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The Fourier transform (or spectral analysis) has become a universal tool for data 
analysis in many different real-world applications, notably for the characterization of 
temporal/spatial dynamics in data. The wavelet transform (or multiscale analysis) can 
be regarded as tailoring spectral estimation to classes of signals or functions defined by 
scale-free dynamics. The present contribution first formally reviews these connections 
in the context of multivariate stationary processes, and second details the ability of the 
wavelet transform to extend multivariate scale-free temporal dynamics analysis beyond 
second-order statistics (Fourier spectrum and autocovariance function) to multivariate self-
similarity and multivariate multifractality. Illustrations and qualitative discussions of the 
relevance of scale-free dynamics for macroscopic brain activity description using MEG data 
are proposed.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

La transformée de Fourier (ou analyse spectrale) est aujourd’hui devenue un outil universel 
pour l’analyse de données issues de nombreuses applications réelles de natures très 
différentes, particulièrement pertinent pour la caractérisation de la dynamique temporelle 
ou spatiale. La transformée en ondelettes (ou analyse multéchelle) peut être vue comme 
une analyse spectrale adaptée à des classes de signaux ou fonctions dont la dynamique 
est invariante d’échelle. La présente contribution propose d’abord de faire un état de l’art 
des relations formelles entre ces deux analyses dans le cadre des processus aléatoires 
stationaires multivariés, puis de montrer la capacité de la transformée en ondelettes 
à étendre l’analyse de l’invariance d’échelle multivariée au-delà des statistiques de second 
ordre (fonction de covariance et spectre de Fourier), à l’auto-similarité multivariée et 
à la multifractalité multivariée. Quelques illustrations et éléments de discussion sur la 
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pertinence de ces concepts et outils pour l’analyse de l’activité cérébrale macroscopique 
sont proposés.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

1.1. Context: from frequency to scale representations

Fourier (spectral) transform and multivariate temporal dynamics. The Fourier transform has become a universal tool in 
almost all fields of the sciences. Notably, it has been used to analyze data from numerous real-world applications where 
the information of interest is conveyed by the multivariate temporal or spatial dynamics of collections of signals (images, 
fields, flows of images, video. . . ). Such dynamics are often well accounted for by the so-called Fourier spectrum, defined as 
the Fourier transform of auto- and cross-covariance functions, which is thus tied to second-order (or two point) statistics of 
data [1]. Besides countless successes in real-world applications, very different in nature, ranging from natural sciences and 
engineering to social sciences, the popularity of the Fourier transform relies on a solid mathematical foundation [2–4] and 
fast and efficient computer implementations (algorithms) [5,6].
Wavelet (multiscale) transform and multivariate scale-free dynamics. The Fourier transform and spectral analysis are doc-
umented to be of particular relevance and interest when temporal dynamics are well characterized by oscillatory behavior, 
corresponding to energy concentration within narrow frequency bands (for example, macroscopic brain activity with well-
defined frequency bands known to be associated with brain activity, e.g., the alpha-band and attention. . . [7]). For such cases, 
data are well described by mathematical models (Markov processes, ARMA models. . . ) whose definitions are deeply tied to 
one (or a few) well-defined characteristic scale(s) of time, or equivalently, of frequency ranges. However, the “scale-free 
paradigm” is observed to be a superior modeling framework for a great number of complex or large-dimensional data sets 
stemming from a wide range of modern fields of investigation. This includes areas such as human socio-economic activities 
(Internet traffic [8–11], finance [12–14], geography [15], art investigation [16,17]. . . ) and natural phenomena (heart rate 
rhythms [18–22], neuroscience [23–26] or hydrodynamic turbulence [27–29] and geophysics [30,31]. . . ). The original intu-
ition into scale-free behavior may likely be traced back to the seminal works of B. Mandelbrot [32–34]: temporal dynamics 
are governed by a large continuum of time scales, and crucial information is no longer encoded in the identification of one 
or a few time scales, but rather in the relations amongst time scales [8]. Such situations have been abundantly characterized, 
notably, by means of conceptual models such as 1/ f -processes, self-similarity and (multi)fractality. Neuroscience provides 
a rich context of particular interest where scale-free dynamics has been applied to the modeling of infraslow spontaneous 
macroscopic brain activity [24,35]. It has also prompted the use of the wavelet transform instead of the Fourier transform, 
that is, of scale-dependent rather than frequency-dependent analysis [36,37]. This was shown to efficiently reformulate 
spectral analysis, both theoretically and practically [8,10,38–41].
Beyond Fourier and second-order statistics. Multivariate temporal dynamics characterization is naturally grounded in sec-
ond order statistical analysis (Fourier spectra and auto- and cross- covariances). By contrast, its wavelet counterpart permits 
extensions that are theoretically well-grounded and efficient in practice to higher order statistics, and also to some forms of 
non-stationarity [8]. This is accomplished by means of the concepts of multivariate self-similarity [42–44] and multivariate 
multifractality [45,46].

1.2. Goals, contributions, and outlines: wavelet and higher-order multivariate temporal dynamics

The overall goal of the present contribution is to show the extent to which wavelet transforms encompass and enrich 
Fourier transforms for the analysis of multivariate scale-free dynamics. Fourier-based and wavelet-based spectral estima-
tion for multivariate stationary stochastic processes are thus reviewed and compared in Section 2. The richness of wavelet 
eigenspectrum-based analysis for multivariate self-similarity is detailed in Section 3. The need for extending wavelet to 
wavelet leader analysis in multifractal analysis, together with the interest in multivariate multifractal analysis, is described 
in Section 4.

