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Introduction

Determining the factors that influence species' ranges is a prerequisite for deriving reliable biodiversity scenarios [START_REF] Urban | Improving the forecast for biodiversity under climate change[END_REF]. The importance of abiotic factors has long been recognized [START_REF] Pulliam | On the relationship between niche and distribution[END_REF][START_REF] Chase | Ecological niches: linking classical and contemporary approaches[END_REF][START_REF] Soberón | Niches and distributional areas: concepts, methods, and assumptions[END_REF], and correlative species distribution models (SDMs) that relate species' occurrence to prevailing environmental factors have become the most widely used tools in biogeography [START_REF] Guisan | Predictive habitat distribution models in ecology[END_REF][START_REF] Guisan | Predicting species distribution: offering more than simple habitat models[END_REF][START_REF] Elith | Species distribution models: ecological explanation and prediction across space and time[END_REF]. However, it is now generally accepted that interspecific interactions likely influence species' distributions at larger spatial and temporal scales than previously thought [START_REF] Blois | Climate change and the past, present, and future of biotic interactions[END_REF][START_REF] Svenning | The influence of interspecific interactions on species range expansion rates[END_REF]. Ignoring these interactions could thus hamper the ability of SDMs to predict current and future species ranges and communities [START_REF] Leathwick | Competitive interactions between tree species in New Zealand's old-growth indigenous forests[END_REF][START_REF] Meier | Biotic and abiotic variables show little redundancy in explaining tree species distributions[END_REF], Zurell et al. 2016a). Hence, over the last couple of years, several approaches have been discussed or proposed to incorporate interspecific interactions between multiple species into distribution models [START_REF] Kissling | Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents[END_REF][START_REF] Pellissier | Combining food web and species distribution models for improved community projections[END_REF][START_REF] Thuiller | A road map for integrating eco-evolutionary processes into biodiversity models[END_REF][START_REF] Wisz | The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling[END_REF].

Aided by computational advances, methods have been introduced that combine species distribution modelling with co-occurrence analyses that originate from community ecology [START_REF] Ovaskainen | How to make more out of community data? A conceptual framework and its implementation as models and software[END_REF]). These joint species distribution models (JSDMs) decompose species co-occurrence patterns into shared environmental responses and residual correlation [START_REF] Ovaskainen | Modeling species co-occurrence by multivariate logistic regression generates new hypotheses on fungal interactions[END_REF][START_REF] Clark | Competition-interaction landscapes for the joint response of forests to climate change[END_REF][START_REF] Pollock | Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM)[END_REF][START_REF] Warton | So Many Variables: Joint Modeling in Community Ecology[END_REF][START_REF] Hui | boral -Bayesian ordination and regression analysis of multivariate abundance data in R[END_REF][START_REF] Ovaskainen | Uncovering hidden spatial structure in species communities with spatially explicit joint species distribution models[END_REF]. The latter correlation relates to the patterns of co-occurrence that are unexplained by the environmental information given to the model. The temptation is then to attribute this residual correlation to biotic interactions, such as competition and facilitation. Although this residual correlation can reflect intuitive ecological [START_REF] Latimer | Hierarchical models facilitate spatial analysis of large data sets: a case study on invasive plant species in the northeastern United States[END_REF][START_REF] Ovaskainen | Modeling species co-occurrence by multivariate logistic regression generates new hypotheses on fungal interactions[END_REF] or evolutionary processes [START_REF] Pollock | The roles of ecological and evolutionary processes in plant community assembly: the environment, hybridization, and introgression influence co-occurrence of Eucalyptus[END_REF], there could also be many non-biological explanations such as missing environmental variables or poor model fit. Theoretically, JSDMs should predict positive residual correlation between a pair of species if these co-occur more often than expected given the environment (or by chance in a homogenous environment) and predict negative residual correlation when the species co-occur less often than expected given the environment (or by chance in a homogenous environment).

