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Introduction Symmetric cryptography

Symmetric Cryptography

Symmetric Cryptography

Cryptographic algorithms and protocols where the secret is identical
between communicating parties.

04XSez?

Message 30f6

Message

» Block ciphers
» Stream ciphers

» Hash functions
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Introduction Symmetric cryptography

Design of Block ciphers

Block cipher

A block cipher is a function

E: F§xFP — FT
(k,P)  — C=E(k,P):=Ex(P)

such that for any fixed key k € F5, Ey is bijective over [F7'.

Problem?
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Introduction Symmetric cryptography

Design of Block ciphers

Block cipher

A block cipher is a function

E: F§xFP — FT
(k,P)  — C=E(k,P):=Ex(P)

such that for any fixed key k € F5, Ey is bijective over [F7'.

4

Problem? Usually, a block cipher is a set of 280 permutations of Syis.
Solution: lterative construction

Exk=Ri-10Ri20--oRio Ry ,
~—~
LoSBo Addy,
SB : FY=F)xFyx... — Fy=F)xFJx...
XZ(Xo,Xl,...) — (Fo(Xo),Fl(Xl),...)
Functions F;'s are usually called SBoxes.
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Introduction Differentiality

Differential Criteria
F:TF—F

‘ o ‘ Derivatives in direction o € F}
F F ALF : T — Fj
‘ ________ ‘ x = F(x)+ F(x+ «)

Differential Uniformity [Nyberg 94]
0F = max #{x | AuF(x)=p}

a€F3\{0},B€F]

Whenever 0 = 2 (minimal value), the function F is said to be
APN ('Almost Perfect Nonlinear').
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Introduction Differentiality

Example

Differences Distribution Table (DDT)

Table of size 2" x 2", with entries:

Flo, B) = # {x € F} | A,F(x) = 8} ,Va, 3 € F5.

Dr B Dgr B
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

o |8 . o |8 ;

1 2 2 2 . 2 1 8 .

2 2 2 2 2 2 4 . . a4
o 3 2 2 o202 3 2 6

4 S22 2 2 4 .2 2 4

5 2 2 2 .2 5 2 2 2 2

6 L2 02 2 2 . 6 2 2 4

7 2 2 2 27 2 4 2
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Introduction Differentiality

Big APN Problem

APN functions =- Best resistance to differential cryptanalysis!

1. Very few known APN functions ...

2. ... even fewer known bijective APN functions (none when n = 4)

'Big APN Problem’ :
Is there any bijective APN functions over Fan, when n is even 7

Answer (?) : In 2009, Dillon et al. found only one example for

n = 6. Since then, nothing more (or very little) ...

3. Few (bijective) functions are known with § = 4.

@ K. A. Browning, J. F. Dillon, M. T. McQuistan and A. J. Wolfe,
An APN Permutation in Dimension Six,
Fq9 (Selected Papers), Contemporary Mathematics, 2010.
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Introduction Equivalences

Some equivalence classes
F : an — an

The differential uniformity 6(F) of F is an invariant under:
» compositional inverse (if F is bijective): §(F 1) = §(F)
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Some equivalence classes
F : FQ" — an

The differential uniformity 6(F) of F is an invariant under:
» compositional inverse (if F is bijective): §(F 1) = §(F)

» affine permutations: 6(F) = d(Ajo Fo Ay + A')
= EA-equivalence (~gp)

» Graph equivalence: Grr = {L(x, F(x))} = L(GF), 6(F) = 6(F')
= CCZ-equivalence (~cc7)

1 X 2 —1

e
F(1) ... F(x) ... F("—1)

| | |

EA-Eq/ CCZ-Eq

6/ 19



Introduction Equivalences

Link with other areas
F: an — an

Carlet-Charpin-Zinoviev (1998)

F is APN if and only if the minimal distance of the linear code
with parity check matrix MGFr is 5.
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F: an — an
Carlet-Charpin-Zinoviev (1998)

F is APN if and only if the minimal distance of the linear code
with parity check matrix MGFr is 5.

Coulter-Henderson (1999)

If Fis APN then the incidence structure of Gr is a (227,2")-
semibiplane.

