
HAL Id: hal-02346535
https://hal.science/hal-02346535v2

Submitted on 10 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PARAOPT: A parareal algorithm for optimality systems
Martin J. Gander, Félix Kwok, Julien Salomon

To cite this version:
Martin J. Gander, Félix Kwok, Julien Salomon. PARAOPT: A parareal algorithm for optimality sys-
tems. SIAM Journal on Scientific Computing, 2020, 42 (5), pp.A2773–A2802. �10.1137/19M1292291�.
�hal-02346535v2�

https://hal.science/hal-02346535v2
https://hal.archives-ouvertes.fr

PARAOPT: A PARAREAL ALGORITHM FOR OPTIMALITY

SYSTEMS

MARTIN J. GANDER, FELIX KWOK, AND JULIEN SALOMON

Abstract. The time parallel solution of optimality systems arising in PDE

constrained optimization could be achieved by simply applying any time par-
allel algorithm, such as Parareal, to solve the forward and backward evolution

problems arising in the optimization loop. We propose here a different strat-

egy by devising directly a new time parallel algorithm, which we call ParaOpt,
for the coupled forward and backward nonlinear partial differential equations.

ParaOpt is inspired by the Parareal algorithm for evolution equations, and

thus is automatically a two-level method. We provide a detailed convergence
analysis for the case of linear parabolic PDE constraints. We illustrate the per-

formance of ParaOpt with numerical experiments both for linear and nonlinear
optimality systems.

1. Introduction

Time parallel time integration has become an active research area over the last
decade; there is even an annual workshop now dedicated to this topic called the
PinT (Parallel in Time) workshop, which started with the first such dedicated
workshop at the USI in Lugano in June 2011. The main reason for this interest is
the advent of massively parallel computers [5] with so many computing cores that
spatial parallelization of an evolution problem saturates long before all cores have
been effectively used. There are four classes of such algorithms: methods based on
multiple shooting leading to the parareal algorithm [45, 2, 30, 33, 20, 11, 18, 40],
methods based on waveform relaxation [32, 8, 19, 21, 13, 14, 31, 39, 1, 15], methods
based on multigrid [27, 34, 53, 28, 6, 17, 7, 41, 4], and direct time parallel methods
[42, 49, 50, 35, 10]; for a review of the development of PinT methods, see [9],[46]
and the references therein.

A natural area where this type of parallelization could be used effectively is in
PDE constrained optimization on bounded time intervals, when the constraint is a
time dependent PDE. In these problems, calculating the descent direction within
the optimization loop requires solving both a forward and a backward evolution
problem, so one could directly apply time parallelization techniques to each of
these solves [23, 24, 25, 26]. Parareal can also be useful in one-shot methods where
the preconditioning operator requires the solution of initial value problems, see
e.g. [52]. Another method, which has been proposed in [36, 48] in the context of
quantum control, consists of decomposing the time interval into sub-intervals and
defining intermediate states at sub-interval boundaries; this allows one to construct
a set of independent optimization problems associated with each sub-interval in

time. Each iteration of the method then requires the solution of these independent
sub-problems in parallel, followed by a cheap update of the intermediate states.

1

2 MARTIN J. GANDER, FELIX KWOK, AND JULIEN SALOMON

In this paper, we propose yet another approach based on a fundamental under-
standing of the parareal algorithm invented in [33] as a specific approximation of
a multiple shooting method [20]. We construct a new time-parallel method called
ParaOpt for solving directly the coupled forward and backward evolution prob-
lems arising in the optimal control context. Our approach is related to the multiple
shooting paradigm [43], where the time horizon is decomposed into non-overlapping
sub-intervals, and we solve for the unknown interface state and adjoint variables
using an inexact Newton method so that the trajectories are continuous across
sub-intervals. Additionally, a parareal-like approximation is used to obtain a cheap
approximate Jacobian for the Newton solve. There are two potential benefits to our
approach: firstly, it is known that for some control problems, long time horizons
lead to difficulties in convergence for the optimization loop. Therefore, a multiple
shooting approach allows us to deal with local subproblems on shorter time hori-
zons, where we obtain faster convergence. Such convergence enhancement has also
been observed in [3, 37, 38], and also more recently in [48]. Secondly, if we use
parareal to parallelize the forward and backward sweeps, then the speedup ratio
will be bounded above by L/K, where L is the number of sub-intervals and K is
the number of parareal iterations required for convergence. For many problems,
especially the non-diffusive ones like the Lotka-Volterra problem we consider in
Section 4.2, this ratio does not go above 4–5; this limits the potential speedup that
can be obtained from this classical approach. By decomposing the control problem
directly and conserving the globally coupled structure of the problem, we obtain
higher speedup ratios, closer to ones that are achievable for two-level methods for
elliptic problems.

Our paper is organized as follows: in Section 2, we present our PDE constrained
optimization model problem, and ParaOpt for its solution. In Section 3 we give a
complete convergence analysis of ParaOpt for the case when the PDE constraint
is linear and of parabolic type. We then illustrate the performance of ParaOpt by
numerical experiments in Section 4, both for linear and nonlinear problems. We
present our conclusions and an outlook on future work in Section 5.

2. ParaOpt: a two-grid method for optimal control

Consider the optimal control problem associated with the cost functional

J(c) =
1

2
‖y(T)− ytarget‖2 +

α

2

∫ T

0

‖c(t)‖2dt,

where α > 0 is a fixed regularization parameter, ytarget is a target state, and the
evolution of the state function y: [0, T]→ Rn is described by the non-linear equation

(1) ẏ(t) = f(y(t)) + c(t),

with initial condition y(0) = yinit, where c(t) is the control, which is assumed to
enter linearly in the forcing term. The first-order optimality condition then reads

(2) ẏ = f(y)− λ

α
, λ̇ = −(f ′(y))Tλ,

with the final condition λ(T) = y(T)− ytarget, see [16] for a detailed derivation.
We now introduce a parallelization algorithm for solving the coupled problem (1–

2). The approach we propose follows the ideas of the parareal algorithm, combining
a sequential coarse integration on [0, T] and parallel fine integration on subintervals.

PARAOPT: A PARAREAL ALGORITHM FOR OPTIMALITY SYSTEMS 3

Consider a subdivision of [0, T] = ∪L−1
`=0 [T`, T`+1] and two sets of intermediate

states (Y `)`=0,··· ,L and (Λ`)`=1,··· ,L corresponding to approximations of the state y
and the adjoint state λ at times T0, · · · , TL and T1, · · · , TL respectively. We denote
by P and Q the nonlinear solution operators for the boundary value problem (2)
on the subinterval [T`, T`+1] with initial condition y(Tl) = Y l and final condition
λ(T`+1) = Λ`+1, defined so that P propagates the state y forward to T`+1 and Q
propagates the adjoint backward to T`:

(3)

(
y(T`+1)
λ(T`)

)
=

(
P (Y `,Λ`+1)
Q(Y `,Λ`+1)

)
.

Using these solution operators, we can write the boundary value problem as a
system of subproblems, which have to satisfy the matching conditions

(4)

Y 0 − yinit = 0,
Y 1 − P (Y 0,Λ1) = 0, Λ1 −Q(Y 1,Λ2) = 0,
Y 2 − P (Y 1,Λ2) = 0, Λ2 −Q(Y 2,Λ3) = 0,

...
...

Y L − P (Y L−1,ΛL) = 0, ΛL − Y L + ytarget = 0.

This nonlinear system of equations can be solved using Newton’s method. Collect-
ing the unknowns in the vector (Y T ,ΛT) := (Y T0 , Y

T
1 , . . . , Y

T
L,Λ

T
1 ,Λ

T
2 , . . . ,Λ

T
L), we

obtain the nonlinear system

F
(
Y
Λ

)
:=



Y 0 − yinit
Y 1 − P (Y 0,Λ1)
Y 2 − P (Y 1,Λ2)

...
Y L − P (Y L−1,ΛL)

Λ1 −Q(Y 1,Λ2)
Λ2 −Q(Y 2,Λ3)

...
ΛL − Y L + ytarget


= 0.

Using Newton’s method to solve this system gives the iteration

(5) F ′
(
Y n

Λn

)(
Y n+1 − Y n
Λn+1 − Λn

)
= −F

(
Y n

Λn

)
,

where the Jacobian matrix of F is given by

(6) F ′
(
Y
Λ

)
=

I

−Py(Y 0,Λ1) I −Pλ(Y 0,Λ1)

. . .
. . .

. . .

−Py(Y L−1,ΛL) I −Pλ(Y L−1,ΛL)

−Qy(Y 1,Λ2) I −Qλ(Y 1,Λ2)

. . .
. . .

. . .

−Qy(Y L−1,ΛL) I −Qλ(Y L−1,ΛL)
−I I


.

4 MARTIN J. GANDER, FELIX KWOK, AND JULIEN SALOMON

Using the explicit expression for the Jacobian gives us the componentwise linear
system we have to solve at each Newton iteration:
(7)
Y n+1

0 =yinit,
Y n+1

1 =−P (Y n0 ,Λ
n
1) + Py(Y n0 ,Λ

n
1)(Y n+1

0 − Y n0) + Pλ(Y n0 ,Λ
n
1)(Λn+1

1 − Λn1),
Y n+1

2 =−P (Y n1 ,Λ
n
2) + Py(Y n1 ,Λ

n
2)(Y n+1

1 − Y n1) + Pλ(Y n1 ,Λ
n
2)(Λn+1

2 − Λn2),
...

Y n+1
L =−P (Y nL−1,Λ

n
L) + Py(Y nL−1,Λ

n
L)(Y n+1

L−1 − Y nL−1) + Pλ(Y nL−1,Λ
n
L)(Λn+1

L − ΛnL),

Λn+1
1 =Q(Y n1 ,Λ

n
2) +Qλ(Y n1 ,Λ

n
2)(Λn+1

2 − Λn2) +Qy(Y n1 ,Λ
n
2)(Y n+1

1 − Y n1),
Λn+1

2 =Q(Y n2 ,Λ
n
3) +Qλ(Y n2 ,Λ

n
3)(Λn+1

3 − Λn3) +Qy(Y n2 ,Λ
n
3)(Y n+1

2 − Y n2),
...