To date, no study exists that explicitly tests JSDM's ability to identify the signal and the strength of species interactions and the effects of complicating factors such as species' prevalence and spatial scale. Also, the limits of JSDMs to detect asymmetric (positive-negative) interactions such as predator-prey relationships have not been tested. As JSDMs basically evaluate whether (residual) co-occurrence deviates from the null expectation (given by environmental overlap), they can per definitionem only capture symmetric interactions. However, a recent study by [START_REF] Araújo | The geographic scaling of biotic interactions[END_REF] showed that range overlaps of species pairs resulting from predator-prey relationships could resemble both co-occurrence patterns of competition (-/-) and mutualism (+/+).

It is thus an important question whether JSDMs could possibly distinguish asymmetric interactions such predator-prey relationships (+/-) from symmetric interactions (-/-and +/+).

Here, we build on the point-process model of [START_REF] Araújo | The geographic scaling of biotic interactions[END_REF] that simulates co-occurrence of species pairs at steady state across all interspecific interaction types (-/-, +/-, +/+) and across all possible combinations of interspecific interaction strength (0≤ I ≤ 1). We use this point-process model to generate cooccurrence data of species pairs in homogeneous environments, and then use these data to fit JSDMs. Other models could be used to simulate the distribution of interacting species, for example spatially explicit population models such as Lotka-Volterra-type models, coupled map-lattice models [START_REF] Zurell | Static species distribution models in dynamically changing systems: how good can predictions really be?[END_REF] or individual-based models [START_REF] Travis | The interplay of positive and negative species interactions across an environmental gradient: insights from an individual-based simulation model[END_REF]. However, by using data from the steady-state point-process model and from homogeneous environments, we ensure that species co-occurrence patterns are not confounded by other factors such as history, missing environmental variables or demographic stochasticity. We thus provide a simple proofof-concept and ask whether JSDMs can detect the signal of interspecific interactions from co-occurrence data under idealised conditions, which we regard as prerequisite for applying these models in complex real-world applications. Specifically, we test whether JSDMs can detect different interspecific interactions ranging from negative to positive, how JSDMs cope with positive-negative interactions such as predator-prey relationships, and how the ability to detect interactions is influenced by the resolution of the data used for modelling (i.e. scaledependence).

Methods

Simulating co-occurrence patterns

We used the point-process model developed by [START_REF] Araújo | The geographic scaling of biotic interactions[END_REF] to simulate co-occurrence of species at steady state across all possible interaction types (+/+, +/-, -/-, +/0, -/0) and all possible combinations of interaction strengths (0 ≤ |I x | ≤ 1). If there is no interaction between species, then the expected probability of cooccurrence P(A and B) of a species pair is simply given by the product of their prevalence P(A) x P(B). This corresponds to the null expectation of co-occurrence. With interspecific interaction present, the probability of cooccurrence is a function of species' prevalence and the strength of their interaction, which could be repulsive or attractive. Mutualistic interactions (+/+) will cause the species to co-occur more often than expected under the null model, whereas competitive interactions (-/-) will cause them to co-occur less often than expected. In case of predator-prey relationships (+/-), both positive and negative interactions will cause deviation from the null model. Whether this results in higher or lower co-occurrence than expected by the null model, depends on both the relative strength of positive and negative interactions and on the prevalence of the species. Thus, the resulting co-occurrence (relative repulsion and attraction of species pairs) is deterministic while the spatial distribution of the species is stochastic. For a more detailed description of the model formulation, please see [START_REF] Araújo | The geographic scaling of biotic interactions[END_REF]. For simplicity, the environment is assumed homogenous and does not influence species' ranges and prevalence.

Here, we simulated co-occurrence patterns of two species A and B in homogeneous environments of 100x100 cells for all combinations of potential interactions. Species' occurrence in space was random without any spatial autocorrelation. [START_REF] Araújo | The geographic scaling of biotic interactions[END_REF] showed that the co-occurrence patterns and their scale dependence were comparable between spatially correlated and spatially uncorrelated landscapes. We varied the interaction coefficients I from -1 to 1 in 0.1 increments. This resulted in 441 simulations per prevalence level. As an extension to previous results [START_REF] Araújo | The geographic scaling of biotic interactions[END_REF], we systematically varied prevalence levels.

Specifically, in the first set of five scenarios, species A and B had equal prevalence of varying magnitude [0.1, 0.2, 0.3, 0.4, 0.5]. In a second set of two scenarios, species A and B had unequal prevalence [A=0.1 and B=0.5; A=0.2 and B=0.4].