A Matlab toolbox implementing the wavelet-based analysis of scale-free dynamics is publicly and freely available with 
documentation at http://www.ens -lyon .fr /PHYSIQUE /Equipe3 /Multifractal/.

2. Fourier vs. wavelet multivariate spectral estimation

2.1. Fourier-based spectral estimation

2.1.1. Stationary stochastic processes
Let (Xm(t))m=1,...,M,t∈R be a M-variate, real-valued, finite variance stationary stochastic process, with well-defined auto-

and cross-covariance functions, Cm,n(τ ) = E 
(

Xm(t)X∗
n (t + τ )

)
, and Fourier (or frequency) spectra, �m,n(ν) = (FCm,n)(ν), 

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.ens-lyon.fr/PHYSIQUE/Equipe3/Multifractal/
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where E denotes the ensemble average, ∗ denotes complex conjugation, and f̃ (ν) = (F f )(ν) = ∫
f (t) exp(−2iπνt) dt is the 

Fourier transform of f .

2.1.2. Multivariate Fourier-based spectral estimation
Classical nonparametric spectral estimation, often referred to as periodogram or Welch spectral estimation [1], is grounded 

in the use of the short-time Fourier (or Gabor) transform (STFT) [47]. The STFT coefficients g X (�, k) are defined by com-
paring, by means of inner products, the signal to analyze, X(t), against a collection of translated and frequency-shifted 
templates, φ�,k(t) = φ(t − kT0) exp (−2i�ν0t) of a reference pattern φ(t): g X (�, k) = 〈X, φ�,k〉. The time and frequency res-
olutions T0 and ν0 are positive quantities that can be arbitrarily chosen, provided that they satisfy T0ν0 ≤ 1/(4π). Under 
mild conditions on the finite-energy function φ(t), the STFT can be inverted, and g X (�, k) can be interpreted as the joint 
time and frequency content of X around time t = kT0 and frequency ν = �ν0 [47].

STFT-based multivariate spectral analysis amounts to estimating the frequency spectra �m,n(ν) by time averages (thus 
assuming ergodicity of X , in addition to stationarity) of STFT coefficients squared-moduli:

�̂m,n(ν = �ν0) =
∑

k

g Xm (�,k)g∗
Xn

(�,k) (1)

Straightforward calculations yield

E�̂m,n(ν = �ν0) =
∫

�m,n( f − �ν0)|φ̃( f )|2 d f (2)

thus showing that �̂m,n(ν) estimates �m,n(ν) by averaging �m,n( f ) over frequencies f within a spectral band controlled 
by φ̃. The time and frequency resolutions of the functions φ�,k depend neither on � nor on k, and are only controlled 
through the choice of the function φ. STFT thus achieves a fixed absolute-frequency resolution multivariate spectral analysis.

Of particular interest in multivariate analysis is the pairwise coherence function

Cohm,n( f ) = �m,n( f )√
�m,m( f )�n,n( f )

(3)

which consists of a frequency-dependent correlation coefficient. By quantifying which frequencies are actually involved in 
cross-temporal dynamics, it permits better analysis of the overall temporal dynamics of a system. For real signals, Cm,n( f )
is also real and ranges within −1 ≤ Cohm,n( f ) ≤ 1.

2.2. Wavelet-based spectral estimation

2.2.1. Multivariate wavelet transform
As an alternative to the STFT, spectral estimation can be reformulated using the discrete wavelet transform (DWT). The 

coefficients of the DWT, dX ( j, k), are defined by comparing, by means of inner products, the signal to analyze, X(t), against 
a collection of translated and dilated templates, ψ j,k(t) = 1/a j

0ψ((t − kT0a j
0)/a j

0), of a finite-energy reference pattern ψ(t): 
dX ( j, k) = 〈X, ψ j,k〉. When ψ is a zero-mean function, 

∫
ψ(t) dt ≡ 0, and under other mild conditions, the time and scale 

resolutions T0 and a0 can be chosen such that the DWT can be inverted and the dX ( j, k) can be interpreted as the joint time 
and scale content of X around time t = ka j

0T0 and scale a = a j
0. Additionally, for appropriate ψ , the set {a j/2

0 ψ j,k(t)} j,k∈R2 is 
an orthonormal basis of L2(R), thus leading to simple inversion algorithms. The generic case of the dyadic DWT, used here, 
corresponds to selecting a0 = 2 [36,37].