Λn+1
L−1=Q(Y nL−1,Λ

n
L) +Qλ(Y nL−1,Λ

n
L)(Λn+1

L − ΛnL) +Qy(Y nL−1,Λ
n
L)(Y n+1

L−1 − Y nL−1),

Λn+1
L =Y n+1

L − ytarget.

Note that this system is not triangular: the Y n+1
` are coupled to the Λn+1

` and
vice versa, which is clearly visible in the Jacobian in (6). This is in contrast to
the initial value problem case, where the application of multiple shooting leads to
a block lower triangular system.

The parareal approximation idea is to replace the derivative term by a difference
computed on a coarse grid in (7), i.e., to use the approximations

(8)

Py(Y n`−1,Λ
n
`)(Y n+1

`−1 − Y n`−1) ≈ PG(Y n+1
`−1 ,Λ

n
`)− PG(Y n`−1,Λ

n
`),

Pλ(Y n`−1,Λ
n
`)(Λn+1

` − Λn`) ≈ PG(Y n`−1,Λ
n+1
`)− PG(Y n`−1,Λ

n
`),

Qλ(Y n`−1,Λ
n
`)(Λn+1

` − Λn`) ≈ QG(Y n`−1,Λ
n+1
`)−QG(Y n`−1,Λ

n
`),

Qy(Y n`−1,Λ
n
`)(Y n+1

`−1 − Y n`−1) ≈ QG(Y n+1
`−1 ,Λ

n
`)−QG(Y n`−1,Λ

n
`),

where PG and QG are propagators obtained from a coarse discretization of the
subinterval problem (3), e.g., by using only one time step for the whole subin-
terval. This is certainly cheaper than evaluating the derivative on the fine grid;
the remaining expensive fine grid operations P (Y n`−1,Λ

n
`) and Q(Y n`−1,Λ

n
`) in (7)

can now all be performed in parallel. However, since (7) does not have a block
triangular structure, the resulting nonlinear system would need to be solved itera-
tively. Each of these outer iterations is now very expensive, since one must evaluate
the propagators PG(Y n+1

`−1 ,Λ
n
`), etc., by solving a coupled nonlinear local control

problem. This is in contrast to initial value problems, where the additional cost
of solving nonlinear local problems is justified, because the block lower triangular
structure allows one to solve the outer problem by forward substitution, without the
need to iterate. In order to reduce the cost of computing outer residuals, our idea
is not to use the parareal approximation (8), but to use the so-called “derivative
parareal” variant, where we approximate the derivative by effectively computing it
for a coarse problem, see [12],

(9)

Py(Y n`−1,Λ
n
`)(Y n+1

`−1 − Y n`−1) ≈ PGy (Y n`−1,Λ
n
`)(Y n+1

`−1 − Y n`−1),

Pλ(Y n`−1,Λ
n
`)(Λn+1

` − Λn`) ≈ PGλ (Y n`−1,Λ
n
`)(Λn+1

` − Λn`),
Qλ(Y n`−1,Λ

n
`)(Λn+1

` − Λn`) ≈ QGλ (Y n`−1,Λ
n
`)(Λn+1

` − Λn`),
Qy(Y n`−1,Λ

n
`)(Y n+1

`−1 − Y n`−1) ≈ QGy (Y n`−1,Λ
n
`)(Y n+1

`−1 − Y n`−1).

The advantage of this approximation is that the computation of PGy , PGλ , etc. only
involves linear problems. Indeed, for a small perturbation δy in Y`−1, the quan-
tities PGy (Y `−1,Λ`)δy and QGy (Y`−1,Λ`)δy can be computed by discretizing and

PARAOPT: A PARAREAL ALGORITHM FOR OPTIMALITY SYSTEMS 5

solving the coupled differential equations obtained by differentiating (2). If (y, λ)
is the solution of (2) with y(T`−1) = Y `−1 and λ(T`) = Λ`, then solving the linear
derivative system

ż = f ′(y)z + µ/α, µ̇ = −f ′(y)Tµ−H(y, z)Tλ,(10)

z(T`−1) = δy, µ(T`) = 0

on a coarse time grid leads to

z(T`) = PGy (Y `−1,Λ`)δy, µ(T`−1) = QGy (Y `−1,Λ`)δy,

where H(y, z) = limr→0
1
r (f ′(y + rz) − f ′(y)) is the Hessian of f multiplied by z,

and is thus linear in z. Similarly, to compute PGλ (Y`−1,Λ`)δλ and QGλ (Y`−1,Λ`)δλ
for a perturbation δλ in Λ`, it suffices to solve the same ODE system as (10),
except the end-point conditions must be replaced by z(T`−1) = 0, µ(T`) = δλ.
Therefore, if GMRES is used to solve the Jacobian system (5), then each matrix-
vector multiplication requires only the solution of coarse, linear subproblems in
parallel, which is much cheaper than solving coupled nonlinear subproblems in the
standard parareal approximation (8).

To summarize, our new ParaOpt method consists of solving for n = 0, 1, 2, . . .
the system

(11) JG
(
Y n

Λn

)(
Y n+1 − Y n
Λn+1 − Λn

)
= −F

(
Y n

Λn

)
,

for Y n+1 and Λn+1, where

(12) JG
(
Y
Λ

)
=

I
−PGy (Y 0,Λ1) I −PGλ (Y 0,Λ1)

. . .
. . .

. . .

−PGy (Y L−1,ΛL) I −PGλ (Y L−1,ΛL)

−QGy (Y 1,Λ2) I −QGλ (Y 1,Λ2)

. . .
. . .

. . .

−QGy (Y L−1,ΛL) I −QGλ (Y L−1,ΛL)

−I I


is an approximation of the true Jacobian in (6). If the system (11) is solved using
a matrix-free method, the action of the sub-blocks PGy , PGλ , etc. can be obtained
by solving coarse linear subproblems of the type (10). Note that the calculation
of JG times a vector (without preconditioning) is embarrassingly parallel, since it
only requires the solution of local subproblems of the type (10), with no additional
coupling to other sub-intervals. Global communication is only required in two
places: within the Krylov method itself (e.g. when calculating inner products),
and possibly within the preconditioner. The design of an effective preconditioner
is an important and technical topic that will be the subject of a future paper. Of
course, for problems with small state spaces (e.g. for ODE control problems), direct
methods may also be used, once the coefficients of JG are calculated by solving
(10) for suitable choices of δy and δλ.

Regardless of how (11) is solved, since we use an approximation of the Jacobian,
the resulting inexact Newton method will no longer converge quadratically, but only

6 MARTIN J. GANDER, FELIX KWOK, AND JULIEN SALOMON

linearly; this is true even in the case where the differential equation is linear. In
the next section, we will analyze in detail the convergence of the method for the
case of a diffusive linear problem.

3. Implicit Euler for the diffusive linear case

We now consider the method in a linear and discrete setting. More precisely, we
focus on a control problem

(13) ẏ(t) = Ay(t) + c(t),

where A is a real, symmetric matrix with negative eigenvalues. The matrix A can
for example be a finite difference discretization of a diffusion operator in space. We
will consider a discretize-then-optimize strategy, so the analysis that follows is done
in a discrete setting.

3.1. Discrete formulation. To fix ideas, we choose the implicit Euler1 method
for the time discretization; other discretizations will be studied in a future paper.
Let M ∈ N, and δt = T/M . Then the implicit Euler method gives2

(14) yn+1 = yn + δt(Ayn+1 + cn+1),

or, equivalently,
yn+1 = (I − δtA)−1(yn + δtcn+1).

We minimize the cost functional

Jδt(c) =
1

2
‖yM − ytarget‖2 +

α

2
δt

M−1∑
n=0

‖cn+1‖2.

For the sake of simplicity, we keep the notations y, λ and c for the discrete
variables, that is y = (yn)n=0,··· ,M , λ = (λn)n=0,··· ,M and c = (cn)n=0,··· ,M . Intro-
ducing the Lagrangian (see [29, 16] and also [22, 51, 47] for details)

Lδt(y, λ, c) = Jδt(c)−
M−1∑
n=0

〈
λn+1, yn+1 − (I − δtA)−1(yn + δtcn+1)

〉
,

the optimality systems reads:

y0 = yinit,(15)

yn+1 = (I − δtA)−1(yn + δtcn+1), n = 0, 1, . . . ,M − 1,(16)

λM = yM − ytarget,(17)

λn = (I − δtA)−1λn+1, n = 0, 1, . . . ,M − 1,(18)

αcn+1 = −(I − δtA)−1λn+1, n = 0, 1, . . . ,M − 1,(19)

1We use the term ‘implicit Euler’ instead of ‘Backward Euler’ because the method is applied

forward and backward in time.
2If the ODE system contains mass matrices arising from a finite element discretization, e.g.,

Myn+1 =Myn + δt(Ayn+1 +Mcn+1),

then one can analyze ParaOpt by introducing the change of variables ȳn := M1/2yn, c̄n :=
M1/2cn, so as to obtain

ȳn+1 = ȳn + δt(Āȳn+1 + c̄n+1),

with Ā := M−1/2AM−1/2. Since Ā is symmetric positive definite whenever A is, the analy-

sis is identical to that for (14), even though one would never calculate M1/2 and Ā in actual
computations.

PARAOPT: A PARAREAL ALGORITHM FOR OPTIMALITY SYSTEMS 7

T0 T1 TL = TTL−1T`

Y0 = yinit Y1 = yN YL = yLNY` = y`N YL−1 = y(L−1)N

Λ1 = λN ΛL = λLNΛL−1 = λ(L−1)NΛ` = λ`N

Figure 1. Notations associated with the parallelization setting.

where we used the fact that A is symmetric. If A = V DV T is the eigenvalue
decomposition of A, then the transformation yn 7→ V T yn, λn 7→ V Tλn, cn 7→ V T cn
allows us to diagonalize the equations (15)–(19) and obtain a family of decoupled
optimality systems of the form

y0 = yinit,(20)

yn+1 = (I − σδt)−1(yn + δtcn+1), n = 0, 1, . . . ,M − 1,(21)

λM = yM − ytarget,(22)

λn = (I − σδt)−1λn+1, n = 0, 1, . . . ,M − 1,(23)

αcn+1 = −(I − σδt)−1λn+1, n = 0, 1, . . . ,M − 1,(24)

where the yn, λn and cn are now scalars, and σ < 0 is an eigenvalue of A. This
motivates us to study the scalar Dahlquist problem

ẏ(t) = σy(t) + c(t),

where σ is a real, negative number. For the remainder of this section, we will
study the ParaOpt algorithm applied to the scalar variant (20)–(24), particularly
its convergence properties as a function of σ.