For all scenarios, we calculated the co-occurrence index and the null expectation of co-occurrence, to evaluate whether species co-occurred more or less often than expected by chance. The co-occurrence index was defined as the number of cells where both species occur together divided by the total number of occupied cells. As the null probability of co-occurrence P(A and B) is given by the product of species' prevalence P(A) x P(B), the cooccurrence value corresponding to the null expectation is given by ( P(A) x P(B) ) / ( (P(A) + P(B) -P(A) x P(B)

) where the dividend is the proportion of cells occupied by both species together and the divisor is the overall proportion of occupied cells. Hence, the exact co-occurrence value corresponding to the null expectation, where both species co-occur simply by chance, varies with prevalence (Fig. 1a-f).

To test for scale dependence in co-occurrence patterns and in the estimation of JSDMs, we aggregated the original landscape grid to two increasingly coarser resolutions by aggregating 2x2 cells and 4x4 cells, respectively. In these cases, species interactions (repulsion and attraction) are still modelled at the initial resolutions, but JSDMs are fitted at coarser resolution mimicking large scale and coarse resolution data such as atlas data [START_REF] Gotelli | Macroecological signals of species interactions in the Danish avifauna[END_REF], Zurell et al. 2016b), or continental and global datasets (McGill 2010, Jetz et al.

2012).

All simulations were carried out in R (R Core Team 2015), and the code is provided in the Supplementary Material Appendix 1.

Accepted Ar ticle

'This article is protected by copyright. All rights reserved.'

Estimating joint species distribution models

The spatial distributions of species A and B as simulated by the point-process model over the full biotic interaction space served as input for JSDMs. We thus assumed perfect detection of the species and ideal sample sizes, meaning that the entire space was sampled although we also tested for sample size effects (Appendix 1).

We fitted JSDMs using the code provided by [START_REF] Pollock | Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM)[END_REF]. These jointly estimate the occurrence probability of multiple species with a hierarchical multivariate probit regression, and the residual correlation between those species' presences by means of an unstructured covariance matrix. As we were mainly interested in the ability of JSDMs to detect underlying interactions, we assumed homogeneous environments and fitted the environmental response with an intercept only model that controls for prevalence. The JSDMs were run with JAGS from within R (R Core Team 2015) with 3 chains. As the simulated data were very simple and without noise (meaning no sampling error was included), for most combinations of interaction strengths (-1 < I < +1) a comparably low number of 10000 iterations with a burn-in of 5000 and a thinning rate of 20, were sufficient for reaching convergence with rhat values below 1.1 for all parameters. For extreme interactions strengths (with an interaction coefficient I of -1 or +1), convergence was not achieved under 10000 iterations and we subsequently tested stability of parameters values for increasing numbers of iterations. The residual correlation between species' presences was given by the mean of the posterior distribution and was judged as significant when the range between the 5% and 95% posterior quantiles did not include zero.

Results

Different prevalence levels produced different co-occurrence patterns across the biotic interaction space (Fig. 1a-f). Co-occurrence was always lower than the null expectation for competitive interactions (-/-) and for amensalism (-/0) and always higher than the null expectation for mutualism (+/+) and commensalism (+/0). However, the exact asymmetric interaction coefficients (+/-), at which cooccurrence was not different from the null expectation, strongly depended on prevalence (of the more common species of the species pair). When prevalence was low in both species, then co-occurrence was higher than the null expectation for most combinations of positive-negative (+/-) interactions (Fig. 1b), while co-occurrence was mostly lower than the null expectation if at least one species in the predatorprey relationship was more common (Fig. 1f; Supplementary material Appendix 1, Fig. A1).

