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Text-book concepts of diffusion- versus kinetic-control are well-defined for reaction-kinetics involv-
ing macroscopic concentrations of diffusive reactants that are adequately described by rate-constants
– the inverse of the mean-first-passage-time to the reaction-event. In contradistinction, an open im-
portant question is whether the mean-first-passage-time alone is a sufficient measure for biochemical
reactions that involve nanomolar reactant concentrations. Here, using a simple yet generic, exactly-
solvable model we study the conspiratory effect of diffusion and chemical reaction-limitations on the
full reaction-time distribution. We show that it has a complex structure with four distinct regimes
delimited by three characteristic time scales spanning a window of several decades. Consequently,
the reaction-times are defocused: no unique time-scale characterises the reaction-process, diffusion-
and kinetic-control can no longer be disentangled, and it is imperative to know the full reaction-time
distribution. We introduce the concepts of geometry- and reaction-control, and also quantify each
regime by calculating the corresponding reaction depth.

INTRODUCTION

Reactions between chemically active molecules in con-
densed matter systems are typically controlled by two
factors: the diffusive search of the species for each other
[1–4] and the intrinsic reactivity κ associated with the
probability that a reaction indeed occurs when the par-
ticles collide with each other [5]. For chemical reac-
tions involving sufficiently high concentrations of parti-
cles, which are initially uniformly distributed in the con-
tainer or reactor such that encounters between reactive
species occur more or less uniformly in time, theories
based on mean effective reaction rates provide an ad-
equate description of the reaction kinetics [1–3]—apart
from some singular and well-known reaction schemes
which exhibit anomalous, fluctuation-induced kinetics
under special physical conditions (see, for instance, [4, 6–
11]). Since the seminal works by Smoluchowski [12] and
Collins and Kimball [13] a vast number of theoretical
advances have scrutinised a combined effect of both rate-
controlling factors on the mean effective rates providing
a comprehensive understanding of this effect [1–4, 14–
17]. In particular, the mean reaction time is the sum
of two time scales corresponding to the inverse diffusion
coefficient and the inverse intrinsic reactivity (see equa-
tion (5)), such that the influence of diffusion control and
(chemical) rate control are separable [13].

For many biochemical reactions, however, the reactive
species do not exist in sufficiently abundant amounts to
give rise to smooth concentration levels. In contrast, only
small numbers of biomolecules, released at certain pre-
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scribed positions, are often involved in the reaction pro-
cess. Indeed, in systems such as the well studied Lac and
phage lambda repressor proteins only few to few tens
of molecules are typically present in a living biological
cell, corresponding to nanomolar concentrations. The
starting positions of biomolecules can either be rather
close to the target or relatively far away. Particularly
in the context of the rapid search hypothesis of gene ex-
pression it was shown that the geometric distance be-
tween two genes, communicating with each other via sig-
nalling proteins – is typically kept short by design in bi-
ological cells [18], guaranteeing higher-than-average con-
centrations of proteins around the target in conjunction
with fast and reliable signalling [19]. Quite generically,
many intracellular processes of signalling, regulation, in-
fection, immune reactions, metabolism, or transmitter re-
lease in neurons are triggered by the arrival of one or few
biomolecules to a small spatially localised region [20, 21].
In such cases it becomes inappropriate to rely on mean
rates, and one needs to know the whole distribution of
random reaction times, also called the first passage times
to a reaction event. Lacking a large number of molecules,
reaction times become strongly defocused such that the
mean reaction time is no longer representative and the
most probable reaction time becomes relevant. We note
that even for perfect reactions that occur immediately
upon the first encounter between two particles and have
thus infinitely large intrinsic reactivity, the mean and the
most probable first passage times can differ by orders of
magnitude [22, 23] and two first passage events in the
same system may be dramatically disparate [24–26].

For such effectively few-body reactions, most of the
available theoretical effort has been concentrated on the
analysis of perfect reactions and hence, on the impact
of diffusion control only [27–29]. In particular, in [28] it
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was argued that for perfect reactions the reaction time
density (RTD) can be accurately modelled as

H(t) ≈ qδ(t) + (1− q) exp(−t/tmean)/tmean, (1)

where tmean is the MFPT and q is the contribution of
trajectories which arrive to the target site immediately.
Conversely, fluctuations of the cycle completion time for
enzymatic reactions, in absence of any diffusion stage,
have been quantified through the coefficient of variation,
γ, of the corresponding distribution function of these
times [30]. Few other works [31–35] analysed the com-
bined effect of both rate-controlling factors but solely for
the mean reaction time. These works have shown that
the effect of the intrinsic reactivity is certainly significant
and even most likely is the dominant factor. The question
of the combined influence of both factors on the full dis-
tribution of reaction times has been only addressed most
recently [36], with the focus on the target search kinetics
in cylindrical geometries. However, the results of [36] rely
on the so-called self-consistent approximation [31] and
moreover, have a somewhat cumbersome and thus less
practical form. Hence, it is highly desirable to consider
particular yet generic examples for which the RTD can be
calculated exactly and the results can be presented in a
lucid, compact and easy to use form revealing numerous
insightful features well beyond the simple approximation
in equation (1). This is clearly an appealing problem of
utmost significance for a conceptual understanding of the
kinetics of biochemical reactions.

We here focus on the conceptually and practically rel-
evant question of the influence of the intrinsic chemical
reactivity and the initial position of the reacting par-
ticles onto the form of the full distribution of reaction
times. We demonstrate that when the reactivity is finite
and no longer guarantees immediate reaction on mutual
encounter, the defocusing of reaction times is strongly
enhanced. Remarkably, an extended plateau of the reac-
tion time distribution emerges due to this reaction con-
trol, such that the reaction times turn out to be equally
probable over several orders of magnitude. A direct con-
sequence of the defocusing is that the contributions of
diffusion and rate effects are no longer separable—to dis-
tinguish from the classical concepts of diffusion and ki-
netic control, we will talk about geometry (initial dis-
tance) control and reaction (intrinsic reaction rate) con-
trol, keeping in mind that the latter not only specifies the
dominant rate-controlling factor for the MFPT, but af-
fects the shape of the full RTD. An exact solution for the
RTD provides us a unique opportunity to derive explicit
formulae, for arbitrary initial conditions and arbitrary
values of the intrinsic reaction constant κ for several char-
acteristic properties of the distribution such as, e.g., its
precise functional forms in different asymptotic regimes,
the corresponding crossover times between these kinetic
regimes, and also the reaction depths corresponding to
these time scales.

