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Abstract 

Determination of eumelanin and pheomelanin in melanomas that exhibit different pigmentation was 

carried using a solid-phase extraction (SPE) preparation method based on weak anion exchange 

chemistry. This extraction significantly enhanced the chromatographic profile obtained by reverse 

phase high performance liquid chromatography - diode array detection (RP-HPLC-DAD). The SPE 

method was developed using aqueous standards of melanin markers:  thiazole-2,4,5-tricarboxylic acid 

(TTCA), thiazole-4,5-dicarboxylic acid (TDCA), pyrrole-2,3-dicarboxylic acid (PDCA) and pyrrole-2,3,5-

tricarboxylic acid (PTCA) and non-pigmented cell lines spiked with those markers. An excellent average 

recovery, above 90%, was obtained for the four markers with a relative standard deviation below 7%. 

We have also optimized the stationary phase and the mobile phase (phosphate concentration and pH) 

to improve sensitivity and to reduce the analysis time. Elution of the four markers is achieved in 5 

minutes and total analysis of biological samples is completed in 15 minutes. The quantification limits 

for TDCA, TTCA, PDCA and PTCA are 60, 50, 47 and 48 ng/mL respectively. Furthermore, DAD detection 

improves the marker identification in complex matrices through the analysis of UV spectra. We have 

successfully applied this method to melanoma tumors and cells. Murine B16BL6 tumor are highly 

pigmented with mostly eumelanin (98.1 % of eumelanin) while human SK-MEL-3 tumor contain about 

30 % pheomelanin. B16BL6 and B16F10 are eumelanic cells lines and NHEM melanocytes contain about 

24 % of pheomelanin. 
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performance liquid chromatography – diode array detection (HPLC-DAD)
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1. Introduction 

Skin, hair and eye color is determined by the quantity and ratio of eumelanin (EM) to pheomelanin 

(PM), the two classes of melanin [1–3]. Eumelanin is a black to brown insoluble pigment, whereas 

yellow to reddish-brown color and solubility in alkaline solvents characterize PM. These pigments also 

differ in their capacity of protection to ultraviolet (UV) exposure. While EM is known for its 

photoprotection action due to free-radical scavenging and broadband adsorption properties, PM is a 

pro-oxydant [4,5] with poor photoprotective potential [6]. Melanogenesis by definition is the 

production of the melanin pigments by melanocytes and starts with the production of dopaquinone 

from tyrosine, catalyzed by tyrosinase [7]. Pheomelanin is first synthetized in the presence of thiol 

compounds such as cysteine [8,9]. The reaction between cysteine and dopaquinone generate 5-S-

cysteinyldopa (5SCD) and 2-S-cysteinyldopa (2SCD), which are subsequently oxidized by dopaquinone 

and yield the pheomelanin monomer entity, benzothiazine, that is progressively converted to 

benzothiazol [10]. The reduction of cysteine concentration contributes to the spontaneous cyclization 

of the highly reactive dopaquinone to give rise to dopachrome. Dopachrome rearrangement produces 

5,6-dihydroxyindole (DHI) and 5,6- dihydroxyindole-2-carboxylic acid (DHICA). Tyrosinase-related 

protein 2 (Tyrp2) catalyzes the production of DHICA. Afterwards, both dihydroxyindoles are oxidized 

to form the eumelanin polymer. In mice, the tyrosinase-related protein (Tyrp1) oxidizes DHICA [7] and 

thus influences the degree of polymerization and the ratio DHI to DHICA in EM. 