In addition to being band-pass, the mother wavelet ψ is often designed to have Nψ vanishing moments, with Nψ defined 
as the smallest integer such that

∀k = 0 . . . , Nψ − 1,

∫
tkψ(t)dt ≡ 0 and

∫
tNψ ψ(t)dt 	= 0 (4)

Nψ controls the decay of ψ̃ around ν = 0 as: |ψ̃(ν)| 
 Cψ |ν|Nψ , and thus the bandwidth of ψ̃ [36,37].
The band-pass nature of ψ permits the association with characteristic central frequency νψ and bandwidth �νψ :

νψ =
∫

f |ψ̃( f )|2 d f∫ |ψ̃( f )|2 d f
and �νψ =

√∫ | f − νψ |2|ψ̃( f )|2 d f∫ |ψ̃( f )|2 d f
(5)

Thus, by remapping the scale a to the frequency ν via ν = νψ/a, the DWT coefficients dX ( j, k) can also be interpreted as 
the joint time and frequency content of X around time t = ka j T0 and frequency ν = νψ/a j [8,40].
0 0
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2.2.2. Multivariate wavelet-based spectral estimation
DWT-based multivariate spectral analysis amounts to estimating �m,n(ν) by time averages of DWT coefficients squared-

moduli:

�̂
(W )
m,n (ν = νψ/a j

0) =
∑

k

dXm ( j,k)d∗
Xn

( j,k) (6)

Straightforward calculations yield:

E�̂
(W )
m,n (ν = νψ/a j

0) =
∫

�m,n( f )|ψ̃( f /a j
0)|2 d f (7)

The central frequency, the time, and the frequency resolution of ψ j,k are related to those of ψ as ν j,k = νψ/a j
0, �ν j,k =

�νψ/a j
0 and �T j,k = �Tψ × a j

0. This shows that �̂(W )
m,n (ν) estimates �m,n(νψ/a j

0) by averaging �m,n over frequencies f

around νψ/a j
0 within a spectral band controlled by �νψ/a j

0. DWT thus achieves a fixed relative-frequency resolution multi-
variate spectral analysis.

In analogy to the coherence function, the wavelet coherence can be defined as [48]:

Coh(W )
m,n (ν = νψ/a) = �

(W )
m,n (νψ/a)√

�
(W )
m,m(νψ/a)�

(W )
n,n (νψ/a)

(8)

For real signals, it ranges within −1 ≤ Coh(W )
m,n ≤ 1 and quantifies, as a scale-dependent correlation coefficient, which scales 

are actually involved in cross-temporal dynamics, and thus permits to better analyze the overall temporal dynamics of a 
scale-free system.

2.3. Fourier vs. wavelet: oscillatory vs. scale-free dynamics

Theoretically, STFT and DWT lead to valid representations of X that do not lose information. This is so because they can 
be inverted, i.e. X can be exactly recovered from the representation coefficients g X (�, k) or dX ( j, k). Thus, both versions of 
spectral estimation provide alternative and consistent estimators of �m,n(ν): �̂m,n(ν = lν0) and �̂(W )

m,n (ν = νψ/a j
0).

The equivalence between both estimation methods is illustrated empirically in Fig. 1. Based on several examples of 
bivariate time series, the figure shows that the plot of log2 �̂m,n(ν) as a function of log2 ν = �ν0 superimposes well on the 
plot of log2 �̂

(W )
m,n (ν) as a function of log2 ν = νψ/a, when νψ/a = �ν0.

Thus, both spectral estimation methods can be of interest, depending on the temporal dynamics of the data. When 
temporal dynamics are better characterized by oscillatory behaviors, STFT-based spectral estimation provides accurate es-
timation of energies in the corresponding frequency band, while DWT-based spectral estimation is better suited for the 
analysis of scale-free dynamics. This is illustrated in Fig. 1 (top row), showing superimposed spectral estimates for synthetic 
signals consisting of (additive) mixtures of oscillatory and scale-free dynamics. Spectral-based estimates better locate the 
frequency of the oscillatory modes, and better quantify the low coherence level at corresponding frequencies. By contrast, 
wavelet-based estimates better reveal power-law behavior down to lower frequencies. This permits better estimation of the 
scaling exponents and, hence, more accurate analysis of the scale-free dynamics.

2.4. Wavelets and scale-free dynamics

Historically, scale-free dynamics has been modeled by stationary processes with Fourier spectra satisfying an asymp-
totic power law (hence, scale-free) behavior in the low-frequency limit: ∀m, n, �m,n(ν) 
 γm,n|ν|βm,n for ν → 0. For such 
processes, a simple change of variable in Eq. (7) above, permitted by the dilation operator underlying the definition of the 
DWT, shows that the DWT-based spectral analysis accurately reproduces asymptotic power-law behavior in the coarse scale 
limit, i.e. when j → +∞:

E�̂
(W )
m,n (ν = νψ/a j

0) = γ
(W )

m,n a
2 jβm,n
0 with γ

(W )
m,n =

(
γm,n

∫
| f |βm,n |ψ̃( f )|2 d f

)
(9)

The frequency-shift operator underlying the STFT does not permit such a change of variable, which leads to significantly 
biased estimates of power-law behavior. Less accurate estimation of the scaling exponents βm,n follows, in turn yielding 
poorer analysis of temporal (scale-free) dynamics [8,10,38–41]. This is illustrated in Fig. 1 (second row) with multivariate 
fractional Gaussian noise, used as a cornerstone model for scale-free dynamics, and defined as the increment process of 
multivariate fractional Brownian motion (see Section 3 for a definition). Wavelet-based spectral estimates perfectly reveal the 
power-law behaviors down to low frequencies and a constant level of the wavelet coherence function across all frequencies, 
thus permitting a relevant characterization of multivariate scale-free dynamics.
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Fig. 1. Fourier versus wavelet spectral estimation. Superimposed Fourier (black lines) and wavelet spectra (red dotted lines) for synthetic signals with 
additive mixture of scale-free and oscillatory dynamics (top row), with scale-free dynamics (second row), with scale-free dynamics and smooth slowly 
decaying (exponential) additive trends (third row), and for MEG data (bottom row).

