ on Rd are the
lower and upper local dimensions, defined as

Hµ(x) = lim inf
ρ→0

logµ(B(x, ρ))
/

log ρ and Hµ(x) = lim sup
ρ→0

logµ(B(x, ρ))
/

log ρ, (3)

respectively. Another category of pointwise exponents, termed second generation exponents, mea-
sures how regularity exponents change when a regularity parameter varies; they allow to charac-
terize in a sharp way the behavior of the function near its singularities. One example is supplied

by the lacunarity exponent Lf (x0) = ∂
∂q

(
h

1/q
f (x0)

)
q=0

, cf., [4]; see [5] for other examples.
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1.2. Multivariate multifractal analysis

The above framework permits the multifractal analysis for one single function and regularity
exponent. Multivariate multifractal analysis deals with the simultaneous multifractal analysis of
several pointwise exponents derived from one or several functions (or measures). The relevant
information is then given by the sets of points where each of these exponents takes on a given
value: If h1,f1(x), . . . , hm,fm(x) are m pointwise exponents, one considers the sets

Ef1,...,fm(H1, . . . ,Hm) = {x : h1,f1(x) = H1, . . . , hm,fm(x) = Hm} (4)

and their joint multifractal spectrum is

Df1,...,fm(H1, . . . ,Hm) = dim(Ef1,...,fm(H1, . . . ,Hm)). (5)

These notions were introduced by C. Meneveau et al. in the seminal paper [6] for the joint analysis of
the dissipation rate of kinetic energy and passive scalar fluctuations for fully developed turbulence.
A general abstract setting was proposed by J. Peyrière in [7]. Particular situations have also be
explored, see, e.g., [8, 9] for a joint analysis of invariant measures of dynamical systems.

This work reformulates the multivariate multifractal formalism in the general setting supplied
by multiresolution quantities and describes a framework which allows to estimate joint multifractal
spectra (cf., Section 2). Indeed, on one hand, the wavelet characterizations of all previously
mentioned exponents imply that they fit into this setting and, on other hand, this reformulation
allows to extend all the recently introduced statistical methods of multifractal spectra estimation
in this context, see, e.g., [10]. We derive general properties of joint multifractal spectra associated
with several exponents; additionally, we work out examples illustrating how correlations between
mathematical models are reflected in their joint multifractal spectra. In particular, we study pairs
of binomial cascades where multifractal correlations can be “tuned”, cf., Section 3.

2. Multivariate multifractal formalism

2.1. Multiresolution quantities

Numerically feasible ways to estimate multifractal spectra are based on the initial formulation
of the multifractal formalism proposed by U. Frisch and G. Parisi in [11]. A key assumption is
that the considered exponents can be derived from multiresolution quantities. Let j ∈ Z and
k = (k1, · · · kd) ∈ Zd, denote by λ (= λ(j, k)) the dyadic cube

[
k1
2j
, k1+1

2j

)
× · · · ×

[
kd
2j
, kd+1

2j

)
and by

3λ the cube of same center and three times wider. We denote by Λj the collection of dyadic cubes
of width 2−j and by Λ the collection of all dyadic cubes. Further, for x ∈ Rd, λj(x) denotes the
dyadic cube of width 2−j which contains x. A multiresolution quantity is a nonnegative sequence
(dλ)λ∈Λ; it is hierachical if it satisfies λ′ ⊂ λ =⇒ dλ′ ≤ dλ. A pointwise exponent h(x) is admissible
if it can be recovered from a multiresolution quantity by

∀x ∈ Rd, h(x) = lim inf
j→+∞

log
(
d3λj(x)

)/
log(2−j). (6)