Let us now write the linear ParaOpt algorithm for (20)–(24) in matrix form. For
the sake of simplicity, we assume that the subdivision is uniform, that is T` = `∆T ,
where N satisfies ∆T = Nδt and M = NL, see Figure 1. We start by eliminating
interior unknowns, i.e., ones that are not located at the time points T0, T1, . . . TL.
For 0 ≤ n1 ≤ n2 ≤M , (21) and (24) together imply

yn2 = (1− σδt)n1−n2yn1 − δt
n2−n1−1∑
j=0

(1− σδt)n1−n2+jcn1+j+1

= (1− σδt)n1−n2yn1
− δt

α

n2−n1−1∑
j=0

(1− σδt)n1−n2+j−1λn1+j+1.(25)

On the other hand, (23) implies

(26) λn1+j = (1− σδt)n1−n2+jλn2
.

Combining (25) and (26) then leads to

(27) yn2
= (1− σδt)n1−n2yn1

− δt

α

[n2−n1−1∑
j=0

(1− σδt)2(n1−n2+j)
]
λn2

.

8 MARTIN J. GANDER, FELIX KWOK, AND JULIEN SALOMON

Setting n1 = (` − 1)N and n2 = `N , and using the notation Y` = y`N , Λ` = λ`N
(see Figure 1), we obtain from (26) and (27) the equations

Y0 = yinit

−βδtY`−1 + Y` +
γδt
α

Λ` = 0, 1 ≤ ` ≤M,

Λ`−1 − βδtΛ` = 0, 0 ≤ ` ≤M − 1,

Y` + Λ` = ytarget,

where

βδt := (1− σδt)−∆T/δt,(28)

γδt := δt

N−1∑
j=0

(1− σδt)2(j−N) =
β2
δt − 1

σ(2− σδt)
.(29)

In matrix form, this can be written as

1 0

−βδt
. . . γδt/α

. . .

. . .
. . .

. . . 0
−βδt 1 γδt/α

1 −βδt
. . .

. . .

. . . −βδt
−1 1





Y0

...

...
YL
Λ1

...

...
ΛL


=



yinit
0

...

0
−ytarget


,

or, in a more compact form,

(30) AδtX = b.

Note that this matrix has the same structure as the Jacobian matrix F in (6),
except that Qλ = 0 for the linear case. In order to solve (30) numerically, we
consider a second time step ∆t such that δt ≤ ∆t ≤ ∆T . In other words, for each
sub-interval of length ∆T , the derivatives of the propagators Py, Qy, Pλ, Qλ are
approximated using a coarser time discretization with time step ∆t ≤ ∆T . The
optimality system for this coarser time discretization has the form

A∆tX̂ = b,

where A∆t has the same form as above, except that βδt and γδt are replaced by
β∆t and γ∆t, i.e., the values obtained from the formulas (28) and (29) when one
replaces δt by ∆t. Then the ParaOpt algorithm (11–12) for the linear Dahlquist
problem can be written as

A∆t(X
k+1 −Xk) = −F(Xk) = −(AδtX

k − b),

or, equivalently

(31) Xk+1 =
(
I −A−1

∆tAδt
)
Xk +A−1

∆tb.

Note that using this iteration, only a coarse matrix needs to be inverted.

PARAOPT: A PARAREAL ALGORITHM FOR OPTIMALITY SYSTEMS 9

3.2. Eigenvalue problem. In order to study the convergence of the iteration (31),
we study the eigenvalues of the matrix I − A−1

∆tAδt, which are given by the gener-
alized eigenvalue problem

(32) (A∆t −Aδt)x = µA∆tx,

with x = (v0, v1, · · · , vL, w1, · · · , wL)T being the eigenvector associated with the
eigenvalue µ. Since A∆t − Aδt has two zero rows, the eigenvalue µ = 0 must have
multiplicity at least two. Now let µ 6= 0 be a non-zero eigenvalue. (If no such
eigenvalue exists, then the preconditioning matrix is nilpotent and the iteration
converges in a finite number of steps.) Writing (32) componentwise yields

v0 = 0(33)

µ(v` − βv`−1 + γw`/α) = −δβv`−1 + δγw`/α(34)

µ(w` − βw`+1) = −δβw`+1(35)

µ (wL − vL) = 0,(36)

where we have introduced the simplified notation

(37) β = β∆t, γ = γ∆t, δβ = β∆t − βδt, δγ = γ∆t − γδt.

The recurrences (34) and (35) are of the form

(38) v` = av`−1 + bw`, w` = aw`+1,

where

a = β − µ−1δβ, b =
−γ + µ−1δγ

α
.

Solving the recurrence (38) in v together with the initial condition (33) leads to

(39) vL =

L∑
`=1

aL−`bw`,

whereas the recurrence (38) in w simply gives

(40) w` = aL−`wL.

Combining (39) and (40), we obtain

vL =

(
L∑
`=1

a2(L−`)b

)
wL,

so that (36) gives rise to P (µ)wL = 0, with

(41) P (µ) = αµ2L−1 + (µγ − δγ)

L−1∑
`=0

µ2(L−`−1)(µβ − δβ)2`.

Since we seek a non-trivial solution, we can assume wL 6= 0. Therefore, the eigen-
values of I − A−1

∆tAδt consist of the number zero (with multiplicity two), together
with the 2L − 1 roots of P (µ), which are all non-zero. In the next subsection, we
will give a precise characterization of the roots of P (µ), which depend on α, as well
as on σ via the parameters β, δβ, γ and δγ.

10 MARTIN J. GANDER, FELIX KWOK, AND JULIEN SALOMON

3.3. Characterization of eigenvalues. In the next two results, we describe the
location of the roots of P (µ) from the last section, or equivalently, the non-zero
eigenvalues of the iteration matrix I −A−1

∆tAδt. We first establish the sign of a few
parameters in the case σ < 0, which is true for diffusive problems.

Lemma 1. Let σ < 0. Then we have 0 < β < 1, 0 < δβ < β, γ > 0 and δγ < 0.

Proof. By the definitions (28) and (37), we see that

β = β∆t = (1− σ∆t)−∆T/∆t,

which is between 0 and 1, since 1 − σ∆t > 1 for σ < 0. Moreover, β∆t is an
increasing function of ∆t by direct calculation, so that

δβ = β∆t − βδt > 0,

which shows that 0 < δβ < β. Next, we have by definition

γ =
β2 − 1

σ(2− σ∆t)
.

Since β < 1 and σ < 0, both the numerator and the denominator are negative, so
γ > 0. Finally, we have

δγ =
1

|σ|

(
1− β2

∆t

2 + |σ|∆t
− 1− β2

δt

2 + |σ|δt

)
< 0,

since 1 − β2
∆t < 1 − β2

δt and 2 + |σ|∆t > 2 + |σ|δt, so the first quotient inside the
parentheses is necessarily smaller than the second quotient. �

We are now ready to prove a first estimate for the eigenvalues of the matrix
I −A−1

∆tAδt.

Theorem 1. Let P be the polynomial defined in (41). For σ < 0, the roots of P
are contained in the set Dσ ∪ {µ∗}, where

(42) Dσ = {µ ∈ C : |µ− µ0| < δβ/(1− β2)},

where µ0 = −βδβ/(1− β2), and µ∗ < 0 is a real negative number.

Proof. Since zero is not a root of P (µ), we can divide P (µ) by µ2L−1 and see that
P (µ) has the same roots as the function

P̂ (µ) = α+ (γ − µ−1δγ)

L−1∑
`=0

(β − µ−1δβ)2`.

Recall the change of variables

a = β − µ−1δβ ⇐⇒ µ =
δβ

β − a
;

substituting a into P̂ (µ) and multiplying the result by δβ/|δγ| shows that P (µ) = 0
is equivalent to

Q(a) :=
αδβ

|δγ|
+ (C − a)

L−1∑
`=0

a2` = 0,

with

(43) C := β + γδβ/|δγ| > 0.

PARAOPT: A PARAREAL ALGORITHM FOR OPTIMALITY SYSTEMS 11

Figure 2. Plot of g(θ) = arg
(∑L−1

`=0 e
2i`θ
)

for L = 7.

We will now show that Q(a) has at most one root inside the unit disc |a| ≤ 1; since
the transformation from µ to a maps circles to circles, this would be equivalent
to proving that P (µ) has at most one root outside the disc Dσ. We now use the
argument principle from complex analysis, which states that the difference between
the number of zeros and poles of Q inside a closed contour C is equal to the winding
number of the contour Q(C) around the origin. Since Q is a polynomial and has no
poles, this would allow us to count the number of zeros of Q inside the unit disc.
Therefore, we consider the winding number of the contour Γ = {f(eiθ) : 0 ≤ θ ≤ 2π}
with

f(a) = (C − a)

L−1∑
`=0

a2`

around the point −αδβ/|δγ|, which is a real negative number. If we can show that
Γ intersects the negative real axis at at most one point, then it follows that the
winding number around any negative real number cannot be greater than 1.

We now concentrate on finding values of θ such that arg(f(eiθ)) = π (mod 2π).

Since f(a) = f(a), it suffices to consider the range 0 ≤ θ ≤ π, and the other half of
the range will follow by conjugation. Since f is a product, we deduce that

arg(f(eiθ)) = arg(C − eiθ) + arg
(

1 + e2iθ + · · ·+ e2(L−1)iθ
)
.

We consider the two terms on the right separately.