Let F be quadratic, ie. F(x) =3, i jx? 1% € Fanlx].
F APN = semifields, dual hyperoval, rank-metric code,. ..

y

y

not only cryptography benefits from research on
APN functions.
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Results Equivalences

Differential equivalences of SBoxes
F,G: Fj T}

Definitions :
Differences Distribution Table (DDT)

Table of size 2" x 2" with entries:

Dr(a, B) = #{x € F5 | AF(x) = B} ,Va, 5 € F].

Indicator of a DDT

Boolean function v¢ : F7*" — Ty,

fYF(awB) :0@51:(0[75) =0ora=0.
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Results Equivalences

Differential equivalences of SBoxes
F.G: Fj—F}

Definitions :
Differences Distribution Table (DDT)

Table of size 2" x 2" with entries:

Dr(a, B) = #{x € F5 | AF(x) = B} ,Va, 5 € F].

Indicator of a DDT

Boolean function v¢ : F7*" — Ty,

’YF(O[HB) :0<:>5F(a75) =0ora=0.

= Two equivalences:
> F ~D G = DF = DG,
> F ~y G <  YF=176G-
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Results Equivalences

Motivation, Origin

Differential Equivalence

In odd characteristic, Perfect Nonlinear (PN) functions are such
that all of their derivatives are bijective = all PN functions have
the same DDT.

Gorodilova introduced the y-equivalence, while working on APN
monomial quadratic functions (aka Gold functions, aka APN
functions of the type x + x?*1).

@ A Gorodilova,
On a remarkable property of APN Gold functions,
Cryptology ePrint Archive, 2016.
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Results Equivalences

Examples
n=4
F =]o,1,2,3,4,5,6,7,8,9,10,11,12,13,15,14],
G =o,1,8,2,5,4,7,6,8,9,10,11,12,13,14,15].
[ 16 . . . . . . . T
16 . . . . . .
12 4 . . . . .
4 12 . . . . .
. 12 4 . . . .
4 12 . . . .
. . . . . . 12 4 . . . . .
De=| = = = 8P, : :
4 12 . . .
. 12 4 . .
4 12 . .
. 12 4 .
4 12 .
. 12 4
4 12
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Results

Examples

n=4

D¢

Equivalences

F =o,1,2,3,4,5,6,7,8,9,10,11,12,13,15,14],

G =[o,1,3,2,5,4,7,6,8,9,10,11,12,13,14,15].

16 .
16

# Dr
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1 1 . .
Y6 = 11 .
1 1 .
. 1 1 .
1 1 .
1 1 .
1 1 .
1 1
1 1)

10 /19



Results Equivalences

Examples
n=4
F =o,1,2,3,4,5,6,7,8,9,10,11,12,13,15,14],
G =[0,1,3,2,5,4,7,6,8,9,10,11,12,13,14,15].
(o . . .
. 1 . .
. 1 1 . .
1 1 . .
1 1 .
1 1 .
. 1 1 .
1 1 .
Y6 = 11 . =F
1 1 .
. 1 1 .
1 1 .
1 1 .
1 1 .
1 1
1 1)
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Results Equivalences

Properties
F,G : F; — T}

Basic:
> Fr~pG = Fry G (£)

» for any a, b € 75,
F(x) ~p G(x)=F(x+a)+b
in that case, F and G are said to be trivially equivalent.

A little more advanced:

» if F and G are either APN or quadratic (or both), then

FNDG = FNVG

11/ 19



Results Main contributions

What are the functions that share the same DDT?
the same indicator? How many of them exist?
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Results Main contributions

What are the functions that share the same DDT?
the same indicator? How many of them exist?

Contributions :
e Using EA-Eq and CCZ-Eq to help the classification

e a recursive algorithm to compute equivalence classes.
Input : a DDT (resp. indicator),
Output : every functions having this DDT (resp. indicator)

e research for some known functions.

e new fact about APN permutations.

ﬁ C. Boura, A. Canteaut, J. Jean and V. Suder,
Two Notions of Differential Equivalence on SBoxes,
DCC, Design, Codes and Cryptography, To appear.