2.5. Wavelet-based spectral estimation and robustness to trends

Besides being better-suited to the analysis of scale-free temporal dynamics, DWT-based spectral estimation benefits from 
further practical robustness. This is notably the case when smooth trends are superimposed on the data under scrutiny. This 
is illustrated qualitatively in Fig. 1 (third row) where unrelated deterministic smooth (e.g., algebraic or exponential) trends 
are added to each component of a bivariate fractional Gaussian noise. Fourier-based spectral analysis is clearly strongly 
biased at low frequencies by the smooth trends, and so is the coherence function. By contrast, wavelet-based spectral 
analysis perfectly reveals the multivariate scale-free temporal dynamics across all frequencies, as well as the constant level 
of the coherence across scales, in perfect match with the multivariate fractional Gaussian noise models used here [41,49].

2.6. Macroscopic infraslow brain activity, scale-free dynamics and wavelet-based spectral estimation

Fig. 1 (fourth row) further compares Fourier-based and wavelet-based spectral estimations for a pair of MEG time series 
recorded on a subject at rest.1 These spectral estimates show that brain macroscopic activity consists of a mixture of 
both oscillatory behaviors in well-established frequency bands, each associated with specific brain functions, and infraslow 
scale-free dynamics. The alpha-band, 8 ≤ f ≤ 12 Hz, corresponding to attention, displays significant power in this range, 
that can be well analyzed and quantified using Fourier-based spectral estimation. In addition, the infraslow ( f ≤ 3 Hz) brain 
dynamics is characterized by the absence of characteristic oscillations, hence by scale-free dynamics. Initially thought to be 
experimental noise or head-movement induced, this infraslow activity has now been recognized to be associated with the 
range of frequencies where most brain energy is consumed and is now viewed as the signature of spontaneous brain activity. 
Notably, it has been consistently shown that the brain at rest shows strong infraslow scale-free dynamics that structures 
functional connectivity (e.g., with the resting state network) [23,24]. It is now commonly considered that the modifications 
induced by task engagement in brain activity can be quantified by departure from resting state activity, in particular with 
a region-dependent decrease of the scaling exponents quantifying the scale-free dynamics (hence, of the overall temporal 
correlations) [24,26,35].

1 Data courtesy NeuroSpin, Ph. Ciuciu and V. van Wassenhove [50].
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3. Wavelet eigenanalysis of multivariate self-similarity

3.1. Multivariate self-similarity

Following the seminal intuitions of B. Mandelbrot [51], scale-free dynamics has often been modeled as self-similarity 
[52]. The celebrated fractional Brownian motion (fBm), B H (t), is defined as the only Gaussian self-similar process with 
stationary increments. Together with its increment process, called fractional Gaussian noise (fGn), it has been massively 
used in the modeling of scale-free temporal dynamics for univariate data. For univariate stochastic processes, self-similarity 
is defined as scale invariance of all finite-dimensional distributions under dilation, i.e., for any dilation factor a > 0,

{B H (t)}t∈R
fdd= {aH B H (t/a)}t∈R (10)

where H is the self-similarity parameter, or scaling exponent and where fdd= denotes equality for all finite dimensional distri-
butions. The assumptions of stationary increments and finite variance confine H inside the interval (0, 1].

Though seemingly intuitive, a canonical model for multivariate self-similarity called Operator fractional Brownian mo-
tion (OfBm) was only recently defined [42,53–55]. OfBm arises as a weak limit of multivariate time series displaying 
matrix-induced memory properties [56,57]. It also provides a natural framework for the modeling of Internet traffic [44], 
dendrochronology [58] and fractional cointegration [59]. Hereinafter, use is made of a less general yet more pedagogical and 
constructive definition, which also constitutes a special yet broad subclass of OfBm, referred to here as multivariate fBm 
(MfBm).

First, let B H,�(t) be a collection of M fBm B Hm (t), each with a potentially different self-similarity exponent Hm . These 
M-components are pointwise correlated according to a M × M symmetric positive definite (covariance) matrix �. Second, 
let W denote a M × M invertible matrix. Then, MfBm, B H,�,W (t) is defined by a linear mixing of B H,�(t) according to W :

B H,�,W (t) = W B H,�(t) (11)

Hence, MfBm is parametrized by the vector of scaling exponents H = (H1 . . . , Hm), the mixing matrix W , and the covariance 
matrix �.

Multivariate self-similarity translates into the finite-dimensional equality of the joint or multivariate finite-dimensional 
distributions:

∀a > 0, {B H,�,W (t)}t∈R
fdd= {aH B H,�,W (t/a)}t∈R (12)

with aH := ∑+∞
k=0 logk(a)Hk/k! and where H = W diagH W −1 is now an M × M matrix of scaling exponents.

3.2. Wavelet analysis of multivariate self-similarity

3.2.1. Multivariate wavelet eigenanalysis
Extending spectral analysis to a multivariate setting and applying wavelet analysis to MfBm lead to a scale-dependent 

collection of M × M (wavelet) matrices S( j) with entries

Sm,n( j) = 1/n j

∑
k

d(B H,�,W )m ( j,k)d(B H,�,W )n ( j,k)) (13)

While the classical analysis of multivariate self-similarity would consist of analyzing each entry Sm,n( j) independently 
as a function of scales a = 2 j and possibly estimating the corresponding scaling exponent, an original wavelet eigenanal-
ysis approach was recently proposed [43,44]. The approach reverses the perspective on multivariate multiscale analysis: 
it first considers the full matrix S at a given scale a = 2 j by computing the eigenvalues �1( j) . . . , �M( j), and, second, it 
takes advantage of the behavior of each �m( j) as a function of scales 2 j by possibly estimating the corresponding scaling 
exponents.