• For the first term, we have for all 0 < θ < π

θ − π < arg(−eiθ) < arg(C − eiθ) < 0,

since C is real and positive. For θ = π, we obviously have arg(C− eiθ) = 0,
whereas for θ = 0, we have arg(C−eiθ) = −π if C < 1, and arg(C−eiθ) = 0
otherwise.

12 MARTIN J. GANDER, FELIX KWOK, AND JULIEN SALOMON

• For the second term, observe that for 0 < θ < π, we have

1 + e2iθ + · · ·+ e2(L−1)iθ =
1− e2iLθ

1− e2iθ
= e(L−1)iθ · sin(Lθ)

sin(θ)
.

Therefore, the second term is piecewise linear with slope L−1, with a jump
of size π whenever sin(Lθ) changes sign, i.e., at θ = kπ/L, k = 1, . . . , L−1.
Put within the range (−π, π), we can write

arg

(
1− e2iLθ

1− e2iθ

)
= (L− 1)θ −

⌊
Lθ

π

⌋
π =: g(θ), 0 < θ < π.

We also have g(0) = g(π) = 0 by direct calculation. The function g satisfies
the property −θ ≤ g(θ) ≤ π − θ, see Figure 2.

From the above, we deduce that arg(f(eiθ)) < π for all 0 ≤ θ ≤ π. Moreover,

arg(f(eiθ)) =


0, if θ = 0 and C > 1,

−π, if θ = 0 and C < 1,

arg(C − eiθ) + g(θ) > −π, if 0 < θ < π,

0, if θ = π.

Thus, the winding number around the point −αδβ/|δγ| cannot exceed one, so at
most one of the roots of Q can lie inside the unit disc. If there is indeed such a root
a∗, it must be real, since the conjugate of any root of Q is also a root. Moreover,
it must satisfy a∗ > C, since Q(a) > 0 for any a ≤ C. This implies

(44) β − a∗ < β − C = −γδβ
|δγ|

< 0,

so the corresponding µ∗ = δβ/(β − a∗) must also be negative. �

We have seen that the existence of µ∗ depends on whether the constant C is
larger than 1. The following lemma shows that we indeed have C < 1.

Lemma 2. Let σ < 0. Then the constant C = β + γδβ/|δγ|, defined in (43),
satisfies C < 1.

Proof. We first transform the relation C < 1 into a sequence of equivalent inequal-
ities. Starting with the definition of C, we have

C = β∆t +
γ∆t(β∆t − βδt)
γδt − γ∆t

< 1 ⇐⇒ β∆t(γδt − γ∆t) + γ∆t(β∆t − βδt) < γδt − γ∆t

⇐⇒ γ∆t(1− βδt) < γδt(1− β∆t)

⇐⇒ (1− β2
∆t)(1− βδt)

|σ|(2 + |σ|∆t)
<

(1− β2
δt)(1− β∆t)

|σ|(2 + |σ|δt)

⇐⇒ 1 + β∆t

2 + |σ|∆t
<

1 + βδt
2 + |σ|δt

,

where the last equivalence is obtained by multiplying both sides of the penultimate
inequality by |σ| and then dividing it by (1 − β∆t)(1 − βδt). By the definition of
β∆t and βδt, the last inequality can be written as f(|σ|∆t) < f(|σ|δt), where

f(x) :=
1 + (1 + x)−k/x

2 + x

PARAOPT: A PARAREAL ALGORITHM FOR OPTIMALITY SYSTEMS 13

with k = |σ|∆T > 0. Therefore, it suffices to show that f(x) is decreasing for
0 < x ≤ k. In other words, we need to show that

f ′(x) =
(1 + x)−k/x

2 + x

[
k ln(1 + x)

x2
− k

x(1 + x)

]
− 1 + (1 + x)−k/x

(2 + x)2
< 0.

This is equivalent to showing

(45) (2 + x)

[
k ln(1 + x)

x2
− k

x(1 + x)

]
− 1 < (1 + x)k/x.

Using the fact that ln(1 + x) ≤ x, we see that the left hand side is bounded above
by

(2 + x)

[
k ln(1 + x)

x2
− k

x(1 + x)

]
− 1 ≤ (2 + x)

[
kx

x2
− k

x(1 + x)

]
− 1

= k

(
2 + x

1 + x

)
− 1.

But for every k > 0 and 0 < x < k we have

(46) (1 + x)k/x > k

(
2 + x

1 + x

)
− 1,

see proof in the appendix. Therefore, (45) is satisfied by all k > 0 and 0 < x < k,
so f is in fact decreasing. It follows that C < 1, as required. �

Theorem 2. Let σ < 0 be fixed, and let

(47) L0 :=
C − β
γ(1− C)

.

Then the spectrum of I −A−1
∆tAδt has an eigenvalue µ∗ outside the disc Dσ defined

in (42) if and only if the number of subintervals L satisfies L > αL0, where α is
the regularization parameter.

Proof. The isolated eigenvalue exists if and only if the winding number of Q(eiθ)
about the origin is non-zero. Since Q(eiθ) only intersects the negative real axis at
most once, we see that the winding number is non-zero when Q(−1) < 0, i.e., when

αδβ

|δγ|
+ (C − 1)L < 0.

Using the definition of C, this leads to

α(C − β)

γ
+ (C − 1)L < 0 ⇐⇒ L >

α(C − β)

γ(1− C)
,

hence the result. �

3.4. Spectral radius estimates. The next theorem now gives a more precise
estimate on the isolated eigenvalue µ∗.

Theorem 3. Suppose that the number of intervals L satisfies L > αL0, with L0

defined in (47). Then the real negative eigenvalue µ∗ outside the disc Dσ is bounded
below by

µ∗ > −|δγ|+ αδβ(1 + β)

γ + α(1− β2)
.

14 MARTIN J. GANDER, FELIX KWOK, AND JULIEN SALOMON

Proof. Suppose a∗ = β− δβ/µ∗ is a real root of Q(a) inside the unit disc. We have
seen at the end of the proof of Theorem 1 (page 12, immediately before Equation
(44)) that a∗ > C; moreover, since a∗ is assumed to be inside the unit circle, we
must have a∗ < 1. Therefore, a∗ satisfies C < a∗ < 1. This implies

αδβ

|δγ|
+

C − a∗

1− (a∗)2
=

(C − a∗)(a∗)2L

1− (a∗)2
< 0.

Therefore, a∗ satisfies

(1− (a∗)2)αδβ + |δγ|(C − a∗) < 0,

which means

a∗ >
−|δγ|+

√
|δγ|2 + 4αδβ(αδβ + C|δγ|)

2αδβ

=
−|δγ|+

√
(|δγ|2 + 2αδβ)2 − 4(1− C)αδβ|δγ|

2αδβ
.

Therefore,

µ∗ =
δβ

β − a∗

>
2αδβ2

(2αβδβ + |δγ|)−
√

(|δγ|+ 2αδβ)2 − 4(1− C)αδβ|δγ|

=
2αδβ2

[
(2αβδβ + |δγ|) +

√
(|δγ|+ 2αδβ)2 − 4(1− C)αδβ|δγ|

]
(2αβδβ + |δγ|)2 − (|δγ|+ 2αδβ)2 + 4(1− C)αδβ|δγ|

=
δβ
[
(2αβδβ + |δγ|) +

√
(|δγ|+ 2αδβ)2 − 4(1− C)αδβ|δγ|

]
2(β − C)|δγ|+ 2αδβ(β2 − 1)

= −
(2αβδβ + |δγ|) +

√
(|δγ|+ 2αδβ)2 − 4(1− C)αδβ|δγ|

2γ + 2α(1− β2)

> −|δγ|+ αδβ(1 + β)

γ + α(1− β2)
,

where the last inequality is obtained by dropping the term containing (1−C) inside
the square root, which makes the square root larger since C < 1. �

To illustrate the above theorems, we show in Figures 3 and 4 the spectrum of the
iteration matrix I −A−1

∆tAδt for different values of σ and for α = 1 and 1000. Here,
the time interval [0, T] is subdivided into L = 30 subintervals, and each subinterval
contains 50 coarse time steps and 5000 fine time steps. Table 1 shows the values
of the relevant parameters. For α = 1, we see that there is always one isolated
eigenvalue on the negative real axis, since L > L0 in all cases, and its location is
predicted rather accurately by the formula (48). The rest of the eigenvalues all lie
within the disc Dσ defined in (42). For α = 1000, the bounding disc is identical to
the previous case; however, since we have L < αL0 for all cases except for σ = −16,
we observe no eigenvalue outside the disc, except for the very last case. In that very
last case, we have |δγ| = 0.0107, so (48) gives the lower bound µ∗ > −1.07× 10−5,
which again is quite accurate when compared with the bottom right panel of Figure
4.

PARAOPT: A PARAREAL ALGORITHM FOR OPTIMALITY SYSTEMS 15

Table 1. Parameter values for T = 100, L = 30, ∆T/∆t = 50,
∆t/δt = 100.

σ β γ C L0 Radius of Dσ µ∗ bound (α = 1)

−1/8 0.6604 2.2462 0.8268 0.4280 2.00× 10−3 −6.08× 10−3

−1/4 0.4376 1.6037 0.6960 0.5300 3.67× 10−3 −9.34× 10−3

−1/2 0.1941 0.9466 0.4713 0.5539 5.35× 10−3 −1.24× 10−2

−1 0.0397 0.4831 0.1588 0.2930 3.97× 10−3 −1.36× 10−2

−2 0.0019 0.2344 0.0116 0.0417 6.36× 10−4 −1.30× 10−2

−16 1.72× 10−16 0.0204 5× 10−16 1.61× 10−14 1.72× 10−16 −1.05× 10−2

Im
(µ

)

-14 -12 -10 -8 -6 -4 -2 0 2 4

10
-3

-6

-4

-2

0

2

4

6
10

-3

-14 -12 -10 -8 -6 -4 -2 0 2 4

10
-3

-6

-4

-2

0

2

4

6
10

-3

Im
(µ

)

-14 -12 -10 -8 -6 -4 -2 0 2 4

10
-3

-6

-4

-2

0

2

4

6
10

-3

-14 -12 -10 -8 -6 -4 -2 0 2 4

10
-3

-6

-4

-2

0

2

4

6
10

-3

Im
(µ

)

-14 -12 -10 -8 -6 -4 -2 0 2 4

10
-3

-6

-4

-2

0

2

4

6
10

-3

-14 -12 -10 -8 -6 -4 -2 0 2 4

10
-3

-6

-4

-2

0

2

4

6
10

-3

Re(µ) Re(µ)

Figure 3. Spectrum of the iteration matrix for T = 100,
L = 30, ∆T/∆t = 50, ∆t/δt = 100, α = 1, and for σ =
−1/8,−1/4,−1/2,−1,−2,−16, from top left to bottom right.

