$\mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ Functions with Fast Points

Valentin SUDER

(Université Rouen Normandie, France)

The 14th International Conference on Finite Fields and their Applications Fq14 Vancouver, June 7 2019

Introduction

Prerequisites Differentiation Context

Fast Points

Fast/Faster Points for Boolean Functions Fast Points for **Vectorial** Boolean Functions Motivation

Understanding of an APN function with Fast Points

Switching construction Fast Points point of view

Construction

Some Cubic APN functions Experimentation

Outline

Introduction

Prerequisites Differentiation Context

Fast Points

Fast/Faster Points for Boolean Functions Fast Points for **Vectorial** Boolean Functions Motivation

Understanding of an APN function with Fast Points

Switching construction Fast Points point of view

Construction

Some Cubic APN functions Experimentation

Notations

Finite Field: \mathbb{F}_{2^n}

Vector Space: \mathbb{F}_2^n

Basis: $\langle \beta_1, \beta_2, \ldots, \beta_n \rangle$ $\mathbb{F}_{2^n} \ni \mu = \mu_1 \beta_1 + \mu_2 \beta_2 + \dots + \mu_n \beta_n = (\mu_1, \mu_2, \dots, \mu_n) \in \mathbb{F}_2^n$ $F: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n} \\ x \mapsto F(x) \\ = \sum_{i=0}^{2^n-1} c_i x^i \end{cases} F: \mathbb{F}_2^n \to \mathbb{F}_2^n \\ x = (x_1, \dots, x_n) \mapsto (f_1(x), \dots, f_n(x))$ $f_i(x_1,\ldots,x_n) = \operatorname{Tr}(\beta_i^*F(x))$ $\operatorname{Tr}(x) = \sum_{i=2}^{n-1} x^{2^i}$ **Dual Basis**: $\langle \beta_1^*, \ldots, \beta_n^* \rangle$ if $\operatorname{Tr}(\beta_i \beta_i^*) = \delta_{i,j}$ Algebraic Degree: $\deg(F) = \max \{ \operatorname{hw}(i) \mid c_i \neq 0 \} \qquad \deg(F) = \max \{ \deg(f_i) \}$ 1/19

Differentiation

 $\mathsf{Let}\; \pmb{F}, \pmb{G} \, : \, \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}, \qquad \pmb{\alpha}, \pmb{\alpha}' \in \mathbb{F}_{2^n}^*, \qquad \pmb{V} = \langle \beta_1, \dots, \beta_k \rangle$

Discrete Derivatives

$$\Delta_{\alpha}F : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_{2^n}$$

 $x \mapsto F(x) + F(x + \alpha)$

$$\Delta_{\mathbf{V}}F(x) = \Delta_{\beta_1,\dots,\beta_k}F(x) = \Delta_{\beta_1}\Delta_{\dots}\Delta_{\beta_k}F(x) = \sum_{\mathbf{v}\in V}F(x+\mathbf{v})$$

$$\Delta_{\alpha}F(x) + \Delta_{\alpha'}F(x) = \Delta_{\alpha+\alpha'}F(x+\alpha)$$
$$\Delta_{\alpha}(F+G)(x) = \Delta_{\alpha}F(x) + \Delta_{\alpha}G(x)$$

 $\mathsf{deg}(\Delta_{\alpha} F) < \mathsf{deg}(F)$

Differential Criteria

 $F \ : \ \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$

Whenever $\delta_F = 2$ (minimal value), the function F is said to be **APN** ('Almost Perfect Nonlinear').

Proposition: *F* is APN if and only if

 $\Delta_{\alpha,\alpha'}F(x) = \Delta_{\alpha}F(x) + \Delta_{\alpha}F(x+\alpha') \neq 0 \text{ for all } \alpha \neq \alpha' \in \mathbb{F}_{2^n}^*, \ x \in \mathbb{F}_{2^n}.$

Context

APN functions are (very) useful but (very) rare!

Useful: Cryptography, Coding Theory, Projective Geometry, etc...

Rare (Up to CCZ-equivalence): Mostly monomials or quadratics, (very) few are bijectives (*n* even, only one for n = 6)

Challenges

Big APN Problem:

Find a bijective APN function for n > 6 even.