Notably, for MfBm, it has been shown that, in the asymptotic limit of coarse scales, the eigenfunctions �m( j) reproduce 
multivariate self-similarity as [43,44]:

�m( j) 
 λm22 jHm , 2 j → +∞ (14)

with λm depending on �, W and ψ .

3.2.2. Non-mixed multivariate self-similarity
To develop more intuition into the potential of the wavelet eigenanalysis, let us first study the simpler case where there 

is no mixing, i.e. the mixing matrix reduces to the identity matrix W ≡ IM . Multivariate self-similarity then simplifies to M
univariate self-similarity relations, i.e.
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Fig. 2. Multivariate self-similarity. Non-mixed OfBm (top row), and mixed OfBm (bottom row). Wavelet (cross)-spectra (center left), wavelet coherence 
function (center left), wavelet eigenanalysis compared to wavelet spectra (right).

{B H1(t), . . . , B H M (t)}t∈R
fdd= {aH1 B H1(t/a), . . . ,aH M B H M (t/a)}t∈R (15)

Hence, the entrywise covariance functions of MfBm reduce to

EB Hm(t)B Hn(s) = �m,n(|t|Hm+Hn + |s|Hm+Hn − |t − s|Hm+Hn) (16)

By combining the definition of DWT and the covariance of non-mixed MfBm, one can show that

∀m,n, ∀ j > 0, ESm,n( j) = w H,�,ψ 2 j(Hm+Hn) (17)

with parameters w H,�,ψ depending jointly on H , � and ψ . Calculations and proofs closely follow the wavelet analysis of 
univariate self-similarity [43,44].

These power-law behaviors are illustrated with bivariate MfBm in Fig. 2 (top row, center left). They call for the following 
comments.

First, because it is constructed from a dilation operator, wavelet analysis exactly reproduces self-similarity (while Fourier 
analysis would not, cf. [40] for a more complete and richer discussion). Hence, this leads to efficient estimation of the 
scaling exponents Hm + Hn (cf., e.g., [8]). Intuitively, this can be interpreted as the fact that wavelet analysis extends spectral 
analysis to multivariate nonstationary processes, yet with stationary increments. This can be generalized to processes with 
stationary higher-order increments (increments of increments. . .), provided that the number of vanishing moments of the 
mother-wavelet Nψ is increased accordingly.

Second, for non-mixed MfBm, multivariate (or eigen) wavelet analysis is redundant. There are M × M potentially usable 
entries in the matrix S , whereas multivariate self-similarity analysis reduces to estimating only M scaling exponents. This 
is illustrated by the facts that i) the wavelet coherence function is constant across the scales a = 2 j actually measuring the 
overall correlation coefficients (Fig. 2 top row, center left); and that ii) the eigenfunctions �1( j) and �2( j) reproduce the 
power-law behavior of the wavelet autospectra S11( j) and S22( j), with the same scaling exponents 2H1 and 2H2 (Fig. 2 top 
row, left). This can be used to robustify the estimation of scaling exponents [60], to test the absence of mixing, or to assess 
departures from non-mixed multivariate self-similarity (also referred to as fractal connectivity) [49]. In particular, this has 
been used to enrich the quantification and assessment of functional connectivity in neuroscience [35,61].

3.2.3. Mixed multivariate self-similarity
To further gain intuition into the potential of wavelet eigenanalysis, let us now consider mixed MfBm, i.e. with a mixing 

matrix W that is unknown and not necessarily diagonal. In that case, multivariate self-similarity becomes far more intricate 
to analyze. Indeed, the covariance of mixed MfBm B H ,�,W

�B H,�,W = W �B H,�
W  (18)

mixes together additively power laws, with different scaling exponents involving pair-combinations from the entire vector 
H [43,44]. Computing the collection of M × M matrices S( j) from mixed MfBm results in the same intricate situation, ∀m, 
n, ∀ j > 0, ESm,n( j), consists of additive mixtures of M(M + 1)/2 power laws, combining all possible pairs of exponents 
Hk + Hl , and the coefficients of the mixtures depend simultaneously on H , � and W [43,44,62]. This is illustrated in Fig. 2
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(bottom row, center left) for bivariate MfBm, where the functions log2 S11( j), log2 S12( j) and log2 S22( j) as functions of 
the log-scales log2 a tend to superimpose. Classical wavelet analysis leads to the conclusion that a single exponent (i.e. the 
largest) drives the temporal dynamics of data. The estimation of scaling exponents by solving the non-convex optimization 
problem of fitting additive mixtures of power laws, though doable in principle, turns out to be not feasible in practice 
beyond the bivariate case M = 2 [62]. However, the wavelet coherence function, being non-constant across scales, already 
provides an indication that data may not be driven by a single scaling exponent (Fig. 2, bottom row, center right).

