$\mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ Functions with Fast Points

Valentin SUDER
(Université Rouen Normandie, France)

The 14th International Conference on Finite Fields and their Applications
Fq14
Vancouver, June 72019

Introduction
Prerequisites
Differentiation
Context
Fast Points
Fast/Faster Points for Boolean Functions Fast Points for Vectorial Boolean Functions
Motivation
Understanding of an APN function with Fast Points
Switching construction
Fast Points point of view
Construction
Some Cubic APN functions
Experimentation
Conclusion

Outline

Introduction
Prerequisites
Differentiation
Context
Fast Points
Fast/Faster Points for Boolean Functions
Fast Points for Vectorial Boolean Functions
Motivation
Understanding of an APN function with Fast Points
Switching construction
Fast Points point of view

Construction

Some Cubic APN functions
Experimentation
Conclusion

Notations

Finite Field: $\mathbb{F}_{2^{n}}$
Vector Space: \mathbb{F}_{2}^{n}
Basis: $\left\langle\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right\rangle$
$\mathbb{F}_{2^{n}} \ni \mu=\mu_{1} \beta_{1}+\mu_{2} \beta_{2}+\cdots+\mu_{n} \beta_{n}=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right) \in \mathbb{F}_{2}^{n}$
$\begin{aligned} F: \quad \mathbb{F}_{2^{n}} & \rightarrow \mathbb{F}_{2^{n}} \\ x & \mapsto \\ & \\ & =\sum_{i=0}^{2^{n}-1} c_{i} x^{i}\end{aligned}$
$\operatorname{Tr}(x)=\sum_{i=0}^{n-1} x^{2^{i}}$

$$
F: \begin{array}{cc}
\mathbb{F}_{2}^{n} & \rightarrow \mathbb{F}_{2}^{n} \\
x=\left(x_{1}, \ldots, x_{n}\right) & \mapsto
\end{array}\left(f_{1}(x), \ldots, f_{n}(x)\right)
$$

$$
f_{i}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{Tr}\left(\beta_{i}^{*} F(x)\right)
$$

Dual Basis: $\left\langle\beta_{1}^{*}, \ldots, \beta_{n}^{*}\right\rangle$ if $\operatorname{Tr}\left(\beta_{i} \beta_{j}^{*}\right)=\delta_{i, j}$
Algebraic Degree:

$$
\operatorname{deg}(F)=\max \left\{\operatorname{hw}(i) \mid c_{i} \neq 0\right\} \quad \operatorname{deg}(F)=\max \left\{\operatorname{deg}\left(f_{i}\right)\right\}
$$

Differentiation

Let $F, G: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}, \quad \alpha, \alpha^{\prime} \in \mathbb{F}_{2^{n}}^{*}, \quad V=\left\langle\beta_{1}, \ldots, \beta_{k}\right\rangle$

Discrete Derivatives

$$
\begin{aligned}
\Delta_{\alpha} F: & \mathbb{F}_{2^{n}} \\
& \rightarrow \mathbb{F}_{2^{n}} \\
& \mapsto F(x)+F(x+\alpha)
\end{aligned}
$$

$$
\Delta_{V} F(x)=\Delta_{\beta_{1}, \ldots, \beta_{k}} F(x)=\Delta_{\beta_{1}} \Delta_{\ldots} \Delta_{\beta_{k}} F(x)=\sum_{v \in V} F(x+v)
$$

$$
\begin{aligned}
& \Delta_{\alpha} F(x)+\Delta_{\alpha^{\prime}} F(x)=\Delta_{\alpha+\alpha^{\prime}} F(x+\alpha) \\
& \Delta_{\alpha}(F+G)(x)=\Delta_{\alpha} F(x)+\Delta_{\alpha} G(x)
\end{aligned}
$$

$$
\operatorname{deg}\left(\Delta_{\alpha} F\right)<\operatorname{deg}(F)
$$

Differential Criteria

$F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$

$$
\begin{gathered}
\begin{array}{c}
\Delta_{\alpha} F: \\
\\
\hline \text { Differential Uniformity }[\text { Nyberg 94] } \\
x
\end{array} \rightarrow \mathbb{F}_{2^{n}} \\
\delta_{F}=\max _{\alpha \in \mathbb{P}_{2^{2}, \beta \in \mathbb{F}_{2^{n}}}} \#\left\{x \mid \Delta_{\alpha} F(x)=\beta\right\}
\end{gathered}
$$