A simple example of this situation is supplied by probability measures for which dλ = µ(3λ) clearly
is a multiresolution quantity associated with Hµ defined by (3). Multiresolution quantities that
yield the Hölder and p-exponents of a function f can be derived from the wavelet decomposition
of f , see [1, 2, 3]. Recall that an orthonormal wavelet basis on Rd is generated by a function
ϕ and 2d − 1 functions ψ(i), which are either in the Schwartz class, or compactly supported
and smooth enough, and are such that ϕ(x − k) (for k ∈ Z) together with 2dj/2ψ(i)(2jx − k),
(for j ≥ 0, and k ∈ Zd) form an orthonormal basis of L2(Rd); the wavelet coefficients of f are

defined as c
(i)
λ = 2dj

∫
ψ(i)(2jx − k)f(x)dx. The wavelet leaders and the p-leaders of f are dλ =

supi,λ′⊂3λ |cλ′ | and dpλ =
(∑

i,λ′⊂3λ|c
(i)
λ′ |

p2−(j′−j)
)1/p

. Under weak global regularity assumptions,

they are multiresolution quantities associated with the Hölder and the p-exponent, respectively.
For multiresolution quantities for second generation exponents, see [4, 5].
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2.2. Derivation of the multivariate multifractal formalism

Suppose that m exponents h1(x), · · · , hm(x) are given, which can be pointwise exponents of one
or of several functions or measures (we drop the dependency on f in the notation); we assume that
each of these exponents is admissible, and thus can be derived from a corresponding multiresolution
quantity diλ, i = 1, · · · ,m. A grandcanonical multifractal formalism allows to estimate the joint
spectrum D(H1, · · ·Hm) of the collection of exponents h1(x), · · · , hm(x) as proposed in [6]. In the
general setting provided by multiresolution quantities, it is derived as follows.

The multivariate structure functions associated with the m-tuple (d1
λ, · · · dmλ ) are defined by

∀r = (r1, · · · , rm) ∈ Rm, Sf (r, j) = 2−dj
∑

λ∈Λj
|d1
λ|r1 . . . |dmλ |rm . (7)

The corresponding scaling function is

η(r) = lim inf
j→+∞

log (Sf (r, j))
/

log(2−j). (8)

The joint Legendre spectrum is obtained through a several-variable Legendre transform

∀H = (H1, · · ·Hm) ∈ Rm, L(H) = inf
r∈Rm

(d− η(r) +H · r), (9)

where H · r denotes the usual scalar product in Rm. Apart form [6], this formalism has been
investigated in a wavelet framework for joint Hölder and oscillation exponents in [12], in an ab-
stract general framework in [7] and on wavelet leader and p-leader based quantities in [4, 5]. An
application to financial data, also based on wavelet leaders, has been worked out in [13].

2.3. General properties of the multivariate multifractal formalism

We derive relationships between the joint spectrum and the corresponding marginal (i.e., one
variable) spectra. For the sake of clarity, the arguments are developed in 2 variables; extensions
to more variables are straightforward. Consider admissible exponents hi(x) with associated sets
Ei(Hi) and marginal spectra Di(Hi), i = 1, 2, and with joint spectrum D(H1, H2). Thus

E1(H1) =
⋃

H2

EH1,H2 and E2(H2) =
⋃

H1

EH1,H2 ,

so that
D1(H1) ≥ sup

H2

D(H1, H2) and D2(H2) ≥ sup
H1

D(H1, H2).

In general, equality needs not hold, because the supremum usually is taken on a non-countable
set. However, the following result shows that equality holds for the Legendre spectra.

Proposition 2.1. Two-variable Legendre spectra associated with admissible exponents satisfy

L1(H1) = sup
H2

L(H1, H2) and L2(H2) = sup
H1

L(H1, H2).

Proof. Since (with obvious notations) S(r1, r2, j) = 2−dj
∑

λ∈Λj
|d1
λ|r1 |d2

λ|r2 , it follows that η1(r1) =

η(r1, 0) and η2(r2) = η(0, r2). We can rewrite the 2-variable Legendre spectrum

L(H1, H2) = inf
r1

(
inf
r2

(d− (η(r1, r2)) +H2r2) +H1r1

)
.