The wavelet-eigenanalysis approach actually permits the disentangling of mixed multivariate self-similarity. Indeed, 
the function log2 �2( j) shows the same (dominant) scaling behavior as the one observed in log2 S11( j), log2 S12( j), and 
log2 S22( j). However, the evolution of log2 �1( j) as a function of scales departs from the dominant behavior. It actually 
reveals the non-dominant scaling exponent, which is hidden by force of mixing, but is still present in the joint structure 
of data. Multivariate wavelet analysis thus permits the accurate disentangled analysis of multivariate self-similarity and 
efficient estimation of the M scaling exponents [43,44] by operating a change of perspective: The independent univariate 
analysis of the M-components of multivariate MfBm first inspects the temporal dynamics of each component across scales 
and then compares components ones against the others, resulting in possibly strongly inaccurate analysis. By contrast, mul-
tivariate wavelet eigenanalysis first investigates all components jointly at a given scale 2 j (by computing an eigenvalue 
decomposition), and then uses the behavior of the eigenvalues across scales as an analysis tool.

Estimating the mixing matrix is generally doable only in the context of independent sources (when � is diagonal). This 
is a different topic, and it is not addressed here; interested readers are referred to [58].

4. Multivariate multifractality

4.1. Beyond second-order analysis: multifractal analysis

It can happen that data have exactly the same marginal distributions (one-point statistics) and the same covariance 
functions or Fourier spectrum (2-point statistics), but are different. Distinguishing between such data requires analysis tools 
designed to go beyond covariance analysis. In the context of scale-free temporal dynamics characterization, multifractal 
analysis provides such a tool.

In essence, multifractal analysis aims to characterize the fluctuations along time of local regularity in a signal X(t), cf., 
e.g., [63–65]. Local regularity can be quantified by pointwise exponents, the most common one being the Hölder exponent, 
h(t) ≥ 0, defined as follows: X belongs to Cα(t), α ≥ 0, if there exist a polynomial Pt with deg(Pt) < α and a constant 
C > 0 such that: |X(t + a) − Pt(t + a)| ≤ C |a|α when |a| → 0. The Hölder exponent consists of the largest such α: h(t) �
sup{α : X ∈ Cα(t)} ≥ 0. Essentially, the larger h(t), the smoother X around t , and conversely, the closer h(t) to 0, the more 
irregular X at t . Other exponents, such as p-exponents, generalize the use of Hölder exponents [66,67]. Hereafter, we use 
generically h(t) to denote either Hölder exponent or p-exponents.

Some processes display smooth regularity exponents. This is the case for MfBm: h(t) is constant for each compo-
nent. However, in general, h(t) is so irregular that one cannot base the analysis on the time evolutions of the functions 
h1(t) . . . , hM(t) obtained independently from each component of multivariate data. Instead, multifractal analysis aims to 
provide a global, geometric, and multivariate description of the temporal dynamics of X via the so-called multivariate mul-
tifractal spectrum D(h1 . . . , hM), defined as the collection of Hausdorff dimensions dimH of the sets of points t ∈ R where 
(h1(t) . . . , hM(t)) takes the same values h ≡ (h1 . . . , hM) [46]:

D(h)� dimH
{

t : (h1(t) . . . ,hM(t)) = h
}

(19)

The multifractal spectrum D(h) can thus be considered as an efficient summary of the multivariate temporal dynamics 
of data X .

4.2. Multifractal formalism

Standard multifractal models lead to highly irregular exponents hm(t) that cannot be estimated in practice [63–65] and 
the numerical estimation procedure for D(h) from data, referred to as the multifractal formalism, requires the use of new 
multiscale quantities, beyond wavelet coefficients, which match the pointwise exponent chosen to quantify regularity.

It is now well documented [65–67] that measuring Hölder exponents (or p-exponents) calls for the use of wavelet leaders
(or p-leaders). These are defined as local l∞ or lp-norms of wavelet coefficients:

�X ( j,k)� sup
2 j′k′∈3λ j,k

∣∣dX ( j′,k′)
∣∣ or �

(p)
X ( j,k) �

⎛
⎜⎝ ∑

2 j′k′∈3λ j,k

∣∣dX ( j′,k′)
∣∣p

2( j− j′)

⎞
⎟⎠

1/p

(20)

where λ j,k = [k2 j, (k + 1)2 j) is a dyadic interval of size 2 j and 3λ j,k � λ j,k−1 ∪λ j,k ∪λ j,k+1 is the union of λ j,k with its two 
neighbors.
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Following spectral estimation and extending to higher statistical orders and to p-leaders the wavelet spectrum S( j), one 
can form a collection of multiscale functions Lq( j) parametrized with q = (q1, . . . , qM), defined as

Lq( j) = 1

n j

n j∑
k=1

�
(p)
X1

( j,k)q1 × . . . × �
(p)
XM

( j,k)qM (21)

For numerous classes of processes with scale-free dynamics, it is experimentally observed that, in the limit of fine scales,

Lq( j) ∼ Kq1...,qM 2 jζ(q), 2 j → 0 (22)

The scaling exponents ζ(q) can thus be estimated by linear regression [65,67].
The multivariate Legendre transform can be derived from ζ(q) through a multivariate Legendre transform

L(h) = inf
q

(1 + 〈q,h〉 − ζ(h)) (23)

4.3. Limitations

In the univariate setting, M = 1, the Legendre spectrum always provides an upper-bound estimate of the multifractal 
spectrum, L(h) ≥D(h), where the inequality turns into an equality for large classes of processes [64].