16 MARTIN J. GANDER, FELIX KWOK, AND JULIEN SALOMON

Im
(µ

)

-14 -12 -10 -8 -6 -4 -2 0 2 4

10
-3

-6

-4

-2

0

2

4

6
10

-3

-14 -12 -10 -8 -6 -4 -2 0 2 4

10
-3

-6

-4

-2

0

2

4

6
10

-3

Im
(µ

)

-14 -12 -10 -8 -6 -4 -2 0 2 4

10
-3

-6

-4

-2

0

2

4

6
10

-3

-14 -12 -10 -8 -6 -4 -2 0 2 4

10
-3

-6

-4

-2

0

2

4

6
10

-3

Im
(µ

)

-2.5 -2 -1.5 -1 -0.5 0 0.5 1

10
-3

-1

-0.5

0

0.5

1

10
-3

-14 -12 -10 -8 -6 -4 -2 0 2 4

10
-6

-6

-4

-2

0

2

4

6
10

-6

Re(µ) Re(µ)

Figure 4. Spectrum of the iteration matrix for T = 100, L =
30, ∆T/∆t = 50, ∆t/δt = 100, α = 1000, and for σ =
−1/8,−1/4,−1/2,−1,−2,−16, from top left to bottom right.

Corollary 1. Let T , ∆T , ∆t, δt, α and σ be fixed. Then the spectral radius ρ of
the matrix I −A−1

∆tAδt satisfies

(48) ρ ≤ |δγ|+ αδβ(1 + β)

γ + α(1− β2)
.

Note that the inequality (48) is valid for all L > 0, i.e., regardless of whether
the isolated eigenvalue µ∗ exists.

Proof. When the number of sub-intervals L satisfies L > αL0, the spectral radius is
determined by the isolated eigenvalue, which according to Theorem 3 is estimated

PARAOPT: A PARAREAL ALGORITHM FOR OPTIMALITY SYSTEMS 17

by

|µ∗| < |δγ|+ αδβ(1 + β)

γ + α(1− β2)
.

Otherwise, when L ≤ αL0, all the eigenvalues lie within the bounding disc Dσ, so
no eigenvalue can be farther away from the origin than

Radius(Dσ) + |Center(Dσ)| = δβ

1− β2
+

βδβ

1− β2
=

δβ

1− β
.

A straightforward calculation shows that

|δγ|+ αδβ(1 + β)

γ + α(1− β2)
>

δβ

1− β
if and only if β +

γδβ

|δγ|
< 1,

which is true by Lemma 2. Thus, the inequality (48) holds in both cases. �

The above corollary is of interest when we apply our ParaOpt method to a large
system of ODEs (arising from the spatial discretization of a PDE, for example),
where the eigenvalues lie in the range σ ∈ [−σmax,−σmin], with σmax → ∞ when
the spatial grid is refined. As we can see from Figure 5, the upper bound follows the
actual spectral radius rather closely for most values of σ, and its maximum occurs
roughly at the same value of σ as the one that maximizes the spectral radius. In the
next two results, we will use the estimate (48) of the spectral radius of I −A−1

∆tAδt
to derive a criterion for the convergence of the method.

Lemma 3. Let T , ∆T , ∆t, δt be fixed. Then for all σ < 0, we have

(49)
|δγ|
γ
≤ 1.58|σ|(∆t− δt), δβ

1− β
≤ 0.3.

Proof. To bound |δγ|/γ, we start by bounding a scaled version of the quantity. We
first use the definition of γ and γδt (cf. (29)) to obtain

|δγ|
γ
· 1

|σ|(∆t− δt)
=

γδt − γ
γ|σ|(∆t− δt)

=
2 + |σ|∆t

(1− β2)|σ|(∆t− δt)

(
1− β2

δt

2 + |σ|δt
− 1− β2

2 + |σ|∆t

)
=

1− β2
δt

(2 + σδt)(1− β2)
+

β2 − β2
δt

|σ|(∆t− δt)(1− β2)
=: A+B.

To estimate the terms A and B above, we define the mapping

h∆T (τ) := (1 + |σ|τ)−∆T/τ ,

so that β = h∆T (∆t), βδt = h∆T (δt). Using the fact that ln(1 +x) > x
1+x for x > 0

(see Lemma 5 in Appendix A), we see that

h′∆T (τ) = h∆T (τ)

[
∆T

τ2
ln(1 + |σ|τ)− |σ|∆T

τ(1 + |σ|τ)

]
> 0,

so h∆T is increasing. Therefore, we have

(50) lim
τ→0

h∆T (τ) = e−|σ|∆T ≤ βδt ≤ β ≤
1

1 + |σ|∆T
= h∆T (∆T).

It then follows that

A :=
1− β2

δt

(2 + σδt)(1− β2)
≤ 1− e−2|σ|∆T

(2 + σδt)(1− (1 + |σ|∆T)−2)
≤ (1− e−2|σ|∆T)(1 + |σ|∆T)2

2|σ|∆T (2 + |σ|∆T)
.

18 MARTIN J. GANDER, FELIX KWOK, AND JULIEN SALOMON

100 105
10-6

10-4

10-2

100

102

100 105
10-6

10-4

10-2

100

102

100 105
10-6

10-4

10-2

100

100 105
10-6

10-4

10-2

100

100 105
10-8

10-6

10-4

10-2

100

100 105
10-8

10-6

10-4

10-2

100

Figure 5. Behaviour of µmax as a function of σ for α =
0.001, 1, 1000 (top to bottom). Left: 150 subintervals, 1 coarse
step per subinterval. Right: 3 subintervals, 50 coarse steps per
subinterval. All examples use T = 100, ∆t = 2/3 and ∆t/δt = 104.

The last quotient is a function in |σ|∆T only, whose maximum over all |σ|∆T > 0
is approximately 0.5773 < 0.58; therefore, we have

A ≤ 0.58.

For the second term, we use the mean value theorem and the fact that β2 =
h2∆T (∆t), β2

δt = h2∆T (δt) to obtain

β2 − β2
δt = (∆t− δt)h′2∆T (τ∗)

PARAOPT: A PARAREAL ALGORITHM FOR OPTIMALITY SYSTEMS 19

for some δt < τ∗ < ∆t, with

h′2∆T (τ) = h2∆T (τ)

[
2∆T

τ2
ln(1 + |σ|τ)− 2|σ|∆T

τ(1 + |σ|τ)

]
.

Using the fact that ln(1 + x) ≤ x for all x ≥ 0, we deduce that

h′2∆T (τ∗) ≤ h2∆T (τ∗)
2|σ|2∆T

1 + |σ|τ∗
≤ 2β2|σ|2∆T

1 + |σ|δt
,

so that

B :=
β2 − β2

δt

|σ|(∆t− δt)(1− β2)
≤ 2|σ|∆T

(1 + |σ|∆T)2
· (1 + |σ|∆T)2

|σ|∆T (2 + |σ|∆T)
≤ 1.

Combining the estimates for A and B and multiplying by |σ|(∆t − δt) gives the
first inequality in (49). For the second inequality, we use (50) to obtain

β − βδt
1− β

≤ (1 + |σ|∆T)−1 − e−|σ|∆T

1− (1 + |σ|∆T)−1
=

1− (1 + |σ|∆T)e−|σ|∆T

|σ|∆T
.

This is again a function in a single variable |σ|∆T , whose maximum over all |σ|∆T >
0 is approximately 0.2984 < 0.3. �

Theorem 4. Let ∆T , ∆t, δt and α be fixed. Then for all σ < 0, the spectral radius
of I −A−1

∆tAδt satisfies

(51) max
σ<0

ρ(σ) ≤ 0.79∆t

α+
√
α∆t

+ 0.3.

Thus, if α > 0.4544∆t, then the linear ParaOpt algorithm (31) converges.

Proof. Starting with the spectral radius estimate (48), we divide the numerator
and denominator by γ, then substitute its definition in (29) to obtain

ρ(σ) <
|δγ|+ αδβ(1 + β)

γ + α(1− β2)
=

|δγ|
γ + δβ

1−βα|σ|(2 + |σ|∆t)
1 + α|σ|(2 + |σ|∆t)

≤ |δγ|
γ(1 + α|σ|(2 + |σ|∆t))

+
δβ

1− β
.

Now, by Lemma 3, the first term is bounded above by

f(σ) :=
1.58|σ|∆t

1 + α|σ|(2 + |σ|∆t)
,

whose maximum occurs at σ∗ = −1/
√
α∆t with

f(σ∗) =
0.79∆t√
α∆t+ α

.

Together with the estimate on δβ/(1 − β) in Lemma 3, this proves (51). Thus, a
sufficient condition for the method (31) to converge can be obtained by solving the
inequality

0.79∆t

α+
√
α∆t

+ 0.3 < 1.

This is a quadratic equation in
√
α; solving it leads to α > 0.4544∆t, as required.

�

20 MARTIN J. GANDER, FELIX KWOK, AND JULIEN SALOMON

10-5 100 105
10-3

10-2

10-1

100

101

102

103

max
()

0.5(t/)1/2

C -1/(2L-1)

Estimate (3.39)

Figure 6. Behaviour of maxσ<0 ρ(σ) as a function of α, T = 100,
L = 30, ∆T = ∆t, ∆t/δt = 10−4. The data for µmax(α) has been
generated by solving the generalized eigenvalue problem (32) using
eig in Matlab.