JSDMs correctly assigned negative residual correlations to competitive interactions, and correctly assigned positive residual correlations to mutualistic interactions. More broadly, the difference between observed cooccurrence and the null expectation determined the residual correlation estimated by JSDMs. Negative residual
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'This article is protected by copyright. All rights reserved.' correlations were estimated when species co-occurred less often than the null expectation (meaning the cooccurrence value corresponding to the case when both species co-occur only by chance), and positive residual correlations when the species co-occurred more often than the null expectation. However, the magnitude of residual correlations varied across scenarios with different prevalence of the interacting species (Fig. 1g-k). For example, for two species A and B with an intermediate and symmetric negative interaction (I A = I B = -0.5), JSDMs estimated a residual correlation of approx. -0.19 if both species had a prevalence of 0.1, and a residual correlation of approx. -0.71 if both species had a prevalence of 0.5. These results were robust, as we obtained convergence with rhat values below 1.1 for most combinations of interaction strengths except for the extreme interaction coefficients of |I]=1.0 (Fig. A2). For these extreme cases, convergence was achieved for larger numbers of iterations, whereby the model parameters were stable across different numbers of iterations (Fig. A3). Also, prevalence levels were correctly predicted in all cases. All these results correspond to ideal sampling without detection error and very large sample sizes. Reduced sample sizes will increase type II errors but the general patterns reported above remain unchanged (Fig. A4).

JSDMs were not able to separate predator-prey relationships from competitive or mutualistic interactions, and assigned both negative and positive residual correlations to such asymmetric (+/-) interactions (Fig. 1). Here, residual correlations from JSDMs exhibited the same sensitivity to prevalence as co-occurrence patterns, meaning that the exact asymmetric interactions coefficients (+/-) that divided positive from negative residual correlations estimated by JSDMs depended on prevalence (Fig. 1g-k; Fig. A1).

Last, JSDMs had difficulties at depicting the underlying co-variation between species at increasingly coarser resolution of the data (Fig. 2a-f). In line with [START_REF] Araújo | The geographic scaling of biotic interactions[END_REF] co-occurrence patterns were highly scale dependent, which led to more insignificant residual correlation estimates in JSDMs (meaning that the parameters credible interval between the 5% and 95% quantiles of the posterior distribution included zero; Fig. 2 g-j). Thereby, chains mixed well and parameter convergence was well achieved. Generally, for competitive interactions, increasingly coarser data resolution led to lower estimates of absolute residual correlation than at the original resolution (at which the interaction outcome was being modelled). This scaling effect was much less pronounced for facilitative interactions (Figs. 23). Signals of interspecific interactions were lost most readily for more prevalent species (Fig. 3).

The probability of confounding negative and positive residual correlations seemed to increase with decreasing prevalence and with increasingly coarser resolution of the data (Fig. 3). The insignificant residual correlations were only partially explained by the reduced sample sizes when aggregating data.
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When repeating the data aggregation for larger sample sizes, the type II errors were slightly smaller but the general patterns reported above remained unchanged (Fig. A5).

Discussion

In this paper, we propose to systematically test the capacity of JSDMs to retrieve species interactions from co-occurrence patterns in the case of simple bi-partite interactions within a homogenous environment, and test whether this capacity was influenced by the resolution at which species were modelled. The key results are that (i) JSDMs reliably predict negative residual correlations for competitive interactions and positive residual correlations for mutualistic interactions. However, the magnitude of residual correlation does not directly relate to interaction strength because it is mostly driven by species prevalence. (ii)

Positive-negative interactions such as predator-prey relationships can be problematic for model interpretation because JSDMs cannot disentangle these from competitive and mutualistic interactions. (iii) At increasingly coarser spatial resolution of the data, both the signals of negative and positive interactions become indiscernible by JSDMs, but reassuringly the signals rarely were confounded. Overall, our results have important implications for the interpretation of JSDMs, and pinpoint important aspects that will need further model development. At the same time, we want to stress that these results were obtained under idealised conditions, and real-world applications will be complicated by even more factors. If JSDMs fail to detect interspecific interactions in very simple cases such as the one used here, there is no reason why they should work better at detecting interactions (occurring within local communities) in more complex real world applications.

First, we tested JSDMs' ability to detect negative and positive interactions from co-occurrence data. And indeed, JSDMs reliably detected competitive and mutualistic interactions in our simulated data, which is promising. However, interpretation of model residuals as interaction coefficients proved non-trivial.