In the multivariate setting, it was recently shown that the multivariate Legendre spectrum does not always yield an 
upper-bound estimate of the multivariate multifractal spectrum, see [46,68] for a detailed analysis of this intricate issue. 
However, it is expected that the inequality (and even the equality) holds for large classes of processes, and that it can be 
useful for real-world data modeling. Some theoretical guidelines are provided in [68]; additionally, generic results of validity 
are proved in [69].

4.4. Multifractal formalism in practice

Even though the Legendre spectrum does not necessarily estimate the multifractal spectrum, the scaling exponents 
ζ(q) convey information of any statistical order related to temporal dynamics and are thus of interest in characterizing 
scale-free dynamics. However, because estimating a multivariate function is difficult, we propose a polynomial expansion 
that generalizes to the multivariate setting the strategy proposed in [70,71] for the univariate case. For ease of exposition, 
the discussion here is restricted to a bivariate setting, M = 2. The scaling exponents can thus be approximated as ζ(q1, q2) =
c10q1 + c01q2 + c20q2

1 + c02q2
2 + c11q1q2 + . . .

Under mild conditions, it can be shown that the coefficients cn1n2 (with n1 + n2 = n) entering the expansion can be re-

lated to the multivariate cumulants of order n, Cn1n2( j), of the multivariate variables {log �
(p)
X1

( j, k) . . . , log�
(p)
XM

( j, k)}. Indeed, 
for certain classes of multivariate multifractal processes [68], it is observed that

Cn1n2( j) = c0
n1n2

+ cn1n2 log 2 j (24)

The first-order cumulants (n = 1, C10( j) and C01( j)) convey information mostly driven by the covariance function of the 
process X and, hence, are closely related to the functions log2 S10( j) and log2 S01( j) [72,73].

The higher-order cumulants (n ≥ 2, C20( j), C02( j), C11( j). . . ) convey information on temporal dynamics beyond second-
order statistics, which is not already encoded in the covariance functions.

This materializes through an approximation of the bivariate Legendre spectrum as:

L(h1,h2) ≈ 1 + c02b

2

(
h1 − c10

b

)2

+ c20b

2

(
h2 − c01

b

)2

− c11b

(
h1 − c10

b

)(
h2 − c01

b

)
(25)

where b � c20c02 − c2
11 ≥ 0, thus showing that the position of the maximum of the bivariate spectrum is given by hm =

(c10, c01) and, further, that the coefficients c20, c02, and c11 characterize the multifractal properties of X , notably with c11
encoding cross-multifractality.

Furthermore, by taking inspiration from the wavelet coherence function (see Eq. (3)), we propose to define a wavelet 
leader multifractal coherence function as:

Coh(mf)( j) = C11( j)√
C20( j) × C02( j)

(26)

On a scale-by-scale basis, this quantifies cross-dependencies amongst the components of the data that are not already 
accounted for by the wavelet coherence function.

Fig. 3 illustrates the theory and practice of multifractal analysis based on several different synthetic processes and MEG 
data. Use is made of the bivariate multifractal random walk (bi-MRW), a cornerstone multifractal process, designed here 
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Fig. 3. Empirical bivariate multifractal analysis. From top to bottom: correlated bivariate MRW, anticorrelated bivariate MRW, uncorrelated bivariate MRW. 
From left to right: increments of the time series and univariate and bivariate multifractal spectra; univariate analysis for component 1 with log2 L0,q( j), 
C10( j) and C20( j) as functions of log2 a univariate analysis for component 2 with log2 Lq,0( j), C01( j) and C02( j) as functions of log2 a; bivariate analysis 
for components 1 and 2 with log2 Lq1,q2 ( j), Coh(mf)( j) and C11( j) as functions of log2 a.

as an extension of the univariate MRW construction in [74] by combining bivariate OfBm synthesis [75] with bivariate 
multifractal construction [72,73].

Fig. 3 (top pair of rows) shows the increments of a correlated bi-MRW and the (wavelet p-leader-based) estimates of 
univariate and bivariate multifractal spectra (right), the univariate multifractal analysis of component 1 and component 2 
(center right and left), and the bivariate multifractal analysis of components 1 and 2 with the leader-based multifractal 
coherence function (left). The multifractality of each component as well as cross-multifractality are assessed by means of 
the linear behavior of the functions log2 Lq,0( j), log2 L0,q( j) and log2 Lq1,q2( j) with respect to the log-scales log2 a = j, or 
equivalently, by the linear behavior of functions C10( j), C01( j), C20( j), C02( j), and C11( j). The estimated Legendre spectrum 
L(h1, h2) departs from the simple form L1(h1) +L2(h2) − 1 (which is expected for independent processes); this constitutes 
a strong indication of the presence of statistical dependencies not already quantified by the coherence functions. Such 
dependencies are further quantified by the wavelet leader multifractal coherence function Coh(mf)( j), which shows a positive 
constant behavior across scales. This indicates temporal coincidences of the largest or smallest regularity exponents within 
the two components.
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Fig. 4. MEG Data bivariate multifractal analysis. Macroscopic brain activity MEG data. From left to right: increments of the time series and univariate 
and bivariate multifractal spectra; univariate analysis for component 1 with log2 L0,q( j), C10( j) and C20( j) as functions of log2 a; univariate analysis for 
component 2 with log2 Lq,0( j), C01( j) and C02( j) as functions of log2 a; bivariate analysis for components 1 and 2 with log2 Lq1,q2 ( j), Coh(mf)( j) and C11( j)
as functions of log2 a.