Quantification of EM and PM is achieved by indirect methods. Specific melanin markers are obtained 

after fragmentation of melanin polymers under controlled conditions. The most common degradation 

method uses alkaline peroxide oxidation [12–14] or reductive hydroiodic acid hydrolysis [15]. The 

markers are then separated by HPLC. Eumelanin breakup with the alkaline hydrogen peroxide 

oxidation produces PTCA and PDCA molecules that are specific markers of DHICA and DHI moieties 

respectively (Figure 1A)  [12]. Additionally, under this treatment the pyrrole acids, pyrrole-2,3,4,5-

tetracarboxylic acid (PTeCA) and pyrrole-2,3,4-tricarboxylic acid (isoPTCA) can be detected. PTeCA  

reflects the cross-linking  at the C2 and C3 positions of the DHI moiety of eumelanin and isoPTCA  the 

cross-linking at the C3 position of DHI unit [16]. Pheomelanin is quantified through TTCA marker 

obtained from the benzothiazole monomer degradation, which also produces TDCA but in a low yield 

in comparison to TTCA (Figure 1B). If the treatment consists in a reductive hydroiodic acid hydrolysis, 

the specific marker 4-amino-3-hydroxyphenilalanine (4-AHP), originating from benzothiazine 

monomer, is used to measure the pheomelanin content. This reaction also generates the 3-amino-4-

hydroxyphenilalanine (3-AHP) but this one is less pheomelanin-specific [17].  



 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Eumelanin and pheomelanin markers obtained by alkaline peroxide oxidation. A) Peroxide oxidation of 

DHI and DHICA moieties of EM produces PDCA and PTCA markers respectively. B) Oxidation of the benzothiazole 

unit of PM yields TTCA and TDCA markers. 

The melanin markers can be synthetized through the methods reviewed  by d’Ischia et al. [18]. The 

main advantage of alkaline H2O2 oxidation is the simplicity of sample treatment in comparison with 

reductive HI hydrolysis. It furthermore permits quantification of the four melanin markers (PTCA, 

PDCA, TTCA and TDCA) in a single reverse phase HPLC analysis using a classical UV detector, while the 

determination of 4-AHP employs electrochemical detection and two separated HPLC sample injections 

in order to quantify eumelanin and pheomelanin. Although the alkaline hydrogen peroxide oxidation 

method can be easily implemented, separation and quantification of markers by HPLC can be 

complicated, especially in complex biological samples. For example in melanoma cells or tumors, 

interferences from matrices lead to co-elution problems or production of unresolved chromatographic 

peaks, making the interpretation of chromatograms difficult. Recently, Ito et al. [19] have proposed an 

acidic hydrolysis with 6M HCl at high temperature before alkaline oxidation, allowing protein removal 

from hair samples and simplification of the chromatograms. However, this procedure induces the 

decarboxylation of the DHICA [20] and benzothiazole moieties and therefore modifies melanin 

markers concentrations. For example, PTCA, the marker used to quantify EM is approximately 50% 

reduced after strong acidic hydrolysis of natural hair melanins and fully reduced in synthetic DHICA 

melanins. In the case of pheomelanin markers, TDCA concentration increases significantly and TTCA 

drops to 37% in hair melanin [19]. 



 

Here we propose a SPE preparation method based on weak anion exchange chemistry prior to RP-

HPLC, which significantly improves the chromatographic profile. Using two different C18 columns, we 

also evaluated analytical conditions, pH and phosphate buffer concentration in the mobile phase in 

order to decrease analysis time and improve sensitivity. We analyzed the UV response of each marker 

and optimized the detection wavelength by the use of the diode-array detection HPLC. Marker 

identification in complex matrices is significantly enhanced through the evaluation of UV spectra and 

the purity of the chromatographic peaks. We also show that the method can be successfully applied 

to different pigmented human and murine melanoma tumors and cell lines.  

2. Material and methods  

2.1 Reagents and standards 

Phosphoric acid (49-51%), hydrogen peroxide ( 30%) and chlorhydric acid were provided from Fluka, 

France. Methanol (HPLC-PLUS-Gradient) was provided from Carlo Erba, Peypin, France. Monobasic 

sodium phosphate, sodium sulfite, sodium acetate, potassium hydroxide and synthetic melanin 

standard were purchased from Sigma-Aldrich, France. 25% ammonia solution for LC-MS was from 

Merck, Germany. Melanin standard markers: PTCA, PDCA, TDCA, TTCA were kindly provided by Dr. Ito 

and Dr. Wakamatsu (Fujita Health University School of Health Sciences, Toyoake, Aichi Japan). An 

aqueous stock solution containing 100 μg/mL of four melanin markers was prepared and stored at −20 

°C. Other working standard solutions were prepared by dilution of stock solutions.  