RESULTS

Mathematical model

We consider a model involving a pair of reactive
molecules: a partially absorbing, immobile target site
of radius ρ within a bounded domain of radius R lim-
ited by an impenetrable boundary, and a molecule, ini-
tially placed at some prescribed position and diffusing
with diffusivity D. Once the diffusing particle hits the
surface of the target site it reacts with (binds to) the lat-
ter with a finite, intrinsic reaction rate κ. The reflecting
outer boundary can mimic an impenetrable cell mem-
brane, the reaction container’s surface, or be an effective
virtual frontier of the “zone of influence” of the target
molecule, separating it from other remotely located tar-
get molecules.

Assuming that the domain has a spherical shape and
placing the target at the origin of this domain renders
the model exactly solvable. We note that although such
a geometrical setup is simplified as compared to realistic
situations (e.g., the target site is not necessarily located
at the centre of the domain [28, 29] or may be attached
to some structure which partially screens it [35, 36]), this
model captures explicitly two essential ingredients of the
reaction process: the diffusive search for the target site
and its finite intrinsic reactivity. Importantly, the fact
that the model is exactly solvable, permits us to unveil
some generic features of the full RTD without resorting
to any approximation.

The probability density function H(r, t) of the reac-
tion time t for a particle released a radial distance r − ρ
away from the spherical target of radius ρ is calculated
using standard tools [27, 37, 38]: one first finds the sur-
vival probability S(r, t) of a diffusing particle in a radially
symmetric situation subject to the zero-current bound-
ary condition on the outer boundary of the domain, and
the “radiation”, or partially-reflecting boundary condi-
tion [1–3]

D
∂S(r, t)

∂r

∣

∣

∣

∣

r=ρ

= κS(ρ, t), (2)

imposed on the surface of the target site. The proportion-
ality factor κ in equation (2) is an intrinsic rate constant
(of dimension length/time) whose value shows how read-
ily the particle reacts with the target site upon encounter.
When κ = 0 no reaction occurs, while the limit κ = ∞
corresponds to a perfect reaction, when a particle reacts
with the target site upon a first encounter. These lim-
iting cases therefore correspond to perfectly reflecting or
absorbing boundaries, respectively. The RTD H(r, t) is
obtained as the negative derivative of S(r, t) and is valid
for arbitrary values of the system parameters. Details of
these calculations are presented in the beginning of the
Method section.
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FIG. 1: Reaction control. Reaction time density H(r, t) for a reaction on an inner target of radius ρ/R = 0.01, with starting
point (a) r/R = 0.2 and (b) r/R = 0.02 for four progressively decreasing (from top to bottom) values of the dimensionless
reactivity κ′ = κR/D indicated in the plot. Note that κ′ includes R and D such that smaller values of κ′ can also be achieved
at a fixed κ upon lowering R or by increasing the values of D. The coloured vertical arrows indicate the mean reaction times
for these cases. The vertical black dashed line indicates the crossover time tc = 2(R− ρ)2/(Dπ2) above which the contribution
of higher order Laplacian eigenmodes become negligible. This characteristic time marks the end of the hump-like region (Lévy-
Smirnov region specific to an unbounded system, see below and the Method section for more details) and indicates the crossover
to a plateau region with equiprobable realisations of the reaction times. This plateau region spans a considerable window of
reaction times, especially for lower reactivity values. Thin coloured lines show the reaction time density H∞(r, t) from equation
(6) for the unbounded case (R → ∞). Length and time units are fixed by setting R = 1 and R2/D = 1. Note the extremely
broad range of relevant reaction times (the horizontal axis) spanning over 12 orders of magnitude for the panel (b). Coloured
bar-codes (c,d) indicate the cumulative depths corresponding to four considered values of κ′ in decreasing order from top to
bottom. Each bar-code is split into ten regions of alternating brightness, representing ten 10%-quantiles of the distribution
(e.g., the first dark blue region of the top bar-code in panel (c) indicates that 10% of reaction events occur till Dt/R2

≃ 1).

Structure of the full distribution of reaction times

The typical shapes of the reaction time density H(r, t)
are shown in figure 1 for two different release radii r and
different values of the dimensionless reactivity κR/D.
Note that the parameter κR/D represents a combined
effect of two factors: based on the definition of the stan-
dard chemical constant Kon = 4πρ2κ for a forward reac-
tion and the definition of the so-called Smoluchowski con-
stant KS = 4πDρ we see that κR/D = (Kon/KS)(R/ρ)
and, hence, this is the ratio of the chemical rate and the
Smoluchowski rate constant, multiplied by the ratio of
the sizes of the domain and of the target site.

We notice thatH(r, t) has a much richer structure than
the previously proposed simple form (1). The RTD con-
sists of four distinct time domains seen in figures 1, 2,
and 3: first, a sharp exponential cut-off at short reaction
times terminating at the most probable time tmp; sec-
ond, a region spanning from the most probable reaction
time to the crossover time tc in which H(r, t) shows a
slow power-law decrease; third, an extended plateau re-
gion beyond tc which stretches up to the mean reaction
time tmean; and fourth an ultimate long-time exponen-

tial cut-off. The shape of the RTD for varying reactiv-
ities highlighting the geometry-controlled Lévy-Smirnov
hump and the reaction-controlled plateau region is our
central result. In order to a get a deeper understanding
of the time scales involved in the reaction process, we also
introduce and analyse in the Method section the forms
of two complementary characteristic times: the harmonic
mean reaction time tharm = 1/〈1/t〉 and the typical re-
action time ttyp = t0 exp(〈ln t/t0〉), where the angular
brackets denote averaging with respect to the RTD de-
picted in figures 1 and 2, and t0 is an arbitrary time scale.
Since the logarithm is a slowly varying function, its av-
erage value is dominated by the most frequent values of
t, while anomalously large/small values corresponding to
rare events provide a negligible contribution. Such an
averaged value is widely used to estimate a typical be-
haviour in diverse situations [40, 41].