In Figure 6, we show the maximum spectral radius of I−A−1
∆tAδt over all negative

σ for different values of α for a model decomposition with T = 100, 30 subintervals,
one coarse time step per sub-interval, and a refinement ratio of 104 between the
coarse and fine grid. We see in this case that the estimate (51) is indeed quite
accurate.

Remarks.

(1) (Dependence on α) Theorem 4 states that in order to guarantee convergence,
one should make sure that the coarse time step ∆t is sufficiently small relative
to α. In that case, the method converges.

(2) (Weak scalability) Note that the estimate (51) depends on the coarse time
step ∆t, but not explicitly on the number of sub-intervals L. One may then
consider weak scalability, i.e. cases where the problem size per processor is
fixed3, under two different regimes: (i) keeping the sub-interval length ∆T and
refinement ratios ∆T/∆t, ∆t/δt fixed, such that adding subintervals increases
the overall time horizon T = L∆T ; and (ii) keeping the time horizon T fixed and
refinement ratios ∆T/∆t, ∆t/δt fixed, such that adding sub-intervals decreases
their length ∆T = T/L. In the first case, ∆t remains fixed, so the bound (51)
remains bounded as L → ∞. In the second case, ∆t → 0 as L → ∞, so in
fact (51) decreases to 0.3 as L→∞. Therefore, the method is weakly scalable
under both regimes.

3On the contrary, strong scalability deals with cases where the total problem size is fixed.

PARAOPT: A PARAREAL ALGORITHM FOR OPTIMALITY SYSTEMS 21

(3) (Contraction rate for high and low frequencies) Let α > 0 be fixed, and let ρ(σ)
be the spectral radius of I −A−1

∆tAδt as a function of σ given by (48). Then for
∆t/δt ≥ 2, an asymptotic expansion shows that we have

ρ(σ) =


|σ|(∆t− δt) +O(|σ|2) as |σ| → 0,

1
|σ|∆t +O(|σ|−2) as |σ| → ∞ if ∆T = ∆t,
1
αδt |σ|

−2 +O(|σ|−3) as |σ| → ∞ if ∆T/∆t ≥ 2.

In other words, the method reduces high and low frequency error modes very
quickly, and the overall contraction rate is dominated by mid frequencies (where
“mid” depends on α, ∆t, etc). This is also visible in Figure 5, where ρ attains
its maximum at |σ| = O(1/

√
α) and decays quickly for both large and small |σ|.

Finally, we note that for the linear problem, it is possible to use Krylov acceler-
ation to solve for the fixed point of (31), even when the spectral radius is greater
than 1. However, the goal of this linear analysis is to use it as a tool for studying
the asymptotic behaviour of the nonlinear method (11); since a contractive fixed
point map must have a Jacobian with spectral radius less than 1 at the fixed point,
Theorem 4 shows which conditions are sufficient to ensure asymptotic convergence
of the nonlinear ParaOpt method.

4. Numerical results

In the previous section, we have presented numerical examples related to the
efficiency of our bounds with respect to σ and α. We now study in more detail the
quality of our bounds with respect to the discretization parameters. We complete
these experiments with a nonlinear example and a PDE example.

4.1. Linear scalar ODE: sensitivity with respect to the discretization pa-
rameters. In this part, we consider the case where α = 1, σ = −16 and T = 1
and investigate the dependence of the spectral radius of I − A−1

∆tAδt when L, ∆t,
δt vary.

We start with variations in ∆t and δt, and a fixed number of sub-intervals L = 10.
In this way, we compute the spectral radius of I−A−1

∆tAδt for three cases: first with

a fixed ∆t = 10−4 and δt = ∆t
2k , k = 1, . . ., 15; then with a fixed δt = 10−2 ·2−20 and

∆t = 2−k, k = 0, . . ., 20; and finally with a fixed ratio δt
∆t = 10−2 with ∆t = 2k,

k = 1, . . ., 15. The results are shown in Figure 7. In all cases, we observe a very
good agreement between the estimate obtained in (48) and the true spectral radius.
Note that the largest possible ∆t for this problem is when ∆t equals the length of
the sub-interval, i.e., when ∆t = ∆T = 0.1. For this ∆t, the estimates (3.36) and
(3.39) are very close to each other, because (3.39) is obtained from (3.36) by making
∆t as large as possible, i.e., by letting ∆t = ∆T .

We next study the scalability properties of ParaOpt. More precisely, we examine
the behaviour of the spectral radius of the preconditioned matrix when the number
of subintervals L varies. In order to fit with the paradigm of numerical efficiency,
we set ∆T = ∆t which corresponds somehow to a coarsening limit. We consider
two cases: the first case uses a fixed value of T , namely T = 1, and the second case
uses T = L∆T for the fixed value of ∆T = 1. The results are shown in Figure 8. In
both cases, we observe perfect scalability of ParaOpt, in the sense that the spectral

22 MARTIN J. GANDER, FELIX KWOK, AND JULIEN SALOMON

Figure 7. Spectral radius of the preconditioned matrix. Top left:
varying δt (with fixed ∆t), top right: varying ∆t (with fixed δt),
bottom: varying ∆t (with fixed δt

∆t).

Figure 8. Spectral radius of the preconditioned matrix as a func-
tion of L. Left: fixed value of T (with T = 1), Right: T = L∆T .

radius is uniformly bounded with respect to the number of subintervals considered
in the time parallelization.

4.2. A nonlinear example. We now consider a control problem associated with
a nonlinear vectorial dynamics, namely the Lotka-Volterra system. The problem

PARAOPT: A PARAREAL ALGORITHM FOR OPTIMALITY SYSTEMS 23

Figure 9. L∞ error as a function of the number of exact (r = 1)
or inexact (r < 1) Newton iterations, for various values of the ratio
r = δt

∆t .

consists of minimizing the cost functional

J(c) =
1

2
|y(T)− ytarget|2 +

α

2

∫ T

0

|c(t)|2 dt

with ytarget = (100, 20)T , subject to the Lotka-Volterra equations

(52)
ẏ1 = g(y) := a1y1 − b1y1y2 + c1,

ẏ2 = g̃(y) := a2y1y2 − b2y2 + c2

with a1 = b2 = 10, b1 = a2 = 0.2 and initial conditions y(0) = (20, 10)T . In
this nonlinear setting, the computation of each component of F(Y,Λ) for given
Y and Λ requires a series of independent iterative inner loops. In our test, these
computations are carried out using a Newton method. As in Section 3, the time
discretization of (2) is performed with an implicit Euler scheme.

In a first test, we set T = 1/3 and α = 5×10−2 and fix the fine time discretization
step to δt = T

N0
, with N0 = 12·10−5. In Figure 9, we show the rate of convergence of

ParaOpt for L = 10 and various values of the ratio r = δt
∆t . Here, the error is defined

as the maximum difference between the interface state and adjoint values obtained
from a converged fine-grid solution, and the interface values obtained at each inexact
Newton iteration by ParaOpt. As can be expected when using a Newton method,
we observe that quadratic convergence is obtained in the case r = 1. When r
becomes smaller, the preconditioning becomes a coarser approximation of the exact
Jacobian, and thus convergence becomes a bit slower.

In our experiments, we observed that the initial guess plays a significant role
in the convergence of the method. This follows from the fact that ParaOpt is an
exact (if ∆t = δt) or approximate (otherwise) Newton method. The initial guess
we consider is c(t) = 1, y(T`) = (1 − T`/T)y0 + T`/Tytarget, and λ(T`) = (1, 1)T .
While for T = 1/3 we observe convergence for all L, if we increase T to T = 1, we

24 MARTIN J. GANDER, FELIX KWOK, AND JULIEN SALOMON

Figure 10. Left: two local minima of the cost functional J , ob-
tained with Newton (plain line) and Gauss-Newton (dashed line)
in the outer loop, for T = 1. The cost functional values are
J ≈ 1064.84 and J ≈ 15.74. The green cross and the red cir-
cle indicate y0 and ytarget. Right: (real) eigenvalues associated
with the linearized dynamics in a neighborhood of the local min-
ima obtained with Newton (top) and Gauss-Newton (bottom).

do not observe convergence any more for L < 10; in fact, without decomposing the
time domain, the sequential version of our solver with L = 1 does not converge,
even if we use the exact Jacobian without the coarse approximation. This shows
that using a time-domain decomposition actually helps in solving the nonlinear
problem, a phenomenon already observed for a different time-parallelization method
in [48]. These convergence problems we observed are also related to the existence
of multiple solutions. Indeed, if we coarsen the outer iteration by replacing the
Newton iteration with a Gauss-Newton iteration, i.e., by removing the second order
derivatives of g and g̃ in Newton’s iterative formula, we obtain another solution,
as illustrated in Figure 10 on the left for T = 1 and r = 1. For both solutions, we
observe that the eigenvalues associated with the linearized dynamics

δẏ1 = a1δy1 − b1δy1y2 − b1y1δy2 + δc1, δẏ2 = a2δy1y2 + a2y1δy2 − b2δy2 + δc2

in a neighborhood of the local minima remain strictly positive along the trajectories,
in contrast to the situation analyzed in Section 3. Their values are presented in
Figure 10 on the right.

We next test the numerical efficiency of our algorithm. The example we consider
corresponds to the last curve of Figure 9, i.e. T = 1/3 and r = 10−4, except that we
use various values of L∈ {1, 3, 6, 12, 24} using the corresponding number of proces-
sors. We execute our code in parallel on workers of a parallel pool, using Matlab’s
Parallel Processing Toolbox on a 24-core machine that is part of the SciBlade clus-
ter at Hong Kong Baptist University. The results are presented in Table 2, where
we also indicate the total parallel computing time without communication, as well
as the number of outer Newton iterations required for convergence to a tolerance
of 10−13. We observe that our cluster enables us to get very good scalability, the
total computing time is roughly divided by two when the number of processors is
doubled. Though not reported in the table, we have observed that even in the
case L = 1, i.e., without parallelization, ParaOpt outperforms the Newton method
(777.53 s vs. 865.76 s in our test).