2.2 Samples 

Murine melanoma B16BL6 cells were sourced from Professor Fidler’s lab (Texas University, Houston, 

USA). Murine melanoma B16F10 cells and human melanoma SK-MEL-3 cells were purchased from 

ATCC (Manassas, USA). Human melanoma A375 cells were purchased from ECACC (Salisbury, UK). 

Normal Human Epidermal Melanocytes (NHEM) from juvenile foreskin of a Caucasian male were 

purchased from PromoCell (Heidelberg, Germany). B16BL6 and B16F10 cells were maintained as 

monolayers in Dulbecco’s Modified Eagle’s Medium (DMEM-Glutamax, Life Technologies, 

Courtaboeuf, France) supplemented with 10% fetal calf serum (FCS, Eurobio, Courtaboeuf, France) and 

4 µg/mL gentamycin (Life Technologies, Courtaboeuf, France). A375 cells were cultured in DMEM 

supplemented with 15% FCS and 4 µg/mL gentamycin. SK-MEL-3 cells were cultivated in McCoy’s 5A 

Medium (Invitrogen) with 15% FCS and 4 µg/mL gentamycin. Normal Human Epidermal Melanocytes 

were maintained in Melanocyte Growth Medium M2 (Promocell) with Supplement Mix (Promocell) 

and 10 000 U/mL penicillin - 10 000 µg/mL streptomycin. Cells were grown at 37°C in a humidified 

incubator with 5% CO2. Syngenic B16BL6 tumors were obtained after subcutaneous injection of 



 

melanoma cells into the flank of C57BL/6J mice [21]. SK-MEL-3 human tumor xenografts were obtained 

after subcutaneous injection into the flank of male Swiss nu/nu mice as previously described [12]. 

2.3 Sample preparation 

Samples were submitted to an alkaline H2O2 oxidation to obtain melanin markers as described by Ito 

et al. [12] with some modifications. 

2.3.1 Tumour samples 

About 10 mg of tumors were weighed into a gentleMACS M tube (Gentle MACS Dissociator, Miltenyi 

Biotec, Paris, France) and 500 µL of 1 mol/L KOH were added. Tumors were then homogenized using 

the pre-set gentleMACS™ Dissociator program m_heart_01.01. Homogenized samples were 

transferred into a 15 mL screw-capped conical tube. A volume of 100 µL was reserved for total melanin 

quantification at 405 nm using a standard curve generated from known concentrations of synthetic 

melanin. 25 µL of H2O2 were added (final concentration 1.5% v/v) to the remaining 400 µL  and closed 

tubes were shacked overnight at 25°C. 50 µL of 10% (w/v) Na2SO3 were added to decompose residual 

H2O2  and samples were acidified by addition of 200 µL of 1 mol/L HCl. Samples were filtered with 

regenerated cellulose syringe filters (0.22 µm , Phenomenex). 

2.3.2 Cell samples 

The cell pellets of B16BL6 and B16F10 cell lines consisted of approx. 4.106 cells and the NHEM 

melanocyte pellets of 1.5 to 2.106 cells. A volume of 100 µL of 1 mol/L KOH was added for every 1.106 

cells.  After homogenization with vortexing,  50 µL was reserved for total melanin quantification at 405 

nm using a standard curve generated from known concentrations of synthetic melanin. Next, the 

oxidation reaction was performed by addition of H2O2 to a final concentration of 1.5% v/v, followed by 

an overnight incubation at 25°C. Remaining peroxide was quenched by addition of a volume of 10% 

(w/v) Na2SO3 corresponding to twofold the H2O2 volume. The pH of the samples were adjusted to 3.3 

by addition of 1 mol/L HCl. Samples were filtered with regenerated cellulose syringe filters  (0.22 µm, 

Phenomenex). 