Whenever $\delta_{F}=2$ (minimal value), the function F is said to be APN ('Almost Perfect Nonlinear').

Proposition: $\quad F$ is APN if and only if
$\Delta_{\alpha, \alpha^{\prime}} F(x)=\Delta_{\alpha} F(x)+\Delta_{\alpha} F\left(x+\alpha^{\prime}\right) \neq 0$ for all $\alpha \neq \alpha^{\prime} \in \mathbb{F}_{2^{n}}^{*}, x \in \mathbb{F}_{2^{n}}$.

Context

APN functions are (very) useful but (very) rare!

Useful: Cryptography, Coding Theory, Projective Geometry, etc. . .

Rare (Up to CCZ-equivalence): Mostly monomials or quadratics, (very) few are bijectives (n even, only one for $n=6$)

CCZ-Equivalence (preserves the differential uniformity)
$F \sim_{C C Z} G$ if and only if there is \mathcal{A} an affine permutation such that

$$
\left\{(u, F(u)) \mid u \in \mathbb{F}_{2^{n}}\right\}=\left\{\mathcal{A}(u, G(u)) \mid u \in \mathbb{F}_{2^{n}}\right\}
$$

Challenges

Big APN Problem:

Find a bijective APN function for $n>6$ even.
\square K. A. Browning, J. F. Dillon, M. T. McQuistan and A. J. Wolfe, An APN Permutation in Dimension Six, Fq9 (Selected Papers), Contemporary Mathematics, 2010.

Plan of action:

- Construct new (CCZ-inequivalent) APN functions.
- Check if they are CCZ-equivalent to a bijection.A. Canteaut and L. Perrin,

On CCZ-Equivalence, Extended-Affine Equivalence, and Function Twisting, Finite Fields and their Applications 26, March 2019.

Outline

Introduction
 Prerequisites
 Differentiation
 Context
 Fast Points
 Fast/Faster Points for Boolean Functions Fast Points for Vectorial Boolean Functions Motivation
 Understanding of an APN function with Fast Points Switching construction
 Fast Points point of view
 Construction
 Some Cubic APN functions
 Experimentation

Definitions

Fast Point

A Fast Point for a Boolean function $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ is a direction $\alpha \in \mathbb{F}_{2}^{n} \backslash\{0\}$ such that

$$
\operatorname{deg}\left(\Delta_{\alpha} f(x)\right)<\operatorname{deg}(f)-1
$$

显
M. Duan and X. Lai,

Higher order differential cryptanalysis framework and its applications, ICIST, 2011.

Faster Point

A Fast Point of order ℓ for a Boolean function $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ is a direction $\alpha \in \mathbb{F}_{2}^{n} \backslash\{0\}$ such that

$$
\operatorname{deg}\left(\Delta_{\alpha} f(x)\right)=\operatorname{deg}(f)-\ell
$$

T
A. Sălăgean and F.Özbudak, Counting Boolean Functions with Faster Points, WCC, 2019.

Higher order differential cryptanalyses

L. R. Knudsen,

Truncated and Higher-order Differentials, Fast Software Encryption, 1994.M. Vielhaber,

Breaking one.fivium by aida an algebraic iv differential attack, https://eprint.iacr.org/2007/413, 2007.I. Dinur and A. Shamir, Cube attacks on tweakable black box polynomials, EUROCRYPT, 2009.