PARAOPT: A PARAREAL ALGORITHM FOR OPTIMALITY SYSTEMS 25

Table 2. Performance of ParaOpt: total computing time Tcpu,
parallel computing time only in seconds and speedup (Tcpu(L =
1)/Tcpu(L)).

L Newton Its. Tcpu Parallel computing time speedup

1 14 777.53 777.42 1.00
3 10 172.13 167.36 4.52
6 9 82.10 79.67 9.47
12 9 43.31 42.49 17.95
24 9 25.75 24.74 30.20

To see how this compares with speedup ratios that can be expected from more
classical approaches, we run parareal on the initial value problem (52) with the same
initial conditions and no control, i.e., c1 = c2 = 0. For L = 3, 6, 12 and 24 sub-
intervals and a tolerance of 10−13, parareal requires K = 3, 6, 8 and 13 iterations
to converge. (For a more generous tolerance of 10−8, parareal requires K = 3, 6, 6
and 7 iterations.) Since the speedup obtained by parareal cannot exceed L/K,
the maximum speedup that can be obtained if parareal is used as a subroutine for
forward and backward sweeps does not exceed 4 for our problem. Note that this
result is specific to the non-diffusive character of the considered equation. This
speedup would change if the constraint type changed to parabolic, see [44, chap.
5].

4.3. A PDE example. We finally consider a control problem involving the heat
equation. More precisely, Eq. (1) is replaced by

∂ty −∆y = Bc,

where the unknown y = y(x, t) is defined on Ω = [0, 1] with periodic boundary
conditions, and on [0, T] with T = 10−2. Initial and target states are

yinit = exp(−100(x− 1/2)2),

ytarget =
1

2
exp(−100(x− 1/4)2) +

1

2
exp(−100(x− 3/4)2).

The operator B is the indicator function of a sub-interval Ωc of Ω; in our case,
Ωc = [1/3, 2/3]. We also set α = 10−4. The corresponding solution is shown in
Figure 11. We use a finite difference scheme with 50 grid points for the spatial dis-
cretization. As in the previous subsection, an implicit Euler scheme is used for the
time discretization, and we consider a parallelization involving L = 10 subintervals,
with δt = 10−7 and δt = 10−9 so that the rate of convergence of the method can
be tested for various values of r = δt

∆t . For α = 10−4, the evolution of the error
along the iterations is shown in Figure 12. Here, the error is defined as the maxi-
mum difference between the iterates and the reference discrete solution, evaluated
at sub-interval interfaces. Observe also that the convergence curves corresponding
to r = 10−1 and r = 10−2 on the left panel look nearly identical to the curves for
r = 10−3 and r = 10−4 on the right panel. This is because they correspond to the
same values of ∆t, namely ∆t = 10−6 and ∆t = 10−5. This behavior is consistent
with Theorem 4, where the convergence estimate depends only on ∆t, rather than
on the ratio δt

∆t . Cases of divergence can also be observed, in particular for T = 1
and small values of α and r, as shown in Figure 13.

26 MARTIN J. GANDER, FELIX KWOK, AND JULIEN SALOMON

Figure 11. Example of initial condition, target state and final
state of the solution of the control problem.

Figure 12. Convergence of the method for various values of the
ratio r = δt

∆t . Left: δt = 10−7, right: δt = 10−9.

Of course, one can envisage using different spatial discretizations for the coarse
and fine propagators; this may provide additional speedup, provided suitable re-
striction and prologation operators are used to communicate between the two dis-
cretizations. This will be the subject of investigation in a future paper.

5. Conclusions

We introduced a new time-parallel algorithm we call ParaOpt for time-dependent
optimal control problems. Instead of applying Parareal to solve separately the
forward and backward equations as they appear in an optimization loop, we propose
in ParaOpt to partition the coupled forward-backward problem directly in time,
and to use a Parareal-like iteration to incorporate a coarse correction when solving
this coupled problem. We analyzed the convergence properties of ParaOpt, and
proved in the linear diffusive case that its convergence is independent of the number
of sub-intervals in time, and thus scalable. We also tested ParaOpt on scalar

PARAOPT: A PARAREAL ALGORITHM FOR OPTIMALITY SYSTEMS 27

Figure 13. Top left: Spectral radius of the preconditioned matrix
as a function of α, with δt = 10−5 and ∆t = ∆T = 10−1. Top
right: Spectral radius of the preconditioned matrix as a function
of ∆t/∆T , with δt = 10−8 and α = 10−4. Bottom left: Spectral
radius of the preconditioned matrix as a function of α and ∆t/∆T ,
with δt = 10−7. Bottom right: Estimate (51) as a function of α
and ∆t/∆T .

linear optimal control problems, a nonlinear non-diffusive optimal control problem
involving the Lotka-Volterra system, and also on a control problem governed by
the heat equation. A small scale parallel implementation of the Lotka-Volterra case
also showed scalability of ParaOpt for this nonlinear problem.

Our ongoing work consists of analyzing the algorithm for non-diffusive problems.
Also, for problems with large state spaces, e.g., for discretized PDEs in three spatial
dimensions, the approximate Jacobian JG in (12) may become too large to solve
by direct methods. Thus, we are currently working on designing efficient precon-
ditioners for solving such systems iteratively. Finally, we are currently studying
ParaOpt by applying it to realistic problems from applications, in order to better
understand its behaviour in such complex cases.

Acknowledgments

The authors acknowledge support from ANR Ciné-Para (ANR-15-CE23-0019),
ANR/RGC ALLOWAPP (ANR-19-CE46-0013/A-HKBU203/19), the Swiss Na-
tional Science Foundation grant no. 200020 178752, and the Hong Kong Research
Grants Council (ECS 22300115 and GRF 12301817). We also thank the anonymous
referees for their valuable suggestions, which greatly improved our paper.

28 MARTIN J. GANDER, FELIX KWOK, AND JULIEN SALOMON

Appendix A. Proof of Inequality (46)

Our goal is to prove the following lemma, which is needed for the proof of Lemma
2.

Lemma 4. For every k > 0 and 0 < x ≤ k, we have

(53) (1 + x)k/x > k

(
2 + x

1 + x

)
− 1.

First, we need the following property of logarithmic functions.

Lemma 5. For any x > 0, we have

ln(1 + x) ≥ x

x+ 1
+

1

2

(
x

x+ 1

)2

.

Proof. Let u = x
x+1 < 1. Then

ln(1 + x) = − ln

(
1

1 + x

)
= − ln(1− u)

= u+
u2

2
+
u3

3
+ · · · ≥ u+

u2

2
.

The conclusion now follows. �

Proof. (Lemma 4) Let g and h denote the left and right hand sides of (53) respec-
tively. We consider two cases, namely when 0 < k ≤ 1 and when k > 1. When
k ≤ 1, we have

h(x) ≤ 2 + x

1 + x
− 1 =

1

1 + x
< 1 < (1 + x)k/x = g(x).

For the case k > 1, we will show that g(k) > h(k) and g′(x) − h′(x) < 0 for
0 < x < k, which together imply that g(x) > h(x) for all 0 < x ≤ k. The first
assertion follows from the fact that

g(k)− h(k) = 1 + k − k · k + 2

k + 1
+ 1 = 2− k

k + 1
> 0.

To prove the second part, we note that

g′(x) = (1 + x)k/x
[
− k

x2
ln(1 + x) +

k

x(1 + x)

]
=
−k
x2

(1 + x)k/x−1 [(1 + x) ln(1 + x)− x]

<
−k
x2

(1 + x)k/x−1 · x2

2(x+ 1)
=
−k
2

(1 + x)k/x−2 < 0,

h′(x) = − k

(1 + x)2
< 0.

Therefore, we have

g′(x)− h′(x) < − k

(1 + x)2

[
1

2
(1 + x)k/x − 1

]
≤ − k

(1 + x)2

[
1 + k

2
− 1

]
︸ ︷︷ ︸
> 0 since k > 1

< 0.

Thus, g(x) > h(x) for all 0 < x < k, as required. �

PARAOPT: A PARAREAL ALGORITHM FOR OPTIMALITY SYSTEMS 29

References

[1] M. D. Al-Khaleel, M. J. Gander, and A. E. Ruehli, Optimization of transmission condi-
tions in waveform relaxation techniques for RC circuits, SIAM Journal on Numerical Anal-

ysis, 52 (2014), pp. 1076–1101.

[2] A. Bellen and M. Zennaro, Parallel algorithms for initial-value problems for difference
and differential equations, J. Comput. Appl. Math., 25 (1989), pp. 341–350.

[3] H. Bock and K. Plitt, A multiple shooting algorithm for direct solution of optimal control

problems*, IFAC Proceedings Volumes, 17 (1984), pp. 1603 – 1608. 9th IFAC World Congress:
A Bridge Between Control Science and Technology, Budapest, Hungary, 2-6 July 1984.

[4] V. Dobrev, T. Kolev, N. A. Petersson, and J. B. Schroder, Two-level convergence
theory for multigrid reduction in time (MGRIT), SIAM Journal on Scientific Computing, 39

(2017), pp. S501–S527.

[5] J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio, J.-C. Andre, D. Barkai, J.-
Y. Berthou, T. Boku, B. Braunschweig, F. Cappello, B. Chapman, X. Chi, A. Choud-

hary, S. Dosanjh, T. Dunning, S. Fiore, A. Geist, B. Gropp, R. Harrison, M. Hereld,

M. Heroux, A. Hoisie, K. Hotta, Z. Jin, Y. Ishikawa, F. Johnson, S. Kale, R. Kenway,
D. Keyes, B. Kramer, J. Labarta, A. Lichnewsky, T. Lippert, B. Lucas, B. Mac-

cabe, S. Matsuoka, P. Messina, P. Michielse, B. Mohr, M. S. Mueller, W. E. Nagel,

H. Nakashima, M. E. Papka, D. Reed, M. Sato, E. Seidel, J. Shalf, D. Skinner, M. Snir,
T. Sterling, R. Stevens, F. Streitz, B. Sugar, S. Sumimoto, W. Tang, J. Taylor,

R. Thakur, A. Trefethen, M. Valero, A. van der Steen, J. Vetter, P. Williams,

R. Wisniewski, and K. Yelick, The international exascale software project roadmap, Inter-
national Journal of High Performance Computing Applications, 25 (2011), pp. 3–60.