Importantly, prevalence strongly affected the magnitude of residual correlations estimated by JSDMs. This implies that residual correlations from JSDMs do not directly relate to nor can be interpreted as interaction strength, and also they cannot be compared across different species (with different prevalence levels). In real-world applications, this may be further confounded by the species' environmental response, detection bias, and by (direct and indirect) interactions between multiple species, which should be further tested.

Second, we asked how JSDMs deal with competitive and mutualistic interactions from asymmetric interactions such as predator-prey relationships. Per definition, JSDMs will model symmetric correlations
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'This article is protected by copyright. All rights reserved.' and should not be able to detect asymmetric interactions. Nevertheless, it is important to understand whether and how residual correlations estimated from JSDMs differ between symmetric and asymmetric interactions especially when applying JSDMs to taxa from multiple trophic levels (such as birds and mammals). As has been discussed earlier [START_REF] Araújo | The geographic scaling of biotic interactions[END_REF]Rozenfeld 2014, Cazelles et al. 2015), asymmetric positive-negative interactions can result in co-occurrence patterns that could be either higher or lower than expected by chance, meaning in both positive and negative net associations between pairs of species.

Here, we showed that this also depends on interaction strength between species A and B and their prevalence. Specifically, predator-prey relationships are more likely to produce positive residual correlations when prevalence of both species is low. By contrast, when prevalence of at least one species is high, then predator-prey relationships are more likely to produce negative residual correlations in JSDMs. As a consequence, the problem that JSDMs are not able to tease apart predator-prey relationships from competitive or mutualistic interactions using co-occurrence data is exacerbated by the fact that asymmetric interactions could show up both as positive and negative residual correlations, which has been discussed previously but never been shown explicitly [START_REF] Cazelles | A theory for species co-occurrence in interaction networks[END_REF][START_REF] Morales-Castilla | Inferring biotic interactions from proxies[END_REF][START_REF] Warton | So Many Variables: Joint Modeling in Community Ecology[END_REF]. These results suggest that a useful next step would be to incorporate directional conditionality into future joint species distribution modelling, extending their capacity beyond pairwise symmetric correlations [START_REF] Pollock | Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM)[END_REF][START_REF] Warton | So Many Variables: Joint Modeling in Community Ecology[END_REF][START_REF] Hui | boral -Bayesian ordination and regression analysis of multivariate abundance data in R[END_REF]. Recent examples are beginning to consider more complex (direct and indirect) interactions for small datasets (e.g. [START_REF] Harris | Inferring species interactions from co-occurrence data with Markov networks[END_REF], with up to 20 species). [START_REF] Schliep | Joint species distribution modelling for spatio-temporal occurrence and ordinal abundance data[END_REF] recently introduced a method for incorporating temporal processes into JSDMs that allows inferring directionality from temporal co-abundance data. These advances would be extremely useful not only for distinguishing predator-prey relationships but also for detecting asymmetric interaction strengths between competing and facilitating species [START_REF] Kissling | Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents[END_REF][START_REF] Harris | Inferring species interactions from co-occurrence data with Markov networks[END_REF]. Still, it remains to be tested in how far co-occurrence data will allow estimation of asymmetric residual correlation or under which circumstances co-abundance data will be needed [START_REF] Cazelles | A theory for species co-occurrence in interaction networks[END_REF][START_REF] Gallien | Frequency and intensity of facilitation reveal opposing patterns along a stress gradient[END_REF]. Also additional information could be used to distinguish competitive and mutualistic interactions from predator-prey relationships, for example trait information may aid simple plausibility checks [START_REF] Morales-Castilla | Inferring biotic interactions from proxies[END_REF], and behavioural observations and manipulative experiments could help informing prior distributions [START_REF] Harris | Inferring species interactions from co-occurrence data with Markov networks[END_REF][START_REF] Staniczenko | Linking macroecology and community ecology: refining predictions of species distributions using biotic interaction networks[END_REF].