Three characteristic time scales

The most probable reaction time, corresponding to the
very pronounced maximum, can be calculated explicitly
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FIG. 2: Geometry control. Reaction time density H(r, t) for a reaction on an inner target of radius ρ/R = 0.01, for the
different initial radii r indicated in the panels (r increasing from top to bottom). The values of the reactivity are (a) κ = ∞

(perfectly reactive) and (b) κR/D = 1 (partially reactive). The coloured vertical arrows indicate the mean reaction times for
these cases (note that some arrows coincide). The vertical black dashed line indicates the crossover time tc = 2(R− ρ)2/(Dπ2)
from the hump-like Lévy-Smirnov region to a plateau-like one. Thin coloured lines show the reaction time density H∞(r, t) from
equation (6) for the unbounded case (R → ∞). The length and time units are fixed by setting R = 1 and R2/D = 1. Clearly
the positions of the most likely reaction times are geometry-controlled by the initial distance to the target. Not surprisingly,
for the largest initial distance the solution for the unbounded case underestimates the RTD hump. Note the extremely broad
range of relevant reaction times (horizontal axis) spanning over 12 orders of magnitude in panel (b). Coloured bar-codes
(c,d) indicate the cumulative depths corresponding to four considered values of r/R in increasing order from top to bottom.
Each bar-code is split into ten regions of alternating brightness, representing ten 10%-quantiles of the distribution. In spite of
distinctions in the probability densities in panel (b), the corresponding cumulative distributions are close to each other and
result in very similar reaction depths.
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(see the Method section) and has the approximate form

tmp ≈ (r − ρ)2/(6D). (3)

Interestingly, this simple estimate, which depends only
on the diffusion coefficient and the initial distance to the
target site, appears to be very robust: tmp indeed shows
very little variation with the reactivity κ, as one may
infer from figures 1 and 3. In the Method section, we
show that when κ decreases from infinity to zero, the
value of tmp varies only by a factor of 3. This charac-
teristic time is always strongly skewed towards the left
tail of the distribution, that is, to short reaction times:
tmp in fact corresponds to particles moving relatively di-
rectly from their starting point to the target followed by
an immediate reaction and thus generalises the concept
of direct, purely geometry-controlled trajectories [22] to
systems with reaction control. Note that expression (3)
is different from the diffusion-controlled additive contri-
bution proportional to 1/D in the mean reaction time
(5).
The second characteristic time scale is the crossover

time tc from the hump-like Lévy-Smirnov region specific
to an unbounded system, to the plateau region. Hence, tc
can be interpreted as the time at which a molecule starts
to feel the confinement. This can be nicely discerned
from comparison with the density H∞(r, t) for the un-
bounded case (figure 2). Thus, reaction times beyond tc
correspond to indirect trajectories [22]. From the result

tc ≈ 2(R− ρ)2/(π2D) (4)

obtained in the Method section, we see that tc is indepen-
dent of the starting point and of the reactivity κ, being
entirely dominated by the diffusivity and the difference
between the sizes of the domain R and of the target.
Writing tmp/tc = π2(r − ρ)2/[12(R − ρ)2], one realises
that the crossover time can be comparable to the most
probable time (such that the hump-like region shrinks),
but may also become much larger than the latter when r
is close to ρ, as it happens, e.g., when proteins are pro-
duced in a close vicinity of a first gene activated at t = 0.
In this case, of course, the hump-like region will be most
pronounced (figure 2).
Finally, the onset of the right exponential shoulder

at long reaction times coincides with the mean reaction
time, as indicated by the arrows in figures 1 and 2. The
latter is obtained from the Laplace transformed distribu-
tion (see the Method section) and is given by the exact
formula

tmean =
(r − ρ)(2R3 − ρr(r + ρ))

6Drρ
+

R3 − ρ3

3κρ2
, (5)

which can be thought of as an analogue of the celebrated
Collins-Kimball relation for the apparent reaction rate
[13]. The first term in equation (5) is the standard MFPT
to a perfectly reactive target and corresponds to the clas-
sical notion of diffusion-controlled rate. The additional
contribution to tmean proportional to κ−1 accounts for

the imperfect reaction with finite reactivity, independent
of the particle’s starting point. When tmean is a unique
time scale characterising exhaustively well the reaction
kinetics, as it happens for reactions with sufficiently high
concentrations of reactants, one can indeed distinguish
between diffusion or kinetic control. In contradistinc-
tion, for reactions with nanomolar concentrations of re-
active species, the other time scales tmp and tc are equally
important and no clear-cut separation between diffusion
and kinetic control can be made. In the Method sec-
tion, we also present an explicit exact expression for the
variance of the first reaction time, which permits us to
determine the coefficient of variation of the RTD and
hence, to quantify its broadness.

Geometry versus reaction control

We emphasise that even for perfect reactions, for which
κ = ∞, the mean reaction time is orders of magnitude
longer than the most probable reaction time. For im-
perfect reactions (finite κ values) the mean reaction time
becomes even longer, and diverges as 1/κ when κ → 0.
The fact that the most probable reaction time is very
weakly dependent on κ renders the difference between
the most probable and the mean reaction times so much
more severe for finite κ. Another remarkable and so far
unnoticed feature is that a pronounced plateau devel-
ops beyond tc, reflecting an emergent regime of reaction-
control. This plateau exists even for κ = ∞ (figure 1)
and becomes increasingly longer with decreasing reactiv-
ity κ, implying that over several decades the values of the
reaction time become equally probable. Mathematically
speaking this plateau appears due to the fact that the
smallest eigenvalue of the boundary value problem—the
only eigenvalue with an appreciable dependence on κ—
disentangles from the remaining eigenvalues. This point
is discussed in more detail in the Method section. Phys-
ically, the emergence of the plateau implies that the first
passage process to the reaction event becomes even more
defocused with decreasing κ, i.e., that the spread of possi-
ble reaction times increases significantly. The long spread
of reaction times within this plateau region is a conse-
quence of geometrically defocused trajectories exploring
the boundary of the reaction volume reinforced by the
necessary multiple collisions with the target before a fi-
nal reaction event due to the reaction-control with finite
reactivity. An important consequence of the existence of
the extended plateau region is that all positive moments
of H(r, t), not only the mean reaction time, will be domi-
nated by integration over this region. In other words, the
resulting RTD is a concerted effect of geometry-control
and reaction-control.
In figure 2 we analyse the effect of the initial distance to

the surface of the target site for both perfect and imper-
fect reactions. The exponential shoulder at long reaction
times almost coincides for all cases, especially when the
reactivity is finite. This part of the reaction time dis-
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tribution is dominated by trajectories that equilibrate in
the volume before eventual reaction (indirect trajectories
[22]). In contrast, we see a strong variation of the most
likely reaction time. The exponential cut-off at short re-
action times and the position of the maximum of the dis-
tribution is geometry-controlled, as can be anticipated
from the Lévy-Smirnov form for the unbounded prob-
lem (see the Method section): direct trajectories from
the initial position to the target need a minimum travel
time. For increasing initial distance the most likely re-
action time thus moves to longer times and the relative
contribution of the geometry-controlled fraction of direct
trajectories becomes less relevant: instead the particles
almost fully equilibrate in the confined volume until they
finally react with the target. This reaction-control effect
is accentuated for decreasing reactivity. We stress that
for biological applications both cases are relevant: shorter
initial distances, for instance, are involved when proteins
are produced around a first gene activated at time t = 0
and these proteins then need to move to a close-by second
gene, here represented by the inner target. This scenario
is very similar to the one discussed in reference [19] as an
example for the rapid search hypothesis [18]. Longer ini-
tial distances are relevant when a molecular signal passes
the cellular membrane or is produced around a cytoplas-
mic plasmid, and when these molecules then need to dif-
fuse to the nucleoid region in a bacterial cell or pass the
nuclear membrane in an eukaryotic cell. Figure 3 sum-
marises the effects of the finite reactivity and of the dis-
tance to the target onto the reaction time distribution in
the form of a “heat map”.