K. A. Browning, J. F. Dillon, M. T. McQuistan and A. J. Wolfe, An APN Permutation in Dimension Six, Fq9 (Selected Papers), Contemporary Mathematics, 2010.

Plan of action:

- Construct new (CCZ-inequivalent) APN functions.
- Check if they are **CCZ-equivalent** to a bijection.
 - A. Canteaut and L. Perrin,

On CCZ-Equivalence, Extended-Affine Equivalence, and Function Twisting, Finite Fields and their Applications 26, March 2019.

Outline

Introduction

Prerequisites Differentiation Context

Fast Points

Fast/Faster Points for Boolean Functions Fast Points for **Vectorial** Boolean Functions Motivation

Understanding of an APN function with Fast Points

Fast Points point of view

Construction

Some Cubic APN functions Experimentation

Definitions

Fast Point

A Fast Point for a Boolean function $f : \mathbb{F}_2^n \to \mathbb{F}_2$ is a direction $\alpha \in \mathbb{F}_2^n \setminus \{0\}$ such that

$$\deg(\Delta_{\alpha}f(x)) < \deg(f) - \mathbf{1}.$$

M. Duan and X. Lai, Higher order differential cryptanalysis framework and its applications, ICIST, 2011.

Faster Point

A Fast Point of order ℓ for a Boolean function $f : \mathbb{F}_2^n \to \mathbb{F}_2$ is a **direction** $\alpha \in \mathbb{F}_2^n \setminus \{0\}$ such that

 $\deg(\Delta_{\alpha}f(x)) = \deg(f) - \ell.$

Higher order differential cryptanalyses

L. R. Knudsen,

Truncated and Higher-order Differentials, Fast Software Encryption, 1994.

M. Vielhaber, Breaking one.fivium by aida an algebraic iv differential attack, https://eprint.iacr.org/2007/413, 2007.

I. Dinur and A. Shamir, *Cube attacks on tweakable black box polynomials*, EUROCRYPT, 2009.

Definition

Fast Point

A Fast Point for a Vectorial Boolean function $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$ is a direction $\alpha \in \mathbb{F}_2^n \setminus \{0\}$ such that

 $\deg(\Delta_{\alpha}F(x)) < \deg(F) - 1.$

Set of Fast Points

$$\mathbb{FP}_{\textit{F}} = \{ \alpha \in \mathbb{F}_2^n \mid \mathsf{deg}(\Delta_\alpha F) < \mathsf{deg}(F) - 1 \} \cup \{ 0 \}$$

Proposition: \mathbb{FP}_F is a (proper) subspace of \mathbb{F}_2^n . (as for Boolean functions)

Characterization

Theorem

Any (nonzero) $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ such that $\mathbb{FP}_F \neq \{0\}$ can be written as

F(x) = G(x) + H(x)

where $G, H : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ such that:

- 1. $\deg(H) < \deg(G) = \deg(F)$
- 2. deg(H) = min {deg($\Delta_{\alpha}F$) | $\alpha \in \mathbb{F}_{2^n}^*$ } + 1
- 3. $\mathbb{FP}_{G} = \mathbb{FP}_{F}$ and $\mathbb{FP}_{H} \cap \mathbb{FP}_{F} = \{0\}$
- 4. $\Delta_{v} G(x) = 0, \forall v \in V \text{ for some } \{0\} \subset V \subseteq \mathbb{FP}_{F}$

Proposition: $\deg(F) \leq n - \dim(\mathbb{FP}_F)$

(as for Boolean functions)

An example

Let's build a function $F : \mathbb{F}_{2^8} \to \mathbb{F}_{2^8}$ with deg(F) = 4 and with some **affine** and **quadratic** derivatives.

Let $\mathbb{F}_{2^8}^* = \langle z \rangle$, $F(x) = \Delta_{1,z,z^2}((x^{255} + (x + z^3)^{255}) + x^{63}) + x^3$

Now, $\alpha \neq 0$,

$$\deg(\Delta_{\alpha}F) = \begin{cases} 1 & \text{when } \alpha \in \langle 1, z, z^2 \rangle, \\ 2 & \text{when } \alpha \in z^3 + \langle 1, z, z^2 \rangle \\ 3 & \text{otherwise.} \end{cases}$$

But Why?