Definition

Fast Point

A Fast Point for a Vectorial Boolean function $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ is a direction $\alpha \in \mathbb{F}_{2}^{n} \backslash\{0\}$ such that

$$
\operatorname{deg}\left(\Delta_{\alpha} F(x)\right)<\operatorname{deg}(F)-1
$$

Set of Fast Points

$$
\mathbb{F P}_{F}=\left\{\alpha \in \mathbb{F}_{2}^{n} \mid \operatorname{deg}\left(\Delta_{\alpha} F\right)<\operatorname{deg}(F)-1\right\} \cup\{0\}
$$

Proposition:
 $\mathbb{F P}_{F}$ is a (proper) subspace of \mathbb{F}_{2}^{n}.

(as for Boolean functions)

Characterization

Theorem

Any (nonzero) $F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ such that $\mathbb{F}_{\mathcal{F}} \neq\{0\}$ can be written as

$$
F(x)=G(x)+H(x)
$$

where $G, H: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ such that:

1. $\operatorname{deg}(H)<\operatorname{deg}(G)=\operatorname{deg}(F)$
2. $\operatorname{deg}(H)=\min \left\{\operatorname{deg}\left(\Delta_{\alpha} F\right) \mid \alpha \in \mathbb{F}_{2^{n}}\right\}+1$
3. $\mathbb{F} \mathbb{P}_{G}=\mathbb{F P}_{F} \quad$ and $\quad \mathbb{F} \mathbb{P}_{H} \cap \mathbb{F}_{F}=\{0\}$
4. $\Delta_{V} G(x)=0, \forall v \in V$ for some $\{0\} \subset V \subseteq \mathbb{F P}_{F}$

Proposition: $\quad \operatorname{deg}(F) \leq n-\operatorname{dim}\left(\mathbb{F P}_{F}\right)$
(as for Boolean functions)

An example

Let's build a function $F: \mathbb{F}_{2^{8}} \rightarrow \mathbb{F}_{2^{8}}$ with $\operatorname{deg}(F)=4$ and with some affine and quadratic derivatives.
Let $\mathbb{F}_{2^{8}}^{*}=\langle z\rangle$,

$$
F(x)=\Delta_{1, z, z^{2}}\left(\left(x^{255}+\left(x+z^{3}\right)^{255}\right)+x^{63}\right)+x^{3}
$$

Now, $\alpha \neq 0$,

$$
\operatorname{deg}\left(\Delta_{\alpha} F\right)=\left\{\begin{array}{lr}
1 & \text { when } \alpha \in\left\langle 1, z, z^{2}\right\rangle \\
2 & \text { when } \alpha \in z^{3}+\left\langle 1, z, z^{2}\right\rangle \\
3 & \text { otherwise }
\end{array}\right.
$$

But Why?

Quadratic APN functions are still "manageable".

What if we had an APN function for which most (but not all) of the derivatives were affine?

Example of an APN function with Fast Points

Y. Edel and A. Pott,

A New Almost Perfect Nonlinear Function Which is not Quadratic,
Adv. in Math. of Comm. 3(1), 2009.

Theorem [Edel-Pott 09]

Let $\mathbb{F}_{2^{6}}^{*}=\langle z\rangle$, the $\mathbb{F}_{2^{6}} \rightarrow \mathbb{F}_{2^{6}}$ function

$$
\begin{aligned}
E(x)= & x^{3}+z^{17}\left(x^{17}+x^{18}+x^{20}+x^{24}\right) \\
& +z^{14} \operatorname{Tr}\left(z^{52} x^{3}+z^{6} x^{5}+z^{19} x^{7}+z^{28} x^{11}+z^{2} x^{13}+z^{2} x^{9}+x^{21}\right)
\end{aligned}
$$

is APN, is cubic and CCZ-inequivalent to a quadratic.
$\Delta_{V} E(x)$ is affine for any $v \in\left\{\begin{array}{llllll}1+ & z^{2} & & & \\ & z^{2}+ & z^{3}+ & & z^{5}, \\ 1+ & z^{2}+ & & z^{4} & , \\ 1+ & & z^{3}+ & z^{4} & z^{5}, \\ 1+ & & z^{3}+ & z^{4}+ & z^{5}, \\ & z^{2}+ & z^{3}+ & z^{4}+ & z^{5}\end{array}\right\}$