For a fixed value of r1, the infimum in r2 is a one-variable Legendre transform in the H2 variable,
and the value of its supremum is attained when this infimum is attained for r2 = 0, see e.g., [14].
It follows that

sup
H2

L(H1, H2) = inf
r1

(d− η(r1, 0) +H1r1) = inf
r1

(d− η1(r1) +H1r1) = L1(H1). �
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Figure 1: Independent stochastic binomial measures. Time series (left), theoretical multivariate spectrum
(center) and estimated multivariate spectrum (right; red solid lines show the 1-variable marginal spectra).

2.4. Independent signals

The above general results did not require assumptions on correlations between the exponents
h1 and h2. We now investigate the implications of such correlations on the joint spectrum. If the
data from which the exponents are derived are independent, generic formulas for the intersection
of the corresponding Hausdorff dimensions apply and, generically, codimensions add up [15], i.e.

D(H1, H2) = D(H1) +D(H2)− d; (10)

note that the derivation of the corresponding formula for Legendre spectra is obtained in [6]
under an independence assumption, and using the ergodic interpretation of structure functions
as moments of identically distributed random variables. This is illustrated in Fig. 1 for two
independent binomial cascades with parameters 0 < p, p′ < 1

2 , respectively. Binomial cascades are
simple examples of measures supported by [0, 1] which are obtained by a recursive construction on
the dyadic intervals (defined in Section 3). Here, the weight p (resp. p′) randomly multiplies with
equiprobability, and independently for each cascade, either the left or right subinterval λl or λr
for each dyadic interval, yielding independent signals.

2.5. Fully dependent spectra

A deterministic relationship between exponents (e.g., if there exists a function θ such that ∀x,
h2(x) = θ(h1(x)) clearly leads to spectra supported by the curve H2 = θ(H1). We now show how to
construct pairs of functions satisfying this property in the setting supplied by the Hölder exponent.

Proposition 2.2. Let f ∈ Cε for an ε > 0, and denote by cλ its wavelet coefficients and by dλ its
wavelet leaders. Let θ : R∗,+ → R∗,+ be a continuous increasing function.

If νλ = log(dλ)/log(2−j) let eλ = 2−θ(νλ)j . (11)

The function g whose wavelet coefficients are the eλ satisfies

∀x ∈ Rd, hg(x) = θ(hf (x)). (12)

Proof. First note that g ∈ Cε′ for an ε′ > 0 because of the assumptions on θ, so that (6) holds
for g; eλ is hierarchical because θ is increasing. One can interpret (11) as stating that, if h is such
that dλ = 2−hj , then eλ = 2−θ(h)j , so that (12) follows from (6) and (11). �

This construction yields the following joint spectrum for the couple (f, g):

D(H1, H2) = D(H1)1H2=θ(H1)(H1, H2). (13)
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Figure 2: Fully dependent stochastic binomial measures. Time series (left), theoretical multivariate spectrum
(center) and estimated multivariate spectrum (right; red solid lines show the 1-variable marginal spectra).

Remark: The scaling function for functions satisfying (12) is derived in [6]. Yet when θ(H) is
not affine, D(H1, H2) needs not be concave and cannot be obtained as its Legendre transform (9)
(see however [16] for a numerical procedure inspired by the multifractal formalism, which allows
to estimate non-concave spectra).

Fig. 2 illustrates a situation similar to Proposition 2.2 and shows the joint analysis of two
binomial cascades as in Sec. 2.4, yet when choosing p for a subinterval on one cascade implies the
choice p′ for this subinterval on the other. This leads to an affine relationship between exponents:

H1(s) =
(
s log p+ (1− s) log(1− p)

)/
log 2, H2(s) = −

(
(s log p′ + (1− s) log(1− p′)

)/
− log 2.

It follows that the joint spectrum is supported by a segment parametrized by s ∈ [0, 1]; the
numerically estimated spectrum is supported by a very thin ellipsoid-type area.

