Martin B Bagaram

An efficient particle swarm approach for mixed integer programming in reliability-redundancy optimization application

Martin B Bagaram

Introduction

Reliability-redundancy allocation problems is a recurrent problem in engineering. The layout of the problem in this paper is sometimes known as "Complex Bridge System." The objective of the design is to produce a very reliable system at a minimum cost. This can be achieved by either using more reliable material an/or using redundant material in parallel. The increase of the redundancy comes with the increase of the cost, the volume, the weight of the system. It is therefore necessary to specify the maximum redundancy acceptable in the system. The challenge is to find the redundancy that is acceptable and will maximize the total reliability of the system even with components that have limited reliability. The advantage of the redundancy is that it gives guaranty that the whole system will continue operating even if one component fails.

In this exercise, I try to recreate the analysis performed in the paper [START_REF] Coelho | An efficient particle swarm approach for mixed-integer programming in reliability-redundancy optimization applications[END_REF]. The figure 1 displays the layout of the network considered. I also explore the bi-objective approach in order to find the efficient Pareto frontier for the cost minimization and reliability maximization.

Mono-objective formulation

The problem used in this paper has been presented in several papers including [START_REF] Garg | Bi-objective optimization of the reliability-redundancy allocation problem for series-parallel system[END_REF] and solved using different algorithms ranging from particles swarm optimization to genetic algorithms.

Maximize

R s = R 1 R 2 + R 3 R 4 + R 1 R 4 R 5 + R 2 R 3 R 5 -R 1 R 2 R 3 R 4 -R 1 R 2 R 3 R 5 -R 1 R 2 R 4 R 5 -R 1 R 3 R 4 R 5 -R 2 R 3 R 4 R 5 + 2R 1 R 2 R 3 R 4 R 5 (1)
subject to:

g 1 (r, n) = m ∑ i=1 w i v 2 i n 2 i ≤ V (2)
g 2 (r, n) = m ∑ i=1 α i - T log r i β i [n i + exp(0.25n i)] ≤ C (3) g 3 (r, n) = m ∑ i=1 w i n i exp(0.25n i) ≤ W (4) R i = 1 -(1 -r i) n i (5) 0 ≤ r i ≤ 1 r i ∈ R and 1 ≤ n i ≤ 5 n i ∈ Z (6)
The equations 2, 3 and 4 are constraints about the system volume, the cost and the weight, respectively.

The equation 2 can also be seen as the combination of redundancy/volume and weight constraint. It imposes the total volume of materials forming the system. The values of parameters used in the formulation are given in Table 1. They have been gathered from [START_REF] Coelho | An efficient particle swarm approach for mixed-integer programming in reliability-redundancy optimization applications[END_REF] and [START_REF] Garg | Bi-objective optimization of the reliability-redundancy allocation problem for series-parallel system[END_REF]. Reliability of the subsystem i -

Particle Swarm Optimization (PSO)

The PSO optimization is a stochastic global optimization method. It is inspired from the behavior of some schooling animals such as birds and fish. The algorithm can be summarized as follows: It starts by initializing a given number of particles randomly over a searching space. The particles moves with a velocity and find the global best position after a number of iterations. At each iteration, each particle particle adjust its velocity based on its best position (p best) as well as the best position of its neighbors (g best) and then compute the new position that the particle moves to. If the new position is better than the previous p best then update the p best . Similarly if the new position is better than g best then update the g best .

For PSO, the number of particle was set to 100 and the number of iteration was set to 100 as well. The stopping criteria were either the number of iteration or the if there is no improvement higher than 10 -8 from an iteration to another. The package used is provided by pyswarm 2 implemented in Python. The package has the ability to handle constraints.

Bi-objective formulation

One alternative formulation of the problem is to consider it as a bi-objective optimization problem where the first objective remains the same as in the equation 1 and then consider the equation 3 as minimization problem. In this case we want to maximize the reliability 1 The values correspond to w i v 2 i 2 https://pythonhosted.org/pyswarm/ 3 while minimizing the cost. The formulation becomes:

Maximize R s = R 1 R 2 + R 3 R 4 + R 1 R 4 R 5 + R 2 R 3 R 5 -R 1 R 2 R 3 R 4 -R 1 R 2 R 3 R 5 -R 1 R 2 R 4 R 5 -R 1 R 3 R 4 R 5 -R 2 R 3 R 4 R 5 + 2R 1 R 2 R 3 R 4 R 5 Minimize g 2 (r, n) = m ∑ i=1 α i - T log r i β i [n i + exp(0.25n i)] (7)
subject to: Equations 2, 4, 5 and 6.

The bi-objective was reolved using the -method. The algorithm can be summarized in three steps.

Algorithm 1 -method for soving bi-objective problem 1: Resolve for R s alone (get R1). Determine the corresponding cost (c1). The point (R1 , c1) is an endpoint of efficient frontier 2: Resolve for g 2 alone (get c2). Determine the corresponding reliability (R2). The point (R2 , c2) is the other endpoint of efficient frontier 3: Keep R s and add g 2 to the set of constraints, and vary its right hand side (by amount)

Numerical Results

Mono-objective results

The "best known results" are from [START_REF] Coelho | An efficient particle swarm approach for mixed-integer programming in reliability-redundancy optimization applications[END_REF]. The most salient results of my implementation s suggest that the redundancy for the subsystem 1, 2 and 5 should be 3, 3, 1, respectively. The reliability of all components are required to be higher than 0.5 with the highest reliability required in the subsystem 3 with a value of about 0.91. In general, the best reliability of the system obtained from the two algorithm are equal for 3 digital decimal although my implementation yielded better results.

Bi-objective results

The bi-objective results using the PSO gives an insight on the trade-off between the reliability and the cost of the materials. From a cost of about 60 and a reliability averaging 099, a marginal increase of the reliability lead to an exponential increase of the cost (Figure 2). For instance, if we set the cost to 60, then reliability of the system R s = 0.995131, r = [0.6952, 0.7647, 0.7871, 0.4337, 0.5192], n = [3, 3, 2, 3, 2], slack 1 = 46.0 (Volume), and slack 3 = 0.00024 (Weight). In this case, the bounding constraint is the weight. Theoretically

Figure 1 :

 1 Figure 1: Power distribution layout

Figure 2 :

 2 Figure 2: Bi-objective optimal Pareto frontier

Table 1 :

 1 Summary of parameters used in the study

	Nomenclature Definition

Table 2 :

 2 Results of Particle Swam Optimization and Simulated Annealing compared to the best known results

	Parameter	Paper's results[1] PSO
	n	(3, 3, 2, 4, 1)	(3, 3, 3, 3, 1)
	r 1	0.826678	0.826176260
	r 2	0.857172	0.863356826
	r 3	0.914629	0.864910125
	r 4	0.648918	0.714651387
	r 5	0.715291	0.717516082
	R s	0.99988957	0.99989175
	Slack 1 (volume) 5	18.0
	Slack 2 (cost)	0.000339	0.00230
	Slack 3 (weight) 1.5604	4.26477
	Mean	0.99988594	0.9998333
	Std. Dev.	6.9e-07	5.31e-05

it means we could design a system with a reliability of 0.995 and a volume of 64 (reducing the original volume by 46).

Conclusion

The results obtained in this study do not exactly match the ones in the paper. The discrepancy may stem from the stochasticity in the algorithm od PSO. I took the investigation further by analyzing a bi-objective approach.