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Introduction Prerequisites

Notations
Finite Field: F2n Vector Space: Fn

2

Basis: 〈β1, β2, . . . , βn〉
F2n 3 µ = µ1β1 + µ2β2 + · · ·+ µnβn = (µ1, µ2, . . . , µn) ∈ Fn

2

F : F2n → F2n

x 7→ F (x)

=
∑2n−1

i=0 cix i

Tr(x) =
n−1∑
i=0

x2i

F : Fn
2 → Fn

2
x = (x1, . . . , xn) 7→ (f1(x), . . . , fn(x))

fi(x1, . . . , xn) = Tr(β∗i F (x))

Dual Basis: 〈β∗1 , . . . , β∗n〉 if Tr(βiβ
∗
j ) = δi ,j

Algebraic Degree:

deg(F ) = max {hw(i) | ci 6= 0} deg(F ) = max {deg(fi)} 1 / 19



Introduction Differentiation

Differentiation
Let F ,G : F2n → F2n , α, α′ ∈ F∗2n , V = 〈β1, . . . , βk〉

Discrete Derivatives
∆αF : F2n → F2n

x 7→ F (x) + F (x + α)

∆VF (x) = ∆β1,...,βkF (x) = ∆β1∆...∆βkF (x) =
∑
v∈V

F (x + v)

I ∆αF (x) + ∆α′F (x) = ∆α+α′F (x + α)

I ∆α(F + G)(x) = ∆αF (x) + ∆αG(x)

deg(∆αF ) < deg(F )
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Introduction Differentiation

Differential Criteria
F : F2n → F2n

∆αF : F2n → F2n

x 7→ F (x) + F (x + α)

Differential Uniformity [Nyberg 94]

δF = max
α∈F∗2n ,β∈F2n

# {x | ∆αF (x) = β}

Whenever δF = 2 (minimal value), the function F is said to be
APN (’Almost Perfect Nonlinear’).

Proposition: F is APN if and only if

∆α,α′F (x) = ∆αF (x)+∆αF (x+α′) 6= 0 for all α 6= α′ ∈ F∗2n , x ∈ F2n .
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Introduction Context

Context

APN functions are (very) useful but (very) rare!

Useful: Cryptography, Coding Theory, Projective Geometry, etc. . .

Rare (Up to CCZ-equivalence): Mostly monomials or quadratics,
(very) few are bijectives (n even, only one for n = 6)

CCZ-Equivalence (preserves the differential uniformity)

F ∼CCZ G if and only if there is A an affine permutation such that

{(u,F (u)) | u ∈ F2n} = {A(u,G(u)) | u ∈ F2n}
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Introduction Context

Challenges

Big APN Problem:

Find a bijective APN function for n > 6 even.

K. A. Browning, J. F. Dillon, M. T. McQuistan and A. J. Wolfe,
An APN Permutation in Dimension Six,
Fq9 (Selected Papers), Contemporary Mathematics, 2010.

Plan of action:

I Construct new (CCZ-inequivalent) APN functions.
I Check if they are CCZ-equivalent to a bijection.

A. Canteaut and L. Perrin,
On CCZ-Equivalence, Extended-Affine Equivalence, and Function Twisting,
Finite Fields and their Applications 26, March 2019.
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Fast Points Fast/Faster Points for Boolean Functions

Definitions
Fast Point
A Fast Point for a Boolean function f : Fn

2 → F2 is a direction
α ∈ Fn

2\{0} such that

deg(∆αf (x)) < deg(f )− 1.

M. Duan and X. Lai,
Higher order differential cryptanalysis framework and its applications,
ICIST, 2011.

Faster Point
A Fast Point of order ` for a Boolean function f : Fn

2 → F2 is a
direction α ∈ Fn

2\{0} such that

deg(∆αf (x)) = deg(f )− `.

A. Sălăgean and F.Özbudak,
Counting Boolean Functions with Faster Points,
WCC, 2019.
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Fast Points Fast/Faster Points for Boolean Functions

Higher order differential cryptanalyses

L. R. Knudsen,
Truncated and Higher-order Differentials,
Fast Software Encryption, 1994.

M. Vielhaber,
Breaking one.fivium by aida an algebraic iv differential attack,
https://eprint.iacr.org/2007/413, 2007.

I. Dinur and A. Shamir,
Cube attacks on tweakable black box polynomials,
EUROCRYPT, 2009.
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Fast Points Fast Points for Vectorial Boolean Functions

Definition

Fast Point
A Fast Point for a Vectorial Boolean function F : Fn

2 → Fn
2 is a

direction α ∈ Fn
2\{0} such that

deg(∆αF (x)) < deg(F )− 1.

Set of Fast Points

FPF = {α ∈ Fn
2 | deg(∆αF ) < deg(F )− 1} ∪ {0}

Proposition: FPF is a (proper) subspace of Fn
2.

(as for Boolean functions)
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Fast Points Fast Points for Vectorial Boolean Functions

Characterization

Theorem
Any (nonzero) F : F2n → F2n such that FPF 6= {0} can be written as

F (x) = G(x) + H(x)

where G ,H : F2n → F2n such that:
1. deg(H) < deg(G) = deg(F )

2. deg(H) = min {deg(∆αF ) | α ∈ F∗2n}+ 1
3. FPG = FPF and FPH ∩ FPF = {0}
4. ∆vG(x) = 0, ∀v ∈ V for some {0} ⊂ V ⊆ FPF

Proposition: deg(F ) ≤ n − dim(FPF )
(as for Boolean functions)
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Fast Points Fast Points for Vectorial Boolean Functions

An example

Let’s build a function F : F28 → F28 with deg(F ) = 4 and with
some affine and quadratic derivatives.
Let F∗28 = 〈z〉,

F (x) = ∆1,z,z2(
(
x255 + (x + z3)255

)
+ x63) + x3

Now, α 6= 0,

deg(∆αF ) =


1 when α ∈ 〈1, z , z2〉,
2 when α ∈ z3 + 〈1, z , z2〉
3 otherwise.
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Fast Points Motivation

But Why?