Several other subcases or variants of the construction in Proposition 2.2 can be mentioned:
• The joint multifractal spectrum of a function f and its fractional integral of order s, denoted

by f (−s) yields an important information on the nature of the singularities of f . Indeed, if f only
has cusp singularities (i.e. the Hölder exponent of f (−s) satisfies ∀x0, hf (−s)(x0) = hf (x0) + s [4]),
then this joint spectrum is supported by the line H2 = H1 + s. A joint spectrum which is not
supported by this line is the signature of oscillating singularities in the data. A typical example
is supplied by lacunary wavelet series, see [17] (at scale j, a proportion of 2(η−1)j locations are
drawn at random on 2−jZ, with wavelet coefficients of size 2−αj ; all other coefficients vanish).
An immediate verification shows that this model yields a joint spectrum for (f, f (−s)) which is
supported by a straight line of ends (α, α + s) and (α/η, (α + s)/η) where D(H1, H2) = H1η/α.
Another example, the Riemann function R(x) =

∑
sin(πn2x)/n2, leads to a joint spectrum of

(R,R(−s)) that is supported by the union of a segment where H2 = H1 + s and 1/2 ≤ H1 ≤ 3/4
(where D(H1, H2) = 4H1 − 2) and of the point (3/2, 3/2 + 2s) (where D(H1, H2) = 0); this
additional point corresponds to the chirps at rationals, see [18].
• Let µ be a multifractal probability measure on [0, 1] and f its distribution function. The

joint spectrum of the couple (Bθ1 ◦ f,Bθ2 ◦ f), where Bθ1 and Bθ2 are two independent fractional
Brownian motions (FBM) of exponent θ1 and θ2, respectively, is carried by the line θ1H2 = θ2H1

where D(H1, H2) = f(H1/θ1). This is because the effect of applying an FBM of exponent θ to an
increasing function f is to multiply everywhere the Hölder exponent of f by θ.

3. Joint multifractal spectra of correlated binomial cascades

The situations considered in Sections 2.4 and 2.5 are extreme cases corresponding to perfect
correlation vs. independence. Joint spectra which are intermediate between these two situations
are the signature of multifractal correlations between signals. Here, we consider the example of
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pairs of multiplicative cascades whose correlation can be tuned. The model is similar to the one
considered in [6], where the corresponding scaling function was derived. We complement this result
by determining pointwise exponents everywhere and deducing the joint multifractal spectrum.

The binomial measure is a probability measure constructed iteratively on the dyadic intervals.
A standard way to index dyadic intervals is by “words” (i.e., finite sequences) with letters εi ∈
{0, 1}: Let Σj = {0, 1}j , j ≥ 1, denote the set of words w = ε1ε2 · · · εj of length |w| = j.

The corresponding dyadic interval of generation j is λw =
[∑j

k=1 εk2
−k,
∑j

k=1 εk2
−k + 2−j

)
. We

associate to an infinite word w = ε1ε2 · · · the real number xw =
∑∞

k=1 εk2
−k; this defines a

mapping between the set Σ = {0, 1}N∗ of infinite words and [0, 1]. If w is a (possibly infinite) word
longer than j, we define w|j = ε1 · · · εj . Finally, if w is a word of length at least j, we define

N0
j (w) = #{εi : 1 ≤ i ≤ j and εi = 0} ∈ {0, 1, ..., j},

i.e., the number of zeros in the first j digits of w. If x ∈ [0, 1] is not dyadic, then N0
j (x) = N0

j (xw).
Let p ∈ [0, 1]. The binomial measure µp is constructed iteratively as follows: µp([0, 1]) = 1; if λ

is a dyadic interval, denote by λl and λr respectively its left and right half; then µp(λl) = pµp(λ)
and µp(λr) = (1− p)µp(λ); µp is thus defined on all dyadic intervals and extends to Borel sets of
[0, 1]. Note that µ1/2 is the Lebesgue measure and µ0, µ1 are Dirac masses. If w has length j, then

µp(λw) = pN
0
j (w)(1− p)j−N

0
j (w). (14)