12 /19



Results First Step for a classification

Relation to CCZ-Eq and EA-Eq

Gorodilova (2016)

For F ~EA G,

VF ~y F=>3G ~, Gst. G ~ga F'
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v

Boura-Canteaut-Jean-S. [DCC]
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\
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Results  Algorithm

Overview

Input : a DDT (resp. indicator),
Output : every functions having this DDT (resp. indicator)

Idea: Recursive Tree-traversal algorithm
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Overview

Input : a DDT (resp. indicator),
Output : every functions having this DDT (resp. indicator)

Idea: Recursive Tree-traversal algorithm
» Tree of depth 2", each nodes at a level / corresponds to one
possible value for F(/)

» From the constraints of the DDT and the values
F(0),...,F(i—1):

e find all possible values for F (/)

e for each of them, move on to the next step F(i + 1), and
backtrack if necessary

Pruning trick: We can fix F(0) and F(1):
G(x +1)+ G(1) := F(x) ~p G(x)
so that

F(0) =0, and F(1) = A1F(0) = A1G(0)

14 /19



Results  Algorithm

Example
F3
Ri == {j | D(i,j) # 0}

D | o 1 2 3 4 5 6 7
0| 8 .
1 2 . 2 . 2 . 2
2 2 2 2 2
3 2 2 . 2 2
4 . 2 2 2 2
5 2 . 2 2 . 2
6 2 2 2 2 .
7 2 2 2 2

0. Set F(0)=0
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D|o 1 2 3 4 5 6 7
0|8 . .
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3 2 2 . . 2 2
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Results Algorithm

Ri = {[D(i,j) # 0}

2

~No s wN R oy
N

2
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NNNN -

6 7
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6 o2 02 2 2 . 4. F(0)+ F(4) € R4 = {4,5,6,7} and
7 2 2 2 . .2 F(1) + F(4) € Rs = {1,3,4,6} and
F(2)+ F(4) € Re ={2,3,4,5} and
0. Set F(0) = F(3) + F(4) € R7 = {1,2,4,7} thus
1 (0)+F(1)€R1—{1357} F(4) € {0} if F(2) =3 and F(3) =2

Set F(1) =

2. (0)+F(2)6R2—{2367}and
F(1) + F(2) € Rs = {1,2,5,6} thus

F(2) € F(0)+RiNF(1)+Rs = {3,7}
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F3
Ri = {j | D(i,j) # 0}
Dlo 1 2 3 4 5 6 7 3. F(0)+ F(3) € Rs ={1,2,5,6} and
ols8 . . . . . . F(1)+ F(3) € R ={2,3,6,7} and
1 2 .2 . 2 . 2 F(2) + F(3) € R1 ={1,3,5,7} thus
2 2 2 . 2 2
3 2 2 o2 2 . F(3) € {2,6} (OR {2,6})
4 : 2 2 2 2 4. F(0)+ F(4) € Rq = {4,5,6,7} and
: 2,22 2 F(1) + F(4) € Rs = {1,3,4,6} and
7 5 o 5 g F(2)+ F(4) € Re = {2,3,4,5} and
F(3)+ F(4) € R7 ={1,2,4,7} thus
0. Set F(0)=0 F(4) € {0} if F(2) =3 and F(3) = 2
1. F(0)+ F(1 ) € Ry ={1,3,5,7} F(4) € {7} if F(2) =3 and F(3) =
Set F(1) = F(4) € {5} if F(2) =7 and F(3) =
2. F(0) + F(2) € R2 = {2,3,6,7} and F(4) € {0} if F(2) =7 and F(3) =6
F(1)+ F(2) € Rs = {1,2,5,6} thus

F(2) € F(0)+R:iNF(1)+Rs ={3,7}
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Results Algorithm

Ri = {[D(i,j) # 0}

Example

F3
D | o 1 2 3 4 5 6 7
0| 8 . .
1 . 2 . 2 . 2 2
2 2 2 . 2 2
3 2 2 . 2 2 .
4 . . o202 2 2
5 2 . 2 2 . 2 .
6 .2 02 2 2 .
7 2 2 2 2