Quadratic APN functions are still "manageable".

What if we had an APN function for which *most* (but not all) of the derivatives were **affine**?

Fast Points Motivation

Example of an APN function with Fast Points

Y. Edel and A. Pott,

A New Almost Perfect Nonlinear Function Which is not Quadratic, Adv. in Math. of Comm. 3(1), 2009.

Theorem [Edel-Pott 09]

Let
$$\mathbb{F}_{2^6}^* = \langle z \rangle$$
, the $\mathbb{F}_{2^6} \to \mathbb{F}_{2^6}$ function

$$E(x) = x^{3} + z^{17}(x^{17} + x^{18} + x^{20} + x^{24}) + z^{14} \operatorname{Tr}(z^{52}x^{3} + z^{6}x^{5} + z^{19}x^{7} + z^{28}x^{11} + z^{2}x^{13} + z^{2}x^{9} + x^{21})$$

is APN, is cubic and CCZ-inequivalent to a quadratic.

$$\Delta_{\mathbf{v}} E(x) \text{ is affine for any } \mathbf{v} \in \left\{ \begin{array}{cccc} 1+ & z^2 & & , \\ & z^2+ & z^3+ & & z^5, \\ & & & z^4 & , \\ 1+ & z^2+ & z^4 & , \\ 1+ & z^3+ & z^5, \\ 1+ & z^3+ & z^4+ & z^5, \\ & z^2+ & z^3+ & z^4+ & z^5 \end{array} \right\}$$

Outline

Introduction

Prerequisites Differentiation Context

Fast Points

Fast/Faster Points for Boolean Functions Fast Points for **Vectorial** Boolean Functions Motivation

Understanding of an APN function with Fast Points

Switching construction Fast Points point of view

Construction

Some Cubic APN functions Experimentation

The Switching construction

 $E(x) = x^{3} + z^{17}(x^{17} + x^{18} + x^{20} + x^{24}) + z^{14} \operatorname{Tr}(z^{52}x^{3} + z^{6}x^{5} + z^{19}x^{7} + z^{28}x^{11} + z^{2}x^{13} + z^{2}x^{9} + x^{21})$

Idea: $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$, choose $f : \mathbb{F}_{2^n} \to \mathbb{F}_2$ and $u \in \mathbb{F}_{2^n}^*$ such that F(x) + uf(x) has a *desirable* property.

In our case: F is APN, we want

 $\Delta_{\alpha,\alpha'}f(x) = 0, \text{ for any } \alpha, \alpha', x \in \mathbb{F}_{2^n} \text{ such that } \Delta_{\alpha,\alpha'}F(x) = u.$

Therefore F(x) + uf(x) is APN.

(e.g. $x^3 + Tr(x^9)$)

Now with Fast Points

 $E(x) = x^{3} + z^{17}(x^{17} + x^{18} + x^{20} + x^{24}) + z^{14} \operatorname{Tr}(z^{52}x^{3} + z^{6}x^{5} + z^{19}x^{7} + z^{28}x^{11} + z^{2}x^{13} + z^{2}x^{9} + x^{21})$

$$\Delta_{\mathbf{v}} E(x) \text{ is affine for any } \mathbf{v} \in V = \begin{cases} 1+&z^2&,\\&z^2+&z^3+&z^5,\\&&z^4&,\\1+&z^2+&z^4&,\\1+&z^3+&z^5,\\1+&z^3+&z^4+&z^5,\\&z^2+&z^3+&z^4+&z^5 \end{cases}$$

We can thus write

$$E(x) = C(x) + Q(x) \quad (= \Delta_V G(x) + Q(x)),$$

where deg(C) = 3 and deg(Q) = 2.

Remark 1:Q is not APN.Remark 2: $\Delta_v Q(x)$ for $v \in V$ are not 2-to-1 (but others are).