Remark: Let µ be a measure; as a consequence of (6), the wavelet series Fµ whose wavelet
coefficients are cλ = µ(λ) has the same pointwise Hölder exponent as µ at every x ∈ [0, 1]. So, we
can work equivalently with binomial measures µp or with Fµp. More generally, we can also pick
for wavelet coefficients cλ = 2−αjµ(λ)s. If α and s are nonnegative, then the wavelet coefficients
form a hierarchical sequence, and the relationship between the lower dimension of the measure µ
and the Hölder exponent of the associated function f is given for any x by hf (x) = α+ βhµ(x).

An easy computation yields that the scaling function of µp is ηµp(r) = − log2(pr+(1−p)r). The
following theorem lists known multifractal properties for one cascade µp needed below, see [19].
For p < 1/2, let Hp,min = − log2(1−p), Hp,m = (− log2(p)− log2(1−p))/2 and Hp,max = − log2(p).

Theorem 1. The multifractal spectrum of µp is the Legendre transform of ηµp, Dµp(H) = infr∈R(1−
ηµp(r) + rH). Furthermore, for every H,H ′ ∈ [Hp,min, Hp,m], if H ≤ H ′ then

dim{x : Hµp(x) = H,Hµp(x) = H ′} = dim{x : Hµp(x) ≤ H,Hµp(x) ≤ H ′} = Dµp(H
′).

Remark: It follows that the support of Dµp(H) is [Hp,min, Hp,max]; Dµp is increasing on the
interval [Hp,min, Hp,m], its maximum is reached at Hp,m and it is decreasing on [Hp,m, Hp,max].
The same Dµp(H) is obtained when p multiplies randomly either the left or right subinterval [20].

The following result gives the joint spectrum of (µp, µq) for correlated (p, q < 1/2) and anti-
correlated (p < 1/2 < q) cascades, respectively. We define the affine function

Gp,q(x) = (x+ log2(1− p))− log2(q) + log2(1− q)
− log2(p) + log2(1− p)

− log2(1− q);

Gp,q has positive slope when p, q < 1/2, and negative slope when p < 1/2 < q.

Theorem 2. Let p, q ∈ (0, 1).

(a) If 0 < p, q < 1/2, ∀x ∈ [0, 1], Hµq(x) = Gp,q(Hµp(x)), so that the joint spectrum D(µp,µq) of
µp and µq is supported by the segment {(H,Gp,q(H)) : H ∈ [Hp,min, Hp,max]} where

D(µp,µq)(H,Gp,q(H)) = Dµp(H) ( = Dµq(Gp,q(H)). (15)
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Figure 3: Anti-correlated binomial measures. Time series (left), theoretical multivariate spectrum (center),
estimated multivariate spectrum and projections (right), illustrating Theorem 2 when p < 1/2 < q.

(b) If 0 < p < 1/2 < q < 1, then the joint spectrum D(µp,µq) is supported by the triangle
H ∈ [Hp,min, Hp,max], H ′ ∈ [Hq,min, Gp,q(H)] where

D(µp,µq)(H,H
′) = min(Dµp(H), Dµq(H

′)).

The situation (b) (anti-correlated cascades) is illustrated in Fig. 3.
Proof of Theorem 2 (a). Let λj(x)± = λj(x) ± 2−j denote the left and right dyadic neighbor
intervals of λj(x) of scale j. The definition of the local dimension of a measure and (6) yield

∀x, Hµp(x) = lim inf
j→+∞

log2(max(µp(λj(x)), µp(λj(x))+, µp(λj(x)−)))
/
j

and the same holds for Hµp(x) by replacing the liminf by a limsup.