0. Set F(0)=0

1. F(0)+ F(1) € R1 ={1,3,5,7}
Set F(1) =1

2. F(0)+ F(2) € R2 ={2,3,6,7} and
F(1) + F(2) € Rs = {1,2,5,6} thus

F(2) € F(0)+RiNF(1)+Rs = {3,7}

3. F(0)+ F(3) € Rs = {1,2,5,6} and
)

F(1

F(3 €R2—{2367}and

F(2) + F(3) € R, = {1,3,5,7} thus
F(3) € {2,6} (OR {2,6})

. F(0)+ F(4) € R4 = {4,5,6,7} and

)+

)

)

)
F(1)+ F(4) € Rs = {1,3,4,6} and
F(2)+ F(4) € Re = {2345}and
F(3)+ F(4) € R7 ={1,2,4,7} thus
F(4) € {0} if F(2) =
F(4) e {7} if F(2
F(4) € {5} if F(2
F(4) € {0} if F(2
)

=3and F(3) =2
=3and F(3) =
=7and F(3) =
=7and F(3) =

~— — — —

5. F(0 +F(5)€R5_{1346}
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Results Experimental Results

Known functions

F and G are trivial if F(x) ~p G(x) = F(x+a)+ b

[Gorodilova'16] — (non-bijective) APNs with non-trivial ~-classes.
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Results Experimental Results

Known functions and conjecture
F and G are trivial if F(x) ~p G(x) = F(x+a)+ b
[Gorodilova'16] — (non-bijective) APNs with non-trivial ~-classes.

What are the DDT-classes of 'optimal’ bijective SBoxes?

» n = 6: Dillon permutation — trivial DDT-class

» n=>5: five APN permutations — trivial DDT-classes

v

n = 4: 16 4-differentially permutations — trivial DDT-classes
» n=3: Gold permutation (x — x3) — trivial DDT-class

Question: Are DDT-classes for permutations always trivial? NO
Question: Are DDT-classes of non-permutations never trivial? NO

For a bijective function,
the rows of its DDT are al distinct = its DDT-class is trivial.
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Results Special case

Bijective APN functions and their DD Ts

Let F : F5 — IF5 be a bijective APN function
Then, the rows of its DDT are pairwise distinct.

(the image sets of the derivatives of F are pairwise distinct.)

Proof Idea: by contradiction. We suppose two rows match, and
then by induction on the images of the derivatives, we show that F
is either not APN, or not a permutation.
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Bijective APN functions and their DD Ts

Let F : F5 — IF5 be a bijective APN function
Then, the rows of its DDT are pairwise distinct.

(the image sets of the derivatives of F are pairwise distinct.)

Proof Idea: by contradiction. We suppose two rows match, and
then by induction on the images of the derivatives, we show that F
is either not APN, or not a permutation.

(!1) if the conjecture is true, DDT-classes of APN permutations
are always trivial.
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Conclusion

» Contributions:
e Characterize and extend [Gorodilova’'16] equivalence

e an algorithm that computes classes
e a new property about APN permutations

e a conjecture on what are the functions with non-trivial classes

» Future works:
e ... prove the conjecture ('easier’ cases, e.g. quadratic APN)

e what does it mean for a function to have derivatives with the
same image set?

e what are 'possible’ DDTs? (use and improve the algorithm)

@ C. Boura, A. Canteaut, J. Jean and V. Suder,
Two Notions of Differential Equivalence on SBoxes,
DCC, Design, Codes and Cryptography, To appear.
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Differential Cryptanalysis of the last round

K
\ By

l Key Expansion

)
1 l 1. Encrypt N pairs P,
R A S G 'D/:P"‘Oé
e -
—

. For each pairs, decrypt

’ ‘J the last round with RK’

Differential on /2 — 1 rounds

3. Increment a counter if

—‘ difference is 3

4. Check which counter is

" H o % @=c¢+7  the higher (closer from

- T- [ N < P)
l Key Expansion l

[ G

(a—=5)

K

[8 Eli Biham and Adi Shamir,
Differential Cryptanalysis of DES-like Cryptosystems,
J. Cryptology 4(1), 1991.



	Introduction
	Symmetric cryptography
	Differentiality
	Equivalences

	Results
	Equivalences
	Main contributions
	First Step for a classification
	Algorithm
	Experimental Results
	Special case

	Conclusion