Short- and long-time behaviour

We now turn to the discussion of the short- and long
time tails of H(r, t). The long-time behaviour of the den-
sity H(r, t) is determined by the smallest eigenvalue λ0

of the Laplace operator. For the spherical domain, one
can accurately compute this eigenvalue by solving the
trigonometric equation (see the Method section). When
both the target and its reactivity are small one gets
λ0 ≈ κSρ/(DV ), where the surface area Sρ = 4πρ2 of
the target and the volume of the domain V ≈ 4πR3/3
are introduced. According to equation (5), in this limit
tmean ≈ 1/(Dλ0), i.e., the mean reaction time is domi-
nated by multiple returns to the target until the reaction
occurs. As the target shrinks (ρ vanishes), the small-
est eigenvalue tends to zero. In turn, the other eigen-
values λn, corresponding to rotation-invariant eigenfunc-
tions of the Laplace operator in the spherical domain,
are bounded from below: λn > π2n2/R2 for n = 1, 2, . . ..
As a consequence, there is an intermediate range of
times, 1/(Dλ1) ≪ t ≪ 1/(Dλ0), for which the con-
tribution of all higher-order eigenmodes vanishes, that
is, e−Dtλn ≪ 1, whereas the contribution of the lowest
eigenmode is almost constant in time, e−Dtλ0 ≈ 1. This
is precisely the reason why the intermediate, plateau-like

region emerges, see figure 1. Note that this region pro-
trudes over an increasing range of time scales when either
the reactivity κ or the target radius ρ decrease, or both.
Note also that this intermediate regime corresponds ap-
proximately to an exponential law which is often evoked
in the context of the first passage statistics to small tar-
gets, see, for instance, references [28, 42, 43].
While the smallest eigenvalue determines the plateau

and the ultimate exponential cut-off, the short-time be-
haviour of the reaction time density H(r, t) is determined
by other eigenmodes. Since the limit of a small target
(ρ ≪ R) can alternatively be seen as the limit of large
domain size, one can use the density H∞(r, t) for diffu-
sion in the exterior of a target, which was first derived
by Collins and Kimball [13],

H∞(r, t) =
κ

r
exp

(

− (r − ρ)2

4Dt

){

ρ√
πDt

(6)

−
(

1 +
κρ

D

)

erfcx

(

r − ρ√
4Dt

+

(

1 +
κρ

D

)

√
Dt

ρ

)}

,

where erfcx(x) = ex
2

erfc(x) is the scaled complemen-
tary error function (its derivation is reproduced in the
Method section). As demonstrated in figure 1, equa-
tion (6) fully captures the geometry-controlled part of
the reaction time distribution. In the limit of a perfectly
absorbing target, κ → ∞, this expression reduces to

H∞(r, t) =
ρ

r

r − ρ√
4πDt3

exp

(

− (r − ρ)2

4Dt

)

, (7)

whose normalisation ρ/r ≤ 1 reflects the transient nature
of diffusion in three dimensions. One can easily check
that the maximum of this Lévy-Smirnov-type density is
given exactly by equation (3), as intuitively expected.

Approximate form of the full distribution

Combining the short and long time contributions we
arrive at the following approximate formula for the reac-
tion time density

H(r, t) ≈ H∞(r, t) + (1 − q)
e−t/tmean

tmean
, (8)

where tmean ≈ 1/(Dλ0) and

q =

∞
∫

0

dtH∞(r, t) =
ρ/r

1 +D/(κρ)
< 1 (9)

is the hitting probability of the target. The correct nor-
malisation ofH(r, t) is ensured by the prefactor in front of
the second term. Result (8) is substantially more general
than the simple form (1) suggested in [28]. The form (8)
not only extends expression (1) to the partially-reactive
case, i.e., for arbitrary finite values of κ, but also empha-
sises and provides an explicit form for the contribution
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r/R region κ′ = ∞ κ′ = 10 κ′ = 1 κ′ = 0.1

hump-like 3.8 0.34 0.04 0.004

0.2 plateau-like 59.4 62.9 63.2 63.2

exponential tail 36.8 36.8 36.8 36.8

hump-like 49.4 4.4 0.5 0.05

0.02 plateau-like 20.0 58.8 62.7 63.15

exponential tail 30.6 36.8 36.8 36.8

TABLE I: Impact of the target reactivity and proximity
onto the reaction depth. Relative weights (in per cents) of
three characteristic regions of the reaction time density for
ρ/R = 0.01: the hump-like region around the most probable
reaction time tmp, extending from 0 till tc = 2(R−ρ)2/(π2D)
(and thus merging two subregions discussed in the text: the
exponential tail left to tmp and the power-law decay right to
tmp); the plateau-like region stretching from tc to the mean
reaction time tmean; and the exponential tail which persists
beyond t = tmean. Two starting points r/R and four values of
dimensionless reactivity κ′ = κR/D are used, corresponding
to figure 1.

from the hump-like region around tmp, which is most rel-
evant for reactions in which the molecule starts close to
the target.
Figure 4 illustrates the quality of this approximation,

showing that it becomes most accurate when the target
radius ρ or reactivity κ are small. One observes that
it accurately captures both the maximum, the plateau,
and the exponential cut-off of the reaction time distri-
bution. In turn, the transition between the maximum
and the plateau region is less sharp than in the exact
form. A minor inaccuracy of the approximation (8) is
that it reaches a constant—set by the second term—in
the short time limit while the exact distribution vanishes
as t → 0. This feature can be simply removed by mul-
tiplying the second term by a Heaviside step function
Θ(t − tc) and re-evaluating the normalisation constant.
But even in the present form approximation (8) provides
a remarkably good insight into the behaviour of the first
passage dynamics and can thus be used as an efficient
and easy-to-handle fit formula for data analysis or for
explicit analytical derivations of follow-up processes.