2.4 Solid phase extraction  

Prior to the sample extraction, SPE cartridges (Strata-X-AW 33µm polymeric weak anion 30mg/1mL, 

Phenomenex) were conditioned with 500 µL of acetonitrile and 500 µL of 100 mmol/L sodium acetate 

pH 5.2. Extracts of tumor samples were loaded onto the column prior to dilution 1:1 with 100 mmol/L 

sodium acetate pH 5.2. Samples were eluted from the column at a reduced flow rate followed by a 

column wash step with 500 µL of 100 mmol/L sodium acetate pH 5.2 and 500 µL of acetonitrile. The 



 

cartridge was then dried under vacuum for 5 minutes. The SPE column was eluted twice with 500 µL 

of 5% (v/v) aqueous NH4OH. Extracts were lyophilized overnight (Freeze Dryer/Lyophilisator Alpha 2-4 

LD Plus, Christ, Germany) and reconstituted with 200 µL of 20 mmol/L aqueous potassium phosphate 

pH 3.3. Recoveries were calculated from at least three replicate measurements of each concentration 

in aqueous solutions of a standard mix containing PTCA, PDCA, TDCA and TTCA and spiked A375 cells 

using independent cartridges.  

2.5 High performance liquid chromatography conditions 

HPLC-DAD analysis conditions were determined by comparing two different C18 columns. Column 1 

consisted of a Kinetex Evo C18, 150 x 3 mm, 2.6 µm particle size, 100 Å pore size from Phenomenex 

fitted with a SecurityGuard™ ultra LC filter 0.2µm (Phenomenex). Column 2 was a Gemini C18, 150 x 3 

mm, 3 µm particle size, 100 Å pore size (Phenomenex) with a SecurityGuard™ cartridge for Gemini C18. 

The HPLC system was an Agilent 1200 HPLC separation module equipped with an online degasser, a 

quaternary pump, an automatic sampler, a thermostatic controlled column chamber and a DAD 

detector. The system was controlled by OpenLab CDS Agilent software version A.01.05. Separation of 

eumelanin (PDCA and PTCA) and pheomelanin (TDCA and TTCA) markers was obtained using 20 mM 

aqueous potassium phosphate pH 3.3 (A) and 100% methanol (B) as mobile phase, 0.6 mL/min flow 

rate and 36°C column temperature. The elution program differed for column 1 and 2. For column 1 the 

program starts from 0 to 6 min at 0% B isocratic, followed by 6-7 min linear gradient from 0% to 10% 

B for column cleaning and finally a re-equilibration period for 7-15 min with 0% B. The elution program 

use for column 2 was: 0 to 12 min 0% B isocratic, followed by 12-15 min linear gradient from 0% to 

10% B for column cleaning and finally a re-equilibration period 15-25 min with 0% B. For both columns, 

the injection volume was 20 μL, and detection wavelengths were set a 225 and 275 nm for PTCA and 

TTCA, 254 nm for TDCA and 280 nm for PDCA. The UV spectra of reference compounds were recorded 

and integrated into an UV library. Spectra were used to confirm the identity of markers in biological 

samples. Total eumelanin was obtained by multiplying total PTCA by a factor of 60 for murine and 80 

for human tumors. To convert TTCA to pheomelanin, TTCA was multiplied by a factor of 34 [12].  

2.6 Validation of the HPLC method 

Calibration curves were constructed in concentrations ranging from 0.25 to 10 µg/mL. The limits of 

detection (LOD) and quantification (LOQ) were calculated using LOD = 3.3(SD/S) and LOQ = 10(SD/S) 

respectively, where S is the slope and the SD is the residual standard deviation of calibration curves. 

To evaluate reproductibility, we used SD from three separated injections of markers that were realized 

on the same day.  