Let N0,+
j (x) denote the number of 0’s in the unique word w+ ∈ Σj such that λw+ = λ+

j (x),

and the analog definition for N0,−
j (x). It follows from (14) that

Hµp(x) = lim inf
j→+∞

max
(
−
(

log2(p)N0
j (x) + log2(1− p)(j −N0

j (x))
)/
j,

−
(

log2(p)N0,+
j (x) + log2(1− p)(j −N0,+

j (x))
)/
j,

−
(

log2(p)N0,−
j (x) + log2(1− p)(j −N0,−

j (x))
)/
j
)
. (16)

Observe that− log2(p),− log2(1−p) > 0, but the way they are ordered depends on p: if p ∈ (0, 1/2),
0 < − log2(1− p) < 1 < − log2(p), and the converse inequality holds when p ∈ (1/2, 1).

Without loss of generality, we can assume from now on that 0 < p < 1/2.
Since 0 < − log2(1 − p) < 1 < − log2(p), the maximum in (16) is given by −

(
log2(p)N0

j,max(x) +

log2(1− p)(j −N0
j,max(x))

)/
j, where N0

j,max(x) = max(N0
j (x), N0,+

j (x), N0,−
j (x)), hence

Hµp(x) = − log2(1− p) +
(
− log2(p) + log2(1− p)

)
lim inf
j→+∞

(N0
j,max

/
j). (17)

Since (17) also holds for µq when 0 < p, q < 1/2, Hµq(x) = Gp,q(Hµp(x)) and (15) follows. �

We now consider the case where q ∈ (1/2, 1). Then 0 < − log2(q) < 1 < − log2(1 − q), and

the maximum in (16) is now given by −
(

log2(q)N0
j,min(x) + log2(1− q)(j −N0

j,min(x))
)/

j, where

N0
j,min(x) = min(N0

j (x), N0,+
j (x), N0,−

j (x)). For this case, (16) can be rewritten

Hµq(x) = − log2(1− q) +
(
− log2(q) + log2(1− q)

)
lim sup
j→+∞

(N0
j,min(x)

/
j). (18)
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Let us introduce the quantities

N0
max(x) = lim infj→+∞N

0
j,max(x)

/
j N0

min(x) = lim infj→+∞N
0
j,min(x)

/
j

N0
max(x) = lim supj→+∞N

0
j,max(x)

/
j N0

min(x) = lim supj→+∞N
0
j,min(x)

/
j.

When N0
max(x) = N0

min(x) = H, one has Hµq(x) = Gp,q(Hµp(x)), but now Gp,q is affine with a
negative slope. This situation is the most current one, as shown by the following result of [14, 21]

Lemma 3.1. For every H ∈ [Hmin, Hmax], dim{x : N0
max(x) = N0

min(x) = H} = Dµ(H).

In general, there is no equality. However, the following holds.

Lemma 3.2. For every x ∈ [0, 1] , N0
max(x) ≤ N0

min(x).

Proof. If x is a dyadic number, the word w associated with x is eventually constituted only by
0’s. So the statement is immediate, since N0

j,max(x) ∼ N0
j,min(x) ∼ j when j tends to infinity.

For x not a dyadic number, let α = N0
max(x) ∈ [0, 1]. When α = 0, the statement is obvious.

So we can assume that α > 0. By definition, given ε > 0 small enough,

∃Jε : ∀j ≥ Jε, N0
j,max(x) ≥ j(α− ε). (19)

Let w denote the unique (infinite) dyadic word that encodes x. Assume that N0
min(x) < N0

max(x)−
2ε = α− 2ε. This implies that for every j ≥ Jε

N0
j,min(x) < j(α− 2ε). (20)

1. Assume that λj(x)∪λ+
j (x) forms a dyadic interval of generation j− 1. Hence, if w+

j stands

for the unique word of length j that encodes λ+
j (x), then w|j and w+

j differ only by their last digit,

which is 0 for w|j and 1 for w+
j . In particular, N0,+

j (x) = N0
j (x) + 1, so N0,+

j (x)/j and N0
j (x)/j

have approximately the same value (since j is large). This also implies that N0
j,min(x) 6= N0,+

j (x).