Reaction depth

Lastly, we point out that the contributions of the four
different regimes separated by the time scales tmp, tc,
and tmean can be further quantified by the correspond-
ing reaction depths defining which fraction of trajectories
reacted up to a given time. We thus focus now on the
cumulative distribution function of reaction times

Fr(t) =

∫ t

0

dt′H(r, t′) = 1− S(r, t), (10)

with the evident property Fr(∞) = 1 in a bounded do-
main in which H(r, t) is normalised, and thus shows ex-

plicitly which fraction of trajectories have reacted up to
time t. The reaction depth is illustrated in the Method
section. Table I summarises the values of the reaction
depths of the three characteristic regions of the RTD:
the hump-like region around tmp, the plateau region, and
the exponential tail. We realise that for r/R = 0.2 the
least amount of the reaction events happens within the
hump-like region: it is of order of just 4% for perfect
reactions, and this fraction rapidly diminishes upon a
decrease of κ. In turn, a much larger amount of the
reaction events is collected within the final exponential
region. It is typically of order of almost 37%, indepen-
dently of the value of κ, meaning that for such a value of
the ratio r/R roughly one third of all realisations remain
unreacted at time t = tmean. However, most of realisa-
tions of the reaction events occur within the plateau-like
regime – it amounts to roughly 59% for perfect reac-
tions, and becomes even bigger for smaller values of κ.
The situation becomes different for a smaller release ra-
dius: r/R = 0.02. Here, for perfect reactions the major-
ity of trajectories (49% such that tc is close to the me-
dian time) react within the hump-like region, while the
plateau region and the final exponential tail contribute
only 20% and 30%, respectively. Upon lowering κ, the
hump-like region is no longer representative, and more
reaction events take place during the exponential tail
(∼ 37%) and the plateau-like regions (∼ 63%), respec-
tively. In conclusion, the plateau region appears to be
the most important part of the RTD which contributes
most to the overall number of reaction events, except for
the case r/R ≪ 1 and κR/D ≫ 1, for which the hump-
like region becomes the dominant one. Concurrently, this
plateau is the region of the strongest defocusing effect, in
particular for increased reaction-control.

DISCUSSION

Many molecular signalling processes in living biologi-
cal cells run off at minute concentrations. Similarly in
vitro experiments tracking the motion of colloidal parti-
cles employ only few particles. Individual first passage
events in such situations are defocused, that is, possible
reaction times are spread over a vast range comprising
orders of magnitude. In particular, this implies that any
pair of reaction events will be characterised by highly
disparate reaction times. The quantitative description of
the reaction time to a target in this scenario therefore
cannot simply be based on the mean reaction time. As
we showed, the resulting broad distribution of reaction
times is due to a conspiracy between geometry-control
and reaction-control effects which cannot be disentan-
gled.
We analysed this phenomenon in detail for a generic

spherical geometry, concentrating on several main fea-
tures. (i) The reaction time density consists of four re-
gions with distinct asymptotic behaviour. (ii) These time
regions are separated by three characteristic time scales,
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FIG. 4: Explicit approximation for the reaction time density H(r, t). It is evaluated for a reaction with an inner target of radius
ρ/R = 0.01 with starting point (a) r/R = 0.2 and (b) r/R = 0.02, and four values of the dimensionless reactivity κ′ = κR/D
(decreasing from top to bottom). The coloured vertical arrows indicate the respective mean reaction time. The black vertical
dashed line shows the crossover time tc = 2(R− ρ)2/(Dπ2) above which the contribution of higher order Laplacian eigenmodes
become small. Thin black lines show the approximation (8) of the RTD which very nicely captures the main features of the
exact density. Length and time units are fixed by setting R = 1 and R2/D = 1.

which means that there is no unique time scale charac-
terising the kinetic behaviour exhaustively well and the
reaction times are defocused. In consequence, the text-
book notions of diffusion versus kinetic control, which
are appropriate for reactions operating at abundant con-
centrations, are not applicable in our case. We explicitly
determined these times scales and also the associated re-
action depths. (iii) A finite reactivity broadens an in-
termediate regime characterised by an extended plateau
region. We showed that the plateau emerges due to a
time scale separation of the lowest and the next eigen-
values of the diffusion-controlling Laplace operator. The
fundamental parameter we found to quantify this inter-
mediate regime is the reaction-control represented by the
dimensionless reactivity κR/D. A majority of the reac-
tion events occur within this region, except for the case
r/R ≪ 1 and κR/D ≫ 1. In turn, for perfect reactions
with a reactant starting very close to the target site the
most important part of the RTD is the hump-like region
which contributes with almost 50 per cent of the reaction
events. (iv) The geometry control of the initial particle-
to-target distance strongly affects the position and the
amplitude of the maximum of the reaction time distri-
bution and thus the most likely reaction time. (v) We
came up with a simple and thus practical approximative
formula for the full reaction time distribution. In partic-
ular, we demonstrated that this approximation captures
both the most likely and mean reaction times. While the
derivation relied on the rotation symmetry of the consid-
ered geometric domain, this approximation is expected to
be valid in more complex confinements, as long as the tar-
get site is far enough from the surrounding outer bound-
ary. Our main conclusion is that reaction-control with
finite reactivity leads to even stronger reaction time defo-
cusing, stressing the necessity to know the full RTD. This
conclusion will serve as a benchmark for the behaviour

in geometrically more complex situations [29] when, e.g.,
the target site is on the wall or bound to some geomet-
rical structure within the domain, and a fully analytical
solution is impossible.

METHOD

Exact distribution of reaction times

We consider a diffusion process in a three-dimensional
domain Ω = {x ∈ R3 : ρ < ‖x‖ < R} between two con-
centric spheres – a small target and a bounding surface of
radii ρ and R, respectively. Although the solution of the
underlying diffusion problem is well known [27, 38], we
rederive it here for completeness and to highlight several
practical points discussed in the main text. In fact, the
Laplace transformed probability density function H̃(x, p)
satisfies the modified Helmholtz equation

(p−D∆)H̃(x, p) = 0 (x ∈ Ω), (11)

subject to the boundary conditions

(

∂nH̃(x, p)
)

|‖x‖=R = 0, (12a)

(

D

κ
∂nH̃(x, p) + H̃(x, p)

)

|‖x‖=ρ = 1. (12b)

Here ∆ is the Laplace operator, D is the diffusion coef-
ficient, κ is the intrinsic reactivity, and ∂n is the normal
derivative directed outward from the domain Ω.