 



 

3. Results and Discussion 

3.1 Chromatographic condition optimization 

To select the best stationary phase for melanin marker analysis, we chose to evaluate two octadecyl 

columns, which differ in the particle nature. Column 1 has core-shell particles (i.e a nonporous core 

inside a porous shell with a total diameter of 2.6 µm. Kinetex EVO C18, Phenomenex) and column 2 

has fully porous particles of 3 µm diameter (Gemini C18, Phenomenex). Both columns tolerate 100% 

water. The mobile phase phosphate at 100 mM and pH 2.1 was used based on previously published 

results [12]. One of the goals was to optimize pH and concentration of the phosphate buffer in the 

mobile phase. A low concentration of phosphate allowed column-cleaning step with organic solvent 

after elution of melanin markers to avoid a contaminant carry-over from a previous injection. In 

addition, the salt precipitation risk is reduced at the column level, and also in the pump and HPLC 

valves. Peak shape analysis and retention time of melanin standard markers (10 g/mL) obtained with 

100, 70, 50, 30 and 20 mM phosphate buffer are illustrated in Table 1.  

Table 1. Chromatographic peak performances of TTCA, PTCA, TDCA and PDCA standards using 10 

µg/mL solutions. 

 

Values were calculated as means (standard deviation) of n=3. Area enrichment was calculated as the percentage of the difference between 
peak area at the maximum wavelength and peak area at 275 nm (obtained with 20 mM phosphate pH 3.3) 

Marker 
Wavelength 

(nm) 
Phosphate 

pH 

Phosphate 
concentration 

(mmol/L) 

Retention 
Time (min) 

Area 
(mAU*s) 

Area 
enrichment 

(%) 

Symmetry 
(USP at 10% 

height) 

TTCA 

275 2.1 

100 2.30 (0.13) 139 (12) 
 

1.84 (0.04) 

70 2.22 (0.01) 128.2 (0.1) 
 

2.20 (0.01) 

50 2.28 (0.01) 104 (16) 
 

2.04 (0.04) 

30 2.38 (0.01) 121.4 (0.3) 
 

2.12 (0.02) 

20 2.52 (0.02) 121.0 (0.4) 
 

2.22 (0.02) 

275 
3.3 

20 2.14 (0.01) 116 (1) 
 

2.02 (0.04) 

225 20 2.14 (0.01) 203 (1) 75 2.03 (0.03) 

PDCA 

275 2.1 

100 2.89 (0.01) 243 (3) 
 

1.47 (0.01) 

70 2.88 (0.01) 240.7 (0.2) 
 

1.44 (0.03) 

50 2.90 (0.01) 242 (3) 
 

1.42 (0.03) 

30 2.95 (0.01) 246 (1) 
 

1.43 (0.01) 

20 3.04 (0.01) 250.3 (0.4) 
 

1.43 (0.02) 

275 
3.3 

20 2.36 (0.01) 254.8 (0.5) 
 

1.30 (0.02) 

280 20 2.77 (0.01) 278.1 (0.8) 9 1.30 (0.02) 

TDCA 

275 2.1 

100 3.3 (0.2) 90 (6) 
 

1.30 (0.04) 

70 3.23 (0.01) 86.3 (0.3) 
 

1.28 (0.02) 

50 3.28 (0.01) 84 (7) 
 

1.35 (0.03) 

30 3.37 (0.01) 89.9 (0.1) 
 

1.33 (0.06) 

20 3.51 (0.01) 91.0 (0.7) 
 

1.30 (0.03) 

275 
3.3 

20 3.22(0.01) 73.6 (0.2) 
 

1.19 (0.03) 

254 20 3.22 (0.01) 228.8 (0.5) 210 1.76 (0.02) 

PTCA 

275 2.1 

100 5.02 (0.24) 186 (10) 
 

1.07 (0.01) 

70 4.86 (0.01) 176.4 (0.1) 
 

1.08 (0.01) 

50 4.95 (0.01) 174 (3) 
 

1.05 (0.01) 

30 5.03 (0.01) 178 (1) 
 

1.08 (0.01) 

20 5.22 (0.04) 177 (1) 
 

1.07 (0.01) 

275 
3.3 

20 4.22 (0.01) 163.9 (0.1) 
 

1.17 (0.02) 

225 20 4.22 (0.01) 288 (2) 76 1.18 (0.02) 

 



 