Outline

Introduction

Prerequisites Differentiation Context

Fast Points

Fast/Faster Points for Boolean Functions Fast Points for **Vectorial** Boolean Functions Motivation

Understanding of an APN function with Fast Points

Switching construction Fast Points point of view

Construction

Some Cubic APN functions Experimentation

With the same idea F(x) = C(x) + Q(x) $(= \Delta_V G(x) + Q(x))$

> Let $Q : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ be a quadratic APN. Let $\mathbb{F}_{2^n} = V \oplus W$

> > $\deg(C) = 3$

F(x) = C(x) + Q(x) is APN if and only if for all $\omega \neq \omega' \in W \setminus \{0\}$ and for all $x \in \mathbb{F}_{2^n}$

 $\Delta_{\omega,\omega'}C(x) \notin \left\{ \Delta_{\omega+\boldsymbol{v},\omega'+\boldsymbol{v}'}Q \mid \boldsymbol{v},\boldsymbol{v}' \in V \right\}$

Constructing the system

 $\mathcal{C}(x) = \Delta_V \mathcal{G}(x)$ and dim(V) = n - 3 and $\mathbb{F}_{2^n} = V \oplus W$

For all
$$\omega \neq \omega' \in W \setminus \{0\}$$

 $\Delta_{\omega,\omega'} C(x) = \gamma \operatorname{Tr}(\mu x) + c_{\omega,\omega'},$
where $\gamma = \Delta_W C(x)$ and $\mu = \omega''^*$ when $W = \langle \omega, \omega', \omega'' \rangle.$

F(x) = C(x) + Q(x) is APN if and only if for all $\omega \neq \omega' \in W \setminus \{0\}$ and for all $x \in \mathbb{F}_{2^n}$

 $c_{\omega,\omega'}, c_{\omega,\omega'} + \gamma \not\in \left\{ \Delta_{\omega+\mathbf{v},\omega'+\mathbf{v}'}Q \mid \mathbf{v}, \mathbf{v}' \in V \right\}$

Algorithm

- Choose $Q : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ a quadratic APN
- Choose $V \oplus W = \mathbb{F}_{2^n}$ with dim(V) = n 3
- ► For all (7 possibilities) $\omega \neq \omega' \in W \setminus \{0\}$, compute the sets

$$\mathcal{S}_{\omega,\omega'} = \mathbb{F}_{2^n} ig \{ \Delta_{\omega+oldsymbol{v},\omega'+oldsymbol{v}'} Q \mid oldsymbol{v},oldsymbol{v}' \in V ig \}$$

Find (actually only 3 of them, linearly independent)

$$c_{\omega,\omega'}\in S_{\omega,\omega'}$$

so that there is $\gamma \in \mathbb{F}_{2^n}^*$ such that

$$c_{\omega,\omega'}+\gamma\in S_{\omega,\omega'}$$

• **Recover** $C : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ from

$$\Delta_{\omega,\omega'} C(x) = \gamma \operatorname{Tr}(\mu x) + c_{\omega,\omega'}$$

V. S, Antiderivative Functions over \mathbb{F}_{2^n} , DCC (82), 2017.

 \Rightarrow F(x) = C(x) + Q(x) is a cubic APN.

Observation after some Computation n = 6

 Not all the quadratic APN functions can be extended to a cubic one (by this method)

Observation after some Computation n = 6

- Not all the quadratic APN functions can be extended to a cubic one (by this method)
- All the cubic APN functions found were CCZ-inequivalent to a quadratic, but...

Observation after some Computation n = 6

- Not all the quadratic APN functions can be extended to a cubic one (by this method)
- All the cubic APN functions found were CCZ-inequivalent to a quadratic, but...
- There were also all CCZ-equivalent to the Edel-Pott function!

Outline

Introduction

Prerequisites Differentiation Context

Fast Points

Fast/Faster Points for Boolean Functions Fast Points for **Vectorial** Boolean Functions Motivation

Understanding of an APN function with Fast Points

Switching construction Fast Points point of view

Construction

Some Cubic APN functions Experimentation

Closing Remarks

• What's the *clever* choice for $V \oplus W = \mathbb{F}_{2^n}$?

•
$$\deg(C) = 3$$
 and $\dim(W) = 4$?

•
$$\deg(C) = 4$$
 (and still $\deg(H) = 2$)?