Outline

Introduction
Prerequisites
Differentiation
Context
Fast Points
Fast/Faster Points for Boolean Functions
Fast Points for Vectorial Boolean Functions
Motivation
Understanding of an APN function with Fast Points
Switching construction
Fast Points point of view
Construction
Some Cubic APN functions
Experimentation
Conclusion

The Switching construction

$E(x)=x^{3}+z^{17}\left(x^{17}+x^{18}+x^{20}+x^{24}\right)+z^{14} \operatorname{Tr}\left(z^{52} x^{3}+z^{6} x^{5}+z^{19} x^{7}+z^{28} x^{11}+z^{2} x^{13}+z^{2} x^{9}+x^{21}\right)$

Idea: $F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$, choose $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$ and $u \in \mathbb{F}_{2^{n}}^{*}$ such that $F(x)+u f(x)$ has a desirable property.

In our case: F is APN, we want
$\Delta_{\alpha, \alpha^{\prime}} f(x)=0$, for any $\alpha, \alpha^{\prime}, x \in \mathbb{F}_{2^{n}}$ such that $\Delta_{\alpha, \alpha^{\prime}} F(x)=u$.
Therefore $F(x)+u f(x)$ is APN.
(e.g. $\left.x^{3}+\operatorname{Tr}\left(x^{9}\right)\right)$

Now with Fast Points

$E(x)=x^{3}+z^{17}\left(x^{17}+x^{18}+x^{20}+x^{24}\right)+z^{14} \operatorname{Tr}\left(z^{52} x^{3}+z^{6} x^{5}+z^{19} x^{7}+z^{28} x^{11}+z^{2} x^{13}+z^{2} x^{9}+x^{21}\right)$

$$
\Delta_{v} E(x) \text { is affine for any } v \in V=\left\{\begin{array}{lllll}
1+ & z^{2} & & & z^{5^{5}} \\
& z^{2}+ & z^{3}+ & & z^{4} \\
z^{5}, \\
1+ & z^{2}+ & & z^{4} & \\
1+ & & z^{3}+ & z^{5} \\
1+ & z^{2}+ & z^{3}+ & z^{4}+ & z^{5^{5}} \\
& & z^{4}+ & z^{5^{5}}
\end{array}\right\}
$$

We can thus write

$$
E(x)=C(x)+Q(x) \quad\left(=\Delta_{V} G(x)+Q(x)\right),
$$

where $\operatorname{deg}(C)=3$ and $\operatorname{deg}(Q)=2$.
Remark 1:
Q is not APN.
Remark 2: $\quad \Delta_{v} Q(x)$ for $v \in V$ are not 2-to-1 (but others are).

Outline

Introduction
Prerequisites
Differentiation
Context
Fast Points
Fast/Faster Points for Boolean Functions
Fast Points for Vectorial Boolean Functions
Motivation
Understanding of an APN function with Fast Points
Switching construction
Fast Points point of view
Construction
Some Cubic APN functions
Experimentation
Conclusion

With the same idea
$F(x)=C(x)+Q(x) \quad\left(=\Delta_{V} G(x)+Q(x)\right)$

Let $Q: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ be a quadratic APN.
Let $\mathbb{F}_{2^{n}}=V \oplus W$

$$
\operatorname{deg}(C)=3
$$

$F(x)=C(x)+Q(x)$ is APN if and only if for all $\omega \neq \omega^{\prime} \in W \backslash\{0\}$ and for all $x \in \mathbb{F}_{2^{n}}$

$$
\Delta_{\omega, \omega^{\prime}} C(x) \notin\left\{\Delta_{\omega+v, \omega^{\prime}+v^{\prime}} Q \mid v, v^{\prime} \in V\right\}
$$