Fig. 3 (second pair of rows) displays the same plots as above for another bi-MRW, with identical correlation as the first 
bi-MRW, but different joint statistics. Therefore, Fourier analysis and classical correlation analysis would not see any dif-
ference between these two bi-MRW, while bivariate multifractal analysis clearly does with different bivariate multifractal 
spectra (despite identical univariate multifractal spectra). Also, the wavelet leader multifractal coherence function Coh(mf)( j)
shows a constant, yet negative, value across scales, indicating temporal coincidences between the largest regularity expo-
nents of one of the components and the smallest of the other components.

Finally, Fig. 3 (third pair of rows) uses an uncorrelated bi-MRW. In other words, Fourier analysis or classical correlation 
would not detect any correlation amongst the two components. By contrast, bivariate multifractal analysis clearly shows 
statistical dependencies beyond the second order. Indeed, the bivariate multifractal spectrum is the same as that of the first 
bi-MRW used in the top pair of rows, and so is the wavelet leader multifractal coherence function Coh(mf)( j). This again 
indicates temporal coincidences of the largest or smallest regularity exponents within the two components.

4.5. Macroscopic brain activity: multifractal analysis

Univariate multifractal analysis has been used in the characterization of brain temporal dynamics. Notably, in [26], it was 
applied to MEG data to study infraslow brain activity, i.e. brain activity below 1 Hz (or across long time epochs, from 1 sec-
ond to several tens of seconds). It showed that brain activity at rest was characterized by significant self-similarity (large H
of the order of 0.9), with a significant occipital gradient, and low or no multifractality. This essentially means that the MEG 
time series representing brain activity at rest are characterized by a significant global correlation, which is larger in frontal 
regions than in occipital ones. It also means that this overall pattern is observed not to fluctuate locally over time, which 
indicates that brain activity at rest shows a constant over time, simple, and structured temporal dynamics. By contrast, La 
Rocca et al. [26] also show that task engagement yields a significant and overall decrease of self-similarity, yet increasing the 
fronto-occipital gradient: the decrease in self-similarity is more effective in the occipital regions (sensorial brain activity) of 
the brain than in the occipital ones (integrated/processing brain activities). This global decrease in self-similarity correlates 
with an increase of multifractality that remains, however, local and confined to regions of the brain that are involved in the 
task. Multifractality indicates bursty activity with significant fluctuations over time of the structures in brain activity: it can 
also be interpreted as fluctuations in the way time flows in the different part of the brain, compared to an overall brain 
clock [26].

Multivariate brain activity analysis remains to be conducted systematically over the whole brain and analyzed. Prelimi-
nary bivariate multifractal analysis, reported in Fig. 4, performed on the same two MEG brain activity signals used in Fig. 1
(bottom row), suggests multifractality in each component and reveals a non-trivial bivariate multifractal spectrum poten-
tially indicating the modulation of higher-order statistical dependencies in brain from rest to task. These effects are under 
systematic analysis, and may permit to enrich the quantification of functional connectivity. While usually based on fMRI 
measurements and on correlation coefficients (hence static properties) between the corresponding time series, functional 
connectivity could also be investigated by exploiting the richer temporal dynamics available in MEG dynamics, by using the 
behaviors of wavelet and multifractal coherence functions with respect to time scales.

5. Conclusions and perspectives

Spectral estimation via Fourier transform (relying on a frequency translation operator) constitutes the classical cor-
nerstone tool to assess cross-temporal dynamics in multivariate time series. When such dynamics are scale-free, i.e. not 
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governed by any particular scales of time playing a specific role, but rather by mechanisms that bind a large continuum 
of time scales together, spectral estimation can be efficiently and robustly conducted by means of the wavelet transform 
(multiscale, and relying on a dilation operator).

Beyond 1/ f or power-law decreasing multivariate frequency spectra, multivariate scale-free dynamics can be better mod-
eled by multivariate self-similarity. Multivariate wavelet eigenanalysis is based on a scale-by-scale wavelet decomposition of 
estimated wavelet coefficient covariance matrices. It provides an original, theoretically sound, and practically robust tool for 
assessing scale-free dynamics in multivariate temporal dynamics. Beyond the current theoretical analysis of estimation per-
formance, several issues remain under investigation such as testing the number of different scaling exponents that actually 
exist amongst multivariate components [76], or addressing large-dimensional frameworks, when the number of components 
may be of the order of, or larger than, the number of time samples [77].

Furthermore, beyond the modeling of covariance, the characterization of scale-free dynamics may involve higher-order 
statistics. Therefore, multifractal analysis can be regarded as a further extension to multivariate Fourier analysis in the 
context of scale-free dynamics. It requires the use of multiscale representations constructed from nonlinear and non-local 
transforms of wavelet coefficients. It was recently shown that the extension from univariate to multivariate is not straight-
forward as the conditions under which the multivariate multifractal formalism yields the multivariate multifractal spectrum 
remain to be worked out (cf. [68] for an advanced discussion). However, preliminary work to be completed has illustrated 
that the multifractal spectrum conveys information related to the co-occurrences of singularities amongst components, and 
hence can, for some cases, be related to statistical dependencies amongst components that are not already encoded in 
covariance functions [72,73].
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