Quadratic APN functions are still “manageable”.

What if we had an APN function for which most (but not all) of
the derivatives were affine?
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Fast Points Motivation

Example of an APN function with Fast Points
Y. Edel and A. Pott,
A New Almost Perfect Nonlinear Function Which is not Quadratic,
Adv. in Math. of Comm. 3(1), 2009.

Theorem [Edel-Pott 09]
Let F∗26 = 〈z〉, the F26 → F26 function

E (x) = x3 + z17(x17 + x18 + x20 + x24)

+z14Tr(z52x3+z6x5+z19x7+z28x11+z2x13+z2x9+x21)

is APN, is cubic and CCZ-inequivalent to a quadratic.

∆vE (x) is affine for any v ∈


1+ z2 ,

z2+ z3+ z5,
z4 ,

1+ z2+ z4 ,
1+ z3+ z5,
1+ z3+ z4+ z5,

z2+ z3+ z4+ z5


12 / 19
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Understanding of the Edel-Pott cubic APN Switching construction

The Switching construction
E(x) = x3 +z17(x17 +x18 +x20 +x24)+z14

Tr(z52x3 +z6x5 +z19x7 +z28x11 +z2x13 +z2x9 +x21)

Idea: F : F2n → F2n , choose f : F2n → F2 and u ∈ F∗2n such that

F (x) + uf (x) has a desirable property .

In our case: F is APN, we want

∆α,α′f (x) = 0, for any α, α′, x ∈ F2n such that ∆α,α′F (x) = u.

Therefore F (x) + uf (x) is APN.

(e.g. x3 + Tr(x9))
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Understanding of the Edel-Pott cubic APN Fast Points point of view

Now with Fast Points
E(x) = x3 +z17(x17 +x18 +x20 +x24)+z14

Tr(z52x3 +z6x5 +z19x7 +z28x11 +z2x13 +z2x9 +x21)

∆vE (x) is affine for any v ∈ V =


1+ z2 ,

z2+ z3+ z5,
z4 ,

1+ z2+ z4 ,
1+ z3+ z5,
1+ z3+ z4+ z5,

z2+ z3+ z4+ z5


We can thus write

E (x) = C(x) + Q(x) (= ∆VG(x) + Q(x)) ,

where deg(C) = 3 and deg(Q) = 2.

Remark 1: Q is not APN.
Remark 2: ∆vQ(x) for v ∈ V are not 2-to-1 (but others are).
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Construction Some Cubic APN functions

With the same idea
F (x) = C(x) + Q(x) (= ∆V G(x) + Q(x))

Let Q : F2n → F2n be a quadratic APN.
Let F2n = V ⊕W

deg(C) = 3

F (x) = C(x) + Q(x) is APN if and only if
for all ω 6= ω′ ∈W \{0} and for all x ∈ F2n

∆ω,ω′C(x) 6∈
{

∆ω+v ,ω′+v ′Q | v , v ′ ∈ V
}
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Construction Some Cubic APN functions

Constructing the system
C(x) = ∆V G(x) and dim(V ) = n − 3 and F2n = V ⊕W

For all ω 6= ω′ ∈W \{0}

∆ω,ω′C(x) = γTr(µx) + cω,ω′ ,

where γ = ∆WC(x) and µ = ω′′∗ when W = 〈ω, ω′, ω′′〉.

F (x) = C(x) + Q(x) is APN if and only if
for all ω 6= ω′ ∈W \{0} and for all x ∈ F2n

cω,ω′ , cω,ω′ + γ 6∈
{

∆ω+v ,ω′+v ′Q | v , v ′ ∈ V
}
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Construction Experimentation

Algorithm

I Choose Q : F2n → F2n a quadratic APN
I Choose V ⊕W = F2n with dim(V ) = n − 3
I For all (7 possibilities) ω 6= ω′ ∈W \{0}, compute the sets

Sω,ω′ = F2n\
{

∆ω+v ,ω′+v ′Q | v , v ′ ∈ V
}

I Find (actually only 3 of them, linearly independent)

cω,ω′ ∈ Sω,ω′

so that there is γ ∈ F∗2n such that
cω,ω′ + γ ∈ Sω,ω′

I Recover C : F2n → F2n from
∆ω,ω′C(x) = γTr(µx) + cω,ω′

⇒ F (x) = C(x) + Q(x) is a cubic APN.
17 / 19
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Construction Experimentation

Observation after some Computation
n = 6

I Not all the quadratic APN functions can be extended to a
cubic one (by this method)

I All the cubic APN functions found were CCZ-inequivalent to
a quadratic, but. . .

I . . . There were also all CCZ-equivalent to the Edel-Pott
function!
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Conclusion

Closing Remarks

I What’s the clever choice for V ⊕W = F2n?

I deg(C) = 3 and dim(W ) = 4?

I deg(C) = 4 (and still deg(H) = 2)?
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