The data indicates that peak shape (symmetry) for PDCA, TDCA and PTCA detected at 275nm remains 

the same independently of phosphate concentration at pH 2.1. Diminution of phosphate concentration 

slightly increased retention times. The pheomelanin marker, TTCA, was the most affected by the 

reduction of phosphate concentration with a symmetry value of 1.84 at 100 mM and 2.22 at 20 mM 

phosphate pH 2.1. When a 20 mM pH 3.3 phosphate mobile phase is used instead of pH 2.1, the 

retention times of the four markers are reduced and the symmetry of TTCA peak reached 2.02, 

considered as an acceptable limit [22,23]. Chromatographic data were recorded in the range of 200 to 

400 nm. Finally, PTCA and TTCA peaks were integrated at 225 and 275 nm respectively, PDCA at 280 

nm and TDCA at 254 nm, which correspond to the maximum of absorbance wavelengths of each 

melanin marker (Figure 2C to 2F). Measurement at the specific wavelengths improves the detection as 

shown by the peak area enrichment of 75, 9, 210 and 76 % obtained for TTCA, PDCA, TDCA and PTCA 

respectively in comparison to the signal recorded at 275nm. A good separation is obtained with 20 mM 

pH 3.3 phosphate mobile phase delivered at 0.6 mL/min and column 1 maintained at 36°C (Figure 2A). 

The use of the fully porous column with the same mobile phase and elution conditions produced an 

excellent separation of the four markers (Figure 2B).  

 

Figure 2. RP-HPLC-DAD chromatograms of a mixture of four melanin markers (10µg/mL) obtained with 20mM 
phosphate pH 3.3 as mobile phase at 0.6 mL/min, 36°C, signal detected at 275nm and 5µL injection volume. A) 

Column: Kinetex Evo C18, 150 x 3 mm, 2.6 µm particle size, 100 Å pore size from Phenomenex B) Column: Gemini 

C18, 150 x 3 mm, 3µm particle size, 100 Å pore size, Phenomenex C) TTCA UV- spectrum D) PTCA UV- spectrum 

E) TDCA UV- spectrum and F) PDCA UV- spectrum 

However, the duration of analysis increased three-fold. The analysis time reduction with the core-shell 

particles is in accordance with the particle morphology favoring a quick mass transfer from the mobile 

phase through to the outer layer of stationary phase and back again. Validation of the method under 

the optimized conditions for the core-shell and fully porous column is presented in Table 2. Calibration 

curves were linear for all markers between 0.25 and 10 µg/mL with r  0.9999. The calculated limit of 



 

detection and quantification (LOD and LOQ) were similar for both column over the range from 0.015 

to 0.020 µg/mL for the core-shell column and from 0.013 to 0.016 µg/mL for the fully porous column.  

Table 2. Validation of the method with respect to linearity of calibration, retention time of the four 

melanin markers studied.  

Values were calculated as means of n = 3 

*Retention times of standards at 10 µg/mL, injection volume of 20µL 
LOD: limits of detection calculated as LOD = 3.3(SD/S); LOQ: limits of quantification; calculated as LOQ = 10(SD/S); RSD (%): percentage 

relative standard deviation. 

The first line corresponds to results obtained with Kinetex EVO C18 column and the second with the Gemini C18 column 

 

3.2 SPE extraction optimization of standards  

In order to take into account the ionization capacity of melanin markers at basic pH, a weak anion 

exchange extraction was realized. Analytical conditions are critical for satisfactory elution and recovery 

of compounds in SPE. For that we first tested the extraction method using aqueous melanin standards. 

Strata-X-AW 33µm cartridges were selected to provide relatively high recoveries due to their capacity 

of interaction with acidic compounds (pKa<5) as the sorbent consists of a weak anion polymer. In 

addition, the polymer tolerates a wash step with 100% of organic solvent. For the first step, the sorbent 

was conditioned with 100% acetonitrile and 100 mmol/L sodium acetate pH 5.2. At this pH, at least 

one acidic function of melanin markers loses a proton and is retained by the sorbent. The elution step 

was performed comparing 5% (v/v) aqueous NH4OH and 5% (v/v) NH4OH in 95% methanol or 

acetonitrile. Direct HPLC injection of extracts after adjustment to pH 3.3 produces deformed 