The rotational symmetry of the domain reduces the
partial differential equation (11) to an ordinary differ-
ential equation with respect to the radial coordinate r,
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H̃ ′′(r, p) +
2

r
H̃ ′(r, p)− p

D
H̃(r, p) = 0, (13a)

H̃ ′(R, p) = 0, (13b)

(

H̃(r, p)− D

κ
H̃ ′(r, p)

)

r=ρ

= 1, (13c)

where primes denote derivatives with respect to r. The
solution of this equation is

H̃(r, p) =
g(r)

g(ρ)− g′(ρ)Dκ
, (14)

where

g(r) =
R
√

p/D cosh ξ − sinh ξ

r
√

p/D
, (15)

with ξ = (R− r)
√

p/D. It follows that

g′(r) =
(1−Rrp/D) sinh ξ − ξ cosh ξ

r2
√

p/D
. (16)

The mean reaction time is obtained from the Laplace-
transformed density as

tmean = − lim
p→0

∂

∂p
H̃(r, p) , (17)

from which equation (5) follows.
In the limit R → ∞, equations (14), (15), and (16)

yield

H̃∞(r, p) =
(ρ/r) e−(r−ρ)

√
p/D

1 +
(

1 + ρ
√

p/D
)

D/(κρ)
. (18)

Due to the transient character of three-dimensional diffu-
sion, the related distribution is not normalised to unity,
but H̃∞(r, p = 0) = (ρ/r)/(1 +D/(κρ)) < 1 is the prob-
ability of reacting with the target before escaping to in-
finity. The inverse Laplace transform yields equation (6).

Using the relation S̃∞(r, p) = (1−H̃∞(r, p))/p and equa-
tion (18), one can also compute the survival probability
S∞(r, t) in the time domain

S∞(r, t) = 1− ρ exp
(

− (r−ρ)2

4Dt

)

r(1 +D/(κρ))

{

erfcx

(

r − ρ√
4Dt

)

−erfcx

(

r − ρ√
4Dt

+
(

1 +
κρ

D

)

√
Dt

ρ

)}

. (19)

The Laplace inversion of equation (14) can be per-

formed by identifying the poles of the function H̃(r, p)
in the complex plane p ∈ C, that is, by finding the zeros
of the function

F (p) = g(ρ)− D

κ
g′(ρ). (20)

For convenience, we introduce dimensionless Laplace
variable s = (R− ρ)2p/D, so that

F (p) =
1

ρ2
√
s

(

(

ρR+ µ(R− ρ)2
)√

s cosh
√
s

−
(

ρ(R− ρ) + µ(R − ρ)2 − µRρs
)

sinh
√
s

)

, (21)

where we defined the dimensionless “dilatoriness” param-
eter µ as

µ =
D

κ(R− ρ)
. (22)

The perfectly reactive target with κ = ∞ corresponds to
µ = 0. In other words, for high reactivity κ the value
of the dilatoriness µ is small and reactions occur more
likely on first encounter, and vice versa. Note that a
fully reflecting target with κ = 0 is excluded from our
analysis because the reaction time would be infinite. In
other words, we always consider 0 ≤ µ < ∞.
The solutions of the equation F (p) = 0 lie on the neg-

ative real axis. Setting s = −α2, one gets the trigono-
metric equation

tanα =
α
(

ρR+ µ(R − ρ)2
)

ρ(R− ρ) + µ(R− ρ)2 + µRρα2
. (23)

This equation has infinitely many positive solutions that
we denote as αn, with n = 0, 1, 2, . . . Since the function

on the right-hand side has the slope ρR+µ(R−ρ)2

ρ(R−ρ)+µ(R−ρ)2 > 1

near α = 0, the smallest solution α0 lies in the interval
(0, π/2). More generally, the nth solution lies in the in-
terval (πn, π(n+1/2)) and tends, for any fixed κ, to the
left boundary of the interval as n → ∞. Note that α = 0
(or p = 0) is not a pole of the function H̃(r, p).
Once the poles are identified, we determine the residues

by taking the derivative of F (p) at the poles. Applying
the theorem of residues to compute the inverse Laplace
transform, we finally deduce the exact expression for the
probability density H(r, t) of the reaction time for a par-
ticle starting at a distance r − ρ from the target,

H(r, t) =

∞
∑

n=0

un(r) e
−Dtλn , (24)

with

λn = α2
n/(R− ρ)2, (25)

un(r) = cn
D

(R− ρ)2
(26)

×
Rαn cos

(

αn
R−r
R−ρ

)

− (R− ρ) sin
(

αn
R−r
R−ρ

)

rαn
,

where the expansion coefficients cn are given explicitly
by the residues as

cn =
2ρ2α2

n

(ρR+ µ(R2 + ρ2))αn sinαn + ρ(µRα2
n − ρ) cosαn

.

(27)
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Long-time behavior of the RTD

When either the target radius ρ is small or the dilatori-
ness parameter µ is large, the slope of the right-hand side
of equation (23) is close to unity and thus the smallest
eigenvalue α0 is close to zero. Expanding both sides of
equation (23) into Taylor series one finds the first-order
approximation

α0 ≃ ρ
√

ρ(R − ρ) + µ(R− ρ)2
(28)

×
(

1

3
+ µRρ

ρR + µ(R− ρ)2

(ρ(R − ρ) + µ(R − ρ)2)2

)−1/2

+ . . . .