Constructing the system

$C(x)=\Delta_{V} G(x)$ and $\operatorname{dim}(V)=n-3$ and $\mathbb{F}_{2^{n}}=V \oplus W$

For all $\omega \neq \omega^{\prime} \in W \backslash\{0\}$

$$
\Delta_{\omega, \omega^{\prime}} C(x)=\gamma \operatorname{Tr}(\mu x)+c_{\omega, \omega^{\prime}},
$$

where $\gamma=\Delta_{W} C(x)$ and $\mu=\omega^{\prime \prime *}$ when $W=\left\langle\omega, \omega^{\prime}, \omega^{\prime \prime}\right\rangle$.
$F(x)=C(x)+Q(x)$ is APN if and only if for all $\omega \neq \omega^{\prime} \in W \backslash\{0\}$ and for all $x \in \mathbb{F}_{2^{n}}$

$$
c_{\omega, \omega^{\prime}}, c_{\omega, \omega^{\prime}}+\gamma \notin\left\{\Delta_{\omega+v, \omega^{\prime}+v^{\prime}} Q \mid v, v^{\prime} \in V\right\}
$$

Algorithm

- Choose $Q: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ a quadratic APN
- Choose $V \oplus W=\mathbb{F}_{2^{n}}$ with $\operatorname{dim}(V)=n-3$
- For all (7 possibilities) $\omega \neq \omega^{\prime} \in W \backslash\{0\}$, compute the sets

$$
S_{\omega, \omega^{\prime}}=\mathbb{F}_{2^{n}} \backslash\left\{\Delta_{\omega+v, \omega^{\prime}+v^{\prime}} Q \mid v, v^{\prime} \in V\right\}
$$

- Find (actually only 3 of them, linearly independent)

$$
c_{\omega, \omega^{\prime}} \in S_{\omega, \omega^{\prime}}
$$

so that there is $\gamma \in \mathbb{F}_{2^{n}}^{*}$ such that

$$
c_{\omega, \omega^{\prime}}+\gamma \in S_{\omega, \omega^{\prime}}
$$

- Recover $C: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ from
Antiderivative Functions

$$
\begin{gathered}
\Delta_{\omega, \omega^{\prime}} C(x)=\gamma \operatorname{Tr}(\mu x)+c_{\omega, \omega^{\prime}} \\
\Rightarrow \quad F(x)=C(x)+Q(x) \text { is a cubic APN. }
\end{gathered}
$$

$$
\text { over } \mathbb{F}_{2^{n}},
$$

$$
\text { DCC }(82), 2017
$$

Observation after some Computation

$n=6$

- Not all the quadratic APN functions can be extended to a cubic one (by this method)

Observation after some Computation

$n=6$

- Not all the quadratic APN functions can be extended to a cubic one (by this method)
- All the cubic APN functions found were CCZ-inequivalent to a quadratic, but...

Observation after some Computation

$n=6$

- Not all the quadratic APN functions can be extended to a cubic one (by this method)
- All the cubic APN functions found were CCZ-inequivalent to a quadratic, but...
- ... There were also all CCZ-equivalent to the Edel-Pott function!

Outline

Introduction
Prerequisites
Differentiation
Context
Fast Points
Fast/Faster Points for Boolean Functions
Fast Points for Vectorial Boolean Functions
Motivation
Understanding of an APN function with Fast Points
Switching construction
Fast Points point of view
Construction
Some Cubic APN functions
Experimentation
Conclusion

Closing Remarks

- What's the clever choice for $V \oplus W=\mathbb{F}_{2^{n}}$?
- $\operatorname{deg}(C)=3$ and $\operatorname{dim}(W)=4$?
$-\operatorname{deg}(C)=4$ (and still $\operatorname{deg}(H)=2) ?$