Denote by w−j the unique word of length j that encodes λ−j (x). Since the union λj(x)∪ λ+
j (x)

is a dyadic interval of generation j − 1, N0,−
j (x) ≤ N0

j (x). As a conclusion, N0
j,min(x) = N0,−

j (x).

Denote by J , the length of the largest common prefix between w− and w. Obviously, J < j,
and since λ−j (x), λj(x), λ+

j (x) are neighbors, the digits of w− located between the J + 1-th digit
and the j-th digit are only 1’s, while the digits of w at the same positions are only 0’s.

Let us consider the dyadic intervals λ−m(x), λm(x), and λ+
m(x) for J < m < j. First, λm(x) and

λ+
m(x) are always the two subintervals of the same dyadic interval λm−1(x), soN0,+

m (x) = N0
m(x)+1.

Also, λJ+1(x) and λ−J+1(x) belong to the same dyadic interval λJ(x), so N0,−
J+1(x) = N0

J+1(x)− 1.

From the arguments above, N0,−
J+1(x) = N0

J+1(x)− 1 = N0,+
J+1(x)− 2. Thus, if J ≥ 4/ε, then, using

(19),
N0,−
J+1(x)

J+1 ≥ N0
J+1(x)

J+1 − 2
J+1 ≥

N0
J+1(x)

J+1 − ε/4 ≥ α− 5ε/4, which contradicts (20).
Remark: The contradiction does not hold if J ≤ Jε. But the points x for which J ≤ Jε occurs
infinitely many times are dyadic numbers.

2. Assume that the union λ−j (x)∪λj(x) forms a dyadic interval of generation j− 1. The same

argument yields that N0
j (x) = N0,−

j (x)−1, and N0
j,min(x) 6= N0

j (x), so that N0,+
j (x) ≥ N0

j (x), and

N0
j,min(x) = N0,−

j (x). Let J denote the length of the largest common prefix between w and w+.
The digits of w located between the J + 1-th digit and the j-th digit are only 1’s, while the digits
of w+ at the same positions are only 0’s. The same arguments as above give that, if J ≥ Jε, then
N0,−
J+1(x)

J+1 =
N0
J+1(x)

J+1 − 1/(J + 1) ≥ N0
J+1(x)

J+1 − ε/4 ≥ α− 5ε/4, which contradicts (20). �
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We are now in position to prove Part (b) of Theorem 2.
Proof of Theorem 2 (b). First, ∀x

Hµp(x) = − log2(1− p) +
(
− log2(p) + log2(1− p)

)
N0

max(x)

Hµq(x) = − log2(1− q) +
(
− log2(q) + log2(1− q)

)
N0

min(x).

By Lemma 3.2, Hµq(x) ∈ [Hq,min, Gp,q(Hµp(x))] (observe that the negative sign of − log2(q) +
log2(1− q) is important). So, in general, DFp,q(H,H

′) 6= −∞ only if H ′ ∈ [H,Gp,q(H)].
Now, fix (H,H ′) such that H ∈ [Hp,min, Hp,max] and H ′ ∈ [H,Gp,q(H)]. We denote by α ∈ [0, 1]

and β ∈ [α, 1] the two unique real numbers such that

H = − log2(1− p) +
(
− log2(p) + log2(1− p)

)
α, H ′ = − log2(1− q) +

(
− log2(q) + log2(1− q)

)
β.

A direct extension of the famous Besicovich-Eggleston formula

dim{x ∈ [0, 1] : N0
max = N0

min = N0
max = N0

min = α} = −α log2(α)

yields that

dim{x ∈ [0, 1] : N0
max = N0

min = α,N0
max = N0

min = β} = min(−α log2(α),−β log2(β)). (21)

Since dim{x ∈ [0, 1] : Hµp(x) = H} = dim{x ∈ [0, 1] : N0
max = α} = Dµp(H), it follows that

−α log2(α) = Dµp(H) and similarly, −β log2(β) = dµq(H
′). From (21) we finally deduce that

DFp,q(H,H
′) = min(Dµp(H), dµq(H

′)). �
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