In particular, for small target radius, ρ → 0, at fixed
dilatoriness µ we see that α0 ≃

√
3(ρ/R)µ−1/2. In turn,

when µ → ∞ with fixed ρ,

α0 ≃
√
3ρ

√

R2 +Rρ+ ρ2
µ−1/2. (29)

In both cases α0 is proportional to ρ and inversely pro-
portional to

√
µ. As a consequence, the term with the

slowest decay time behaves as

λ0 ≃ 3κρ2

D(R − ρ)(R2 +Rρ+ ρ2)
≃ 3κρ2

DR3
≈ κSρ

DV
, (30)

where in the intermediate approximation we ignored
terms of order ρ/R and higher, and we introduced the
surface area Sρ = 4πρ2 of the target and the volume of
the domain V ≈ 4πR3/3.
We also note that the approximation c0 ≈

3(ρ/R)2/(µ + 3ρ/(2R)) holds for ρ ≪ R, and thus
c0/α

2
0 ≃ 1/(1 + 3ρ/(2µR)), i.e., it is close to unity as

long as the dilatoriness µ is not too small. Therefore
the survival probability can be accurately approximated
as S(r, t) ≃ exp(−Dtα2

0/R
2) for intermediate and large

times. In this case the median reaction time becomes

tmedian ≈ R2 ln 2

Dα2
0

≃ µR4 ln 2

3Dρ2
≃ R3 ln 2

3κρ2
, (31)

from which the relation tmedian ≈ tmean ln 2. This me-
dian value is close to the mean reaction time which in the
limit ρ ≪ R has the dominant behaviour as R3/(3κρ2)
according to equation (5). In turn, the most probable
reaction time, which is determined by the higher-order
eigenmodes, is orders of magnitude smaller. This be-
haviour is, however, only present for weakly reactive tar-
gets. In contrast, the median time for perfect reactions
is usually close to the crossover time tc, while tmean is
orders of magnitude larger.

Most probable reaction time

One may deduce from figure 1 that the region around
the most probable reaction time is well described by the

function in (6), which corresponds to the solution in the
limit R → ∞. Hence, the most probable reaction time
tmp can be obtained with a good accuracy by merely
differentiating this function with respect to t and setting
the result equal to zero:

tmp =
(r − ρ)2

6D
z2 , (32)

where z is defined implicitly as the solution of the follow-
ing, rather complicated transcendental equation

β2z4 − 3(1 + β)z2 + 9

−
√

π/6β3z5erfcx

(

√

3/2

z
+

βz√
6

)

= 0, (33)

where erfcx(x) is the scaled complementary error func-
tion, and

β =
r − ρ

ρ

(

1 +
κρ

D

)

. (34)

We denote the solution of this equation as zβ. When β
tends to 0, a Taylor expansion of the left-hand side of
(33) yields z2 − 9 + O(β), from which z0 =

√
3. In the

opposite limit β → ∞, one uses the asymptotic behaviour
of the function erfcx(x) to get

zβ ≃ 1 +
3

2β
+O(β−2). (35)

With some technical efforts, one can prove that zβ is a
monotonously decreasing function of β (see Fig. 5). We

conclude that zβ is bounded between
√
3 and 1 so that the

most probable time tmp lies between (r − ρ)2/(6D) (for
κρ ≫ 1) and (r−ρ)2/(2D) (for κρ ≪ 1). In other words,
the most probable reaction time shows remarkably weak
dependence on the reactivity κ, as illustrated by Fig. 5.

Moments of the reaction time

As we have already remarked in the main text, the
positive moments of the RTD of an arbitrary order are
dominated by the integration over the plateau-like region
such that their values appear close to the onset of the
crossover to the final region – the exponential decay of
the RTD. The exact values of the positive moments of
the random reaction time τ can be accessed directly by a
mere differentiation of H̃(r, p) with respect to the Laplace
parameter p and subsequently taking the limit p = 0:

〈τk〉 = (−1)k lim
p→0

∂kH̃(r, p)

∂pk
. (36)

For instance, a lengthy but straightforward calculation
yields the exact formula for the variance of the reaction
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FIG. 5: Weak dependence of the most probable reaction time
on reactivity. The numerical solution zβ of equation (33) as a
function of β (solid line) and its large-β asymptotic behavior
(35) shown by dashed line.

time:

〈τ2〉 − 〈τ〉2 =
1

90D2r2ρ4

{

10r2(R3 − ρ3)2(D/κ)2 (37)

+ 4ρr2(5R3 + 6R2ρ+ 3Rρ2 + ρ3)(R − ρ)3(D/κ)

+ ρ2(r − ρ)
(

2R3(5R3ρ+ 5R3r + 10r2ρ2 − 18R2rρ)

− ρ2r2(ρ+ r)(r2 + ρ2)
)

}

,

from which one also gets the coefficient of variation,
γ =

√

〈τ2〉 − 〈τ〉2/〈τ〉, which characterises fluctuations
of the random reaction time τ around its mean, i.e., the
effective broadness of the reaction time density. As com-
pared to Ref. [30], the expressions (5) and (37) permit
us to quantify the effect of both rate-controlling factors.
For a perfectly reactive target, the coefficient of vari-

ation diverges as the starting point r approaches ρ, in
particular, one gets

γ2 ≃ 2ρ

r − ρ
+O(1), (38)

when the target is small or the confining domain is large
(ρ ≪ R). In turn, for a partially reactive target, the
squared coefficient of variation is finite in the limit r → ρ
and for a small target reads

γ2 ≃ 1 +
2ρκ

D
. (39)

The coefficient of variation γ in equations (38) and (39)
exceeds 1, allowing one to classify this distribution as
broad, according to the standard terminology in statistics
[24–26]. In both cases, the asymptotic behaviour of γ
does not depend on the size of the confining domain, R.
We turn next to the negative order moments of the

RTD which are clearly dominated by the region close to

the origin and hence, probe the left tail of the distribu-
tion. The computation of negative moments (with ν > 0)
involves integration:

〈τ−ν〉 =
∞
∫

0

dt t−ν H(r, t) =
1

Γ(ν)

∞
∫

0

dp pν−1 H̃(r, p).

(40)
Although this integral is expressed in terms of the explic-
itly known Laplace transform H̃(r, p) from equation (14),
its analytical evaluation does not seem to be feasible.
In turn, the integral takes a more tractable form in the

limit R → ∞ corresponding to diffusion in the exterior
of a partially reactive target of radius ρ. Due to the
transient character of diffusion in three dimensions, the
probability density H∞(r, t) is not normalised to 1 as
the molecule can escape to infinity. The integral of the
density H(r, t) yields thus the probability of reacting at
the target:

q = H̃∞(r, p = 0) =
ρ/r

1 +D/(κρ)
. (41)

The negative order moments of the renormalised density
H∞(r, t)/q are

〈τ−ν〉n =
2

Γ(ν)

(

D

(r − ρ)2

)ν
∞
∫

0

dz
z2ν−1e−z

1 + z/β
, (42)

where β was defined in (34). In the limit κ → ∞, one
finds

〈τ−ν〉n =
2

Γ(ν)

(

D

(r − ρ)2

)ν

Γ(2ν). (43)

While the mean reaction time diverges for the exterior
problem, the negative order moments are well defined and
can thus characterise the reaction process. In particular,
the harmonic mean reaction time, defined as

tharm =
1

〈τ−1〉n
, (44)

is deduced from (42) for ν = 1:

tharm =
(r − ρ)2

2D
β−1

(

1− βeβEi1(β)

)−1

, (45)

where Ei1(z) =
∫∞

1
dx e−zx/x is the exponential integral.