Last, we tested for scale dependence of JSDM estimates by analysing the co-occurrence data at increasingly coarse resolution while the interactions took place at the original, fine spatial resolution. We
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'This article is protected by copyright. All rights reserved.' found that with increasingly coarser resolution, both the signals of positive and negative interactions became indiscernible by JSDMs, whereby the signal of negative interactions was more sensitive to scale. This is in line with previous findings that co-occurrence patterns are highly scale-dependent [START_REF] Araújo | The geographic scaling of biotic interactions[END_REF] and also that the effects of local interspecific interactions vanish at coarser spatial scales [START_REF] Thuiller | From species distributions to meta-communities[END_REF]. Thus, JSDMs are unlikely to give any insight on the potential interactions between species if the scale of the data does not match the process scale. At best, they might give better and more reliable models and the residual correlation might shed light on missing environmental variables and historical factors. Also, the species lists from monitoring schemes or atlas data are often at comparably coarse resolution, for example for many animals, such that the signal of interspecific interactions and subscale environmental heterogeneity can get easily confounded (Zurell et al. 2016b). When we apply JSDMs to vegetation plots, the analysis of the residual correlation in respect to interspecific interactions might thus be more meaningful since the interactions between species, for instance for light competition, might here be at the right scale (e.g. a 10x10m plot). Empirical analyses testing whether the residual correlations from JSDMs are related to known interactions between species might thus be of particular interest. Furthermore, our results showed that less prevalent species are less sensitive to mismatches between process scale and data scale. At the same time, at increasingly coarse resolution negative and positive interactions were confounded easier. Thus, we recommend interpreting JSDMs cautiously when modelling rare species.

We deliberately chose to use the steady-state point process model from [START_REF] Araújo | The geographic scaling of biotic interactions[END_REF] to simulate spatial co-occurrence patterns. In contrast to spatially explicit population models [START_REF] Kot | Elements of Mathematical Ecology[END_REF][START_REF] Travis | The interplay of positive and negative species interactions across an environmental gradient: insights from an individual-based simulation model[END_REF], this model does not explicitly simulate the spatial dynamics of interacting species, but directly generates non-random co-occurrence patterns that represent the spatial effects of interspecific interactions at equilibrium. The point-process model characterises the consequences rather than the mechanisms of interspecific interactions. Similarly, JSDMs are phenomenological and thus model the consequences of interspecific interactions on species co-occurrence (while accounting for environment).

Therefore, we expect this set-up to corroborate rather than discredit JSDMs. This was mostly the case, except for some important limitations of JSDMs when trained on co-occurrence data. Although this is a basic test, such proof-of-concept is still worthwhile because if a model fails in simple virtual examples, chances are that it will also fail in the real world [START_REF] Zurell | The virtual ecologist approach: simulating data and observers[END_REF]). In the future, JSDMs and their extensions (e.g. to incorporate directional conditionality) should be tested using more complex and spatially explicit population models.

In summary, our simulation study indicates that JSDMs might be reliable in inferring simple symmetric species interactions if the species are modelled at the resolution of the interactions. However, even in our idealised and error-free data, JSDMs could easily confound predator-prey relationships with either competitive or mutualistic interactions, they do not give an estimate of interactions strengths, they are not easily comparable across species, they are affected by prevalence and by scale. Thus, we should be very cautious when interpreting JSDM results as interactions [START_REF] Clark | Competition-interaction landscapes for the joint response of forests to climate change[END_REF][START_REF] Pollock | Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM)[END_REF].

Nevertheless, they have the ability of enhancing our analyses and allow us to form hypotheses about potential interspecific interactions when used cautiously [START_REF] Ovaskainen | Modeling species co-occurrence by multivariate logistic regression generates new hypotheses on fungal interactions[END_REF]. Our results provide a first test of potentially important or confounding factors in JSDM analyses. In the future, more efforts are needed to test JSDMs in more complicated settings, for example to test their ability to disentangle environmental response and residual correlation for multiple interacting species, for cases when species interact directly and indirectly, and for other confounding factors such as detection bias and missing environmental covariates. Thereby, further theoretical tests under controlled conditions could be useful, but we also emphasise the need for more empirical tests, for example comparing JSDM estimates against known interactions (e.g. from experiments). Hence, JSDMs constitute an important step forward for testing hypotheses of how interspecific interactions affect species distributions. Nevertheless, there are important limits to their capability of detecting interspecific interactions, for example for trophic and indirect interactions, highlighting the need for further model improvements in this respect.
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