[6] M. Emmett and M. L. Minion, Toward an efficient parallel in time method for partial
differential equations, Comm. App. Math. and Comp. Sci, 7 (2012), pp. 105–132.

[7] R. Falgout, S. Friedhoff, T. V. Kolev, S. MacLachlan, and J. B. Schroder, Parallel

time integration with multigrid, SIAM Journal on Scientific Computing, 36 (2014), pp. C635–
C661.

[8] M. J. Gander, Overlapping Schwarz for linear and nonlinear parabolic problems, in Proceed-

ings of the 9th International Conference on Domain Decomposition, ddm.org, 1996, pp. 97–
104.

[9] M. J. Gander, 50 years of time parallel time integration, in Multiple Shooting and Time

Domain Decomposition Methods, Springer, 2015, pp. 69–113.
[10] M. J. Gander and S. Güttel, Paraexp: A parallel integrator for linear initial-value prob-

lems, SIAM Journal on Scientific Computing, 35 (2013), pp. C123–C142.

[11] M. J. Gander and E. Hairer, Nonlinear convergence analysis for the parareal algorithm, in
Domain Decomposition Methods in Science and Engineering XVII, O. B. Widlund and D. E.

Keyes, eds., vol. 60 of Lecture Notes in Computational Science and Engineering, Springer,
2008, pp. 45–56.

[12] M. J. Gander and E. Hairer, Analysis for parareal algorithms applied to Hamiltonian

differential equations, Journal of Computational and Applied Mathematics, 259 (2014), pp. 2–
13.

[13] M. J. Gander and L. Halpern, Absorbing boundary conditions for the wave equation and
parallel computing, Math. of Comp., 74 (2004), pp. 153–176.

[14] , Optimized Schwarz waveform relaxation methods for advection reaction diffusion
problems, SIAM Journal on Numerical Analysis, 45 (2007), pp. 666–697.

[15] M. J. Gander, F. Kwok, and B. Mandal, Dirichlet-Neumann and Neumann-Neumann

waveform relaxation algorithms for parabolic problems, ETNA, 45 (2016), pp. 424–456.

[16] M. J. Gander, F. Kwok, and G. Wanner, Constrained optimization: From lagrangian
mechanics to optimal control and pde constraints, in Optimization with PDE Constraints,

Springer, 2014, pp. 151–202.
[17] M. J. Gander and M. Neumüller, Analysis of a new space-time parallel multigrid algorithm

for parabolic problems, SIAM Journal on Scientific Computing, 38 (2016), pp. A2173–A2208.

[18] M. J. Gander and M. Petcu, Analysis of a Krylov subspace enhanced parareal algorithm

for linear problems, in ESAIM: Proceedings, vol. 25, EDP Sciences, 2008, pp. 114–129.
[19] M. J. Gander and A. M. Stuart, Space-time continuous analysis of waveform relaxation

for the heat equation, SIAM Journal on Scientific Computing, 19 (1998), pp. 2014–2031.

30 MARTIN J. GANDER, FELIX KWOK, AND JULIEN SALOMON

[20] M. J. Gander and S. Vandewalle, Analysis of the parareal time-parallel time-integration

method, SIAM Journal on Scientific Computing, 29 (2007), pp. 556–578.

[21] E. Giladi and H. B. Keller, Space time domain decomposition for parabolic problems,
Numerische Mathematik, 93 (2002), pp. 279–313.

[22] R. Glowinski and J. Lions, Exact and approximate controllability for distributed parameter

systems, Acta numerica, 3 (1994), pp. 269–378.
[23] S. Götschel and M. L. Minion, Parallel-in-time for parabolic optimal control problems using

PFASST, in Domain Decomposition Methods in Science and Engineering XXIV, Springer,

2018, pp. 363–371.
[24] S. Götschel and M. L. Minion, An efficient parallel-in-time method for optimization with

parabolic PDEs, SIAM Journal on Scientific Computing, 41 (2019), pp. C603–C626.
[25] S. Günther, N. R. Gauger, and J. B. Schroder, A non-intrusive parallel-in-time adjoint

solver with the XBraid library, Computing and Visualization in Science, 19 (2018), pp. 85–95.

[26] , A non-intrusive parallel-in-time approach for simultaneous optimization with un-
steady PDEs, Optimization Methods and Software, 34 (2019), pp. 1306–1321.

[27] W. Hackbusch, Parabolic multi-grid methods, in Computing Methods in Applied Sciences

and Engineering, VI, R. Glowinski and J.-L. Lions, eds., North-Holland, 1984, pp. 189–197.
[28] G. Horton and S. Vandewalle, A space-time multigrid method for parabolic partial differ-

ential equations, SIAM Journal on Scientific Computing, 16 (1995), pp. 848–864.

[29] K. Ito and K. Kunisch, Lagrange multiplier approach to variational problems and applica-
tions, vol. 15, Siam, 2008.

[30] M. Kiehl, Parallel multiple shooting for the solution of initial value problems, Parallel com-

puting, 20 (1994), pp. 275–295.
[31] F. Kwok, Neumann-Neumann waveform relaxation for the time-dependent heat equation, in

Domain decomposition methods in science and engineering, DD21, Springer, 2014.

[32] E. Lelarasmee, A. E. Ruehli, and A. L. Sangiovanni-Vincentelli, The waveform re-
laxation method for time-domain analysis of large scale integrated circuits, IEEE Trans. on

CAD of IC and Syst., 1 (1982), pp. 131–145.
[33] J.-L. Lions, Y. Maday, and G. Turinici, Résolution d’edp par un schéma en temps

’pararéel’, Comptes Rendus de l’Académie des Sciences-Series I-Mathematics, 332 (2001),

pp. 661–668.
[34] C. Lubich and A. Ostermann, Multi-grid dynamic iteration for parabolic equations, BIT,

27 (1987), pp. 216–234.

[35] Y. Maday and E. M. Rønquist, Parallelization in time through tensor-product space–time
solvers, Comptes Rendus Mathematique, 346 (2008), pp. 113–118.

[36] Y. Maday, J. Salomon, and G. Turinici, Monotonic parareal control for quantum systems,

SIAM Journal on Numerical Analysis, 45 (2007), pp. 2468–2482.
[37] Y. Maday and G. Turinici, A parareal in time procedure for the control of partial differential

equations, Comptes Rendus Mathematique, 335 (2002), pp. 387 – 392.

[38] Y. Maday and G. Turinici, Parallel in time algorithms for quantum control: Parareal time
discretization scheme, International Journal of Quantum Chemistry, 93 (2003), pp. 223–228.

[39] B. Mandal, A time-dependent Dirichlet-Neumann method for the heat equation, in Domain
decomposition methods in science and engineering, DD21, Springer, 2014.

[40] M. L. Minion, A hybrid parareal spectral deferred corrections method, Communications in

Applied Mathematics and Computational Science, 5 (2010), pp. 265–301.
[41] M. L. Minion, R. Speck, M. Bolten, M. Emmett, and D. Ruprecht, Interweaving

PFASST and parallel multigrid, SIAM journal on scientific computing, 37 (2015), pp. S244–
S263.

[42] W. L. Miranker and W. Liniger, Parallel methods for the numerical integration of ordinary

differential equations, Math. Comp., 91 (1967), pp. 303–320.

[43] D. D. Morrison, J. D. Riley, and J. F. Zancanaro, Multiple shooting method for two-point
boundary value problems, Commun. ACM, 5 (1962), p. 613614.

[44] A. S. Nielsen, Feasibility study of the parareal algorithm, Master’s thesis, Technical Univer-
sityof Denmark, Kongens Lyngby, 2012.

[45] J. Nievergelt, Parallel methods for integrating ordinary differential equations, Comm.

ACM, 7 (1964), pp. 731–733.
[46] B. W. Ong and J. B. Schroder, Applications of time parallelization, Computing and Vi-

sualization in Science, submitted, (2019).

PARAOPT: A PARAREAL ALGORITHM FOR OPTIMALITY SYSTEMS 31

[47] J. W. Pearson, M. Stoll, and A. J. Wathen, Regularization-robust preconditioners for

time-dependent pde-constrained optimization problems, SIAM Journal on Matrix Analysis

and Applications, 33 (2012), pp. 1126–1152.
[48] M. K. Riahi, J. Salomon, S. J. Glaser, and D. Sugny, Fully efficient time-parallelized

quantum optimal control algorithm, Phys. Rev A, 93 (2016).

[49] D. Sheen, I. H. Sloan, and V. Thomée, A parallel method for time discretization of para-
bolic equations based on Laplace transformation and quadrature, IMA Journal of Numerical

Analysis, 23 (2003), pp. 269–299.

[50] V. Thomée, A high order parallel method for time discretization of parabolic type equations
based on Laplace transformation and quadrature, Int. J. Numer. Anal. Model, 2 (2005),

pp. 121–139.

[51] F. Tröltzsch, Optimal control of partial differential equations: theory, methods, and appli-
cations, vol. 112, American Mathematical Soc., 2010.

[52] S. Ulbrich, Preconditioners based on “parareal” time-domain decomposition for time-
dependent PDE-constrained optimization, in Multiple Shooting and Time Domain Decompo-

sition Methods, Springer, 2015, pp. 203–232.

[53] S. Vandewalle and E. Van de Velde, Space-time concurrent multigrid waveform relax-
ation, Annals of Numer. Math, 1 (1994), pp. 347–363.

Section of Mathematics, University of Geneva, 1211 Geneva 4, Switzerland

E-mail address: martin.gander@unige.ch

Department of Mathematics, Hong Kong Baptist University, Hong-Kong

E-mail address: felix kwok@hkbu.edu.hk

INRIA Paris, ANGE Project-Team, 75589 Paris Cedex 12, France and Sorbonne Uni-

versité, CNRS, Laboratoire Jacques-Louis Lions, 75005 Paris, France

E-mail address: julien.salomon@inria.fr