The dependence of the harmonic mean on the reactivity
κ is fully captured via β. In the limit κ → ∞, this mean
approaches

tharm =
(r − ρ)2

2D
, (46)

and is thus of the order of the most probable time, rep-
resenting the relevant time scale of the problem. In the
opposite limit κ → 0, β approaches a constant, and the
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harmonic mean reaction time also reaches a constant.
One can check that tharm monotonously decreases as β
(or κ) grows.
Figure 6 illustrates by dashed lines the behaviour of the

function in (45), in particular, its approach to the lim-
iting expression (46) as κ increases. One can appreciate
a very weak dependence of the harmonic mean reaction
time for the exterior problem on the reactivity κ. We also
show the harmonic mean reaction time in the concentric
domain, obtained by a numerical integration in equation
(40) with ν = 1. This mean significantly depends on κ
and behaves as 1/κ for small κ. Given that the prob-
ability density H(r, t) for the concentric domain can be
accurately approximated by H∞(r, t) at small times (see
equation (8)), the harmonic mean reaction time for the
concentric domain can be approximated by the expres-
sion in (40), multiplied by the reaction probability q.
This approximation, shown by solid lines, turns out to
be remarkably accurate when the target radius ρ is small
as compared to the radius R of the confining domain. We
can also conclude that the significant variations of tharm
with κ for the concentric domain come from those of q
with κ.
Finally, we consider the time scale

ttyp = t0 exp(〈ln(t/t0)〉) (47)

(where t0 is an arbitrary time scale), based on the mean
logarithm of the reaction time – an important character-
istic of the reaction process, which emphasizes the typical
values of t, i.e., values observed in most of experiments.
Indeed, the logarithm is a slowly-varying function and
its average is supported by the most frequently encoun-
tered values of t with the rare anomalously long or short
reaction times being effectively filtered out. The esti-
mates based on ttyp are widely used in the analysis of
stochastic reaction-diffusion or transport process in ran-
dom environments (see, e.g., Refs. [40, 41] and references
therein). Such an averaged value can be formally com-
puted as

〈ln(τ/t0)〉 =
∞
∑

n=0

un(r)

∞
∫

0

dt ln(t/t0)e
−Dtλn (48)

= −
∞
∑

n=0

un(r)
γ + ln(Dt0λn)

Dλn

=

(

ln
(R − ρ)2

Dt0

)

− γ − (R− ρ)2

D

∞
∑

n=0

un(r)
lnα2

n

α2
n

,

where γ ≈ 0.5772 . . . is the Euler constant, from which

ttyp =
(R − ρ)2

D
exp

(

−γ − (R − ρ)2

D

∞
∑

n=0

un(r)
lnα2

n

α2
n

)

,

(49)
where un(r) are given by (26).
To get a more explicit dependence on the initial radius

r, one can again consider the exterior problem (R = ∞).

Rewriting equation (42) as

〈τ−ν〉n =

(

D

(r − ρ)2

)ν
2Γ(2ν)

Γ(ν)
(50)

×
(

1− 1

βΓ(2ν)

∞
∫

0

dz
z2νe−z

1 + z/β

)

,

in order to get a Taylor expansion as ν → 0, one gets

〈ln(τ/t0)〉n =

{

ln

(

(r − ρ)2

Dt0

)

+ γ + 2eβEi1(β)

}

, (51)

where the expectation is computed with respect to the
renormalised density H∞(r, t)/q. We obtain thus the log-
arithmic mean time

ttyp =
(r − ρ)2

D
exp

(

γ + 2eβEi1(β)
)

. (52)

In the limit κ → ∞, eβEi1(β) vanishes as 1/β, so that
for a perfectly reactive target one gets

ttyp =
(r − ρ)2

D
eγ , (53)

which signifies that in the limit κ = ∞ the logarithmic
mean time is comparable to the most probable reaction
time tmp.
Figure 7 shows the logarithmic mean reaction time,

ttyp, as a function of the dimensionless reactivity κR/D.
As for the harmonic mean in Fig. 6, the results for a
bounded concentric domain (R = 1) and for the exterior
problem (R = ∞) differ significantly. The particular
definition of the logarithmic time does not allow one to
easily renormalise ttyp for the exterior domain to get an
approximation for the bounded domain.
Finally, Fig. 8 compares several mean reaction times

for the concentric domain. One can see that the be-
haviour of the median, the harmonic and the logarithmic
means resembles that of the conventional (arithmetic)
mean FPT. In particular, all these means behave as 1/κ
at small κ, indicating that the reaction is limited by the
kinetics. Only the most probable FPT exhibits a very
different behaviour and shows almost no depedence on
the reactivity κ, as discussed above.

Reaction depth

The reaction depth (10) is shown in figure 9. Note
first that the reaction depths corresponding to the short-
est characteristic time tmp are evidently the shortest,
amounting to only about 4% for perfect reactions and
r close to ρ. For finite κ or for starting points further
away from the target, the reaction depth Fr(tmp) dimin-
ishes. In turn, in all cases the reaction depth connected
to the intermediate plateau is dominant, increasingly so
due to the reaction-control at lower reactivities.
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FIG. 6: The harmonic mean reaction time, tharm, as a function of the dimensionless reactivity, κ′ = κR/D. (a) An inner
target has a radius ρ/R = 0.1 (blue curves) or ρ/R = 0.01 (red curves), and the release radius r/R = 0.2. Symbols show the
results for the concentric domain, obtained by a numerical evaluation of the integral in equation (40) with ν = 1; dashed lines
present the relation (45) for the exterior problem; solid lines indicate the relation (45) multiplied by the reacting probability q
from (41). The length and time units are fixed by setting R = 1 and R2/D = 1. (b) The same but for ρ/R = 0.01 and two
values of r/R: 0.2 (blue curves) and 0.02 (red curves).
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FIG. 7: The logarithmic mean reaction time, ttyp, as a
function of the dimensionless reactivity, κR/D. ttyp is eval-
uated for an inner target of radius ρ/R = 0.1 (blue curves)
or ρ/R = 0.01 (red curves), for the initial radius r/R = 0.2.
Lines show the results for the concentric domain from equa-
tion (49), whereas symbols present the relation (52) for the
exterior problem. The length and time units are fixed by
setting R = 1 and R2/D = 1.
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