chromatographic peaks (data not shown), principally due to composition differences between sample 

solvent and mobile phase. To overcome these problems, extracts were lyophilized overnight and 

reconstituted with the mobile phase before injection. Lyophilisation of aqueous NH4OH is easier to 

handle in contrast to organic solvents since sample freezing is achieved at -20°C. Another advantage 

of reconstitution of lyophilized extracts is the possibility of pre-concentration of analytes, in case of 

samples with low melanin content. The recovery results of aqueous standard solution were calculated 

by comparison of analyte amounts obtained after extractions and those in the initial working solutions. 

Average recovery at 2 and 4 g/mL (Table 3) exhibit very high recovery values between 91 and 96%, 

with an RSD between 5 to 7%.  

Markers 
(Wavelength, 

nm) 

Linearity 
range 

(µg/mL) 

Retention 
time (RT) * 

(min) 
Regression equation 

Correlation 
(r2) 

LOD 
(µg/mL) 

LOQ 
(µg/mL) 

%RSD 
(RT) 

%RSD 
 (peak 
area) 

TTCA (225) 0.25-10 
2.13 
5.11 

y = 663.119X + 1.347 
y = 66.536x – 0.791 

1.0000 
1.0000 

0.017 
0.016 

0.050 
0.048 

0.03 
0.10 

0.17 
0.03 

PDCA (280) 0.25-10 
2.80 
6.34 

y = 119.861x -1.2203 
y = 129.436x -1.595 

1.0000 
1.0000 

0.015 
0.014 

0.047 
0.041 

0.04 
0.06 

0.27 
0.06 

TDCA (254) 0.25-10 
3.26 
7.85 

y = 87.620x – 2.299 
y = 88.175x – 0.713 

1.0000 
1.0000 

0.020 
0.013 

0.060 
0.039 

0.02 
0.06 

0.06 
0.04 

PTCA (225) 0.25-10 
4.34 

12.23 
y = 115.390x +1.063 
y = 119.803x -1.269 

1.0000 
1.0000 

0.016 
0.013 

0.048 
0.040 

0.05 
0.06 

0.39 
0.03 



 

Table 3. Recoveries obtained by SPE from aqueous solutions of standards containing PTCA, PDCA, TDA 

and TTCA at 2 and 4 µg/mL. 

 

 

 

 

 

3.3 SPE extraction in spiked biological samples 

The SPE extraction was performed using fortified depigmented cell extracts (A375 cell lines) at 1, 2 and 

5 µg/mL. HPLC-DAD analysis of all fractions from the different steps of SPE extraction was performed 

and compared to the untreated sample analysis. Satisfactory recovery values for TTCA, PTCA, PDCA 

and TDCA standards were obtained (97.8; 97.7; 99.1 and 103.4% respectively with RSD  5.6%) for the 

spiked depigmented cell line samples (Table 4), validating the use of weak anion exchange SPE method 

fo r the analysis of melanin markers in biological matrix. 

Table 4. Recoveries obtained after SPE from spiked A375 cells at three concentrations. 

  
 

Expected 
mass (µg) Measured mass (µg) Recovery (%) 

TTCA 

0.877 0.881 100.4 

2.196 2.105 95.8 

4.393 4.266 97.1 

mean   
 97.8 

SD   
 2.4 

RSD (%)  
 2.4 

PTCA 

1.003 1.041 103.9 

2.511 2.350 93.6 

5.022 4.804 95.7 

mean    97.7 

SD    5.4 

RSD (%)   5.6 

PDCA 

0.989 1.041 102.9 

2.478 2.350 96.9 

4.955 4.804 97.5 

mean    99.1 

SD    3.3 

RSD (%)   3.4 

TDCA 

0.980 0.980 100.0 

2.454 2.580 105.1 

4.908 5.160 105.1 

mean    103.4 

SD    3.0 

RSD (%)     2.9 

  

Concentration  
(µg/mL) 

% Recovery 

TTCA PDCA TDCA PTCA 

2 
87.6 89.2 85.9 86.4 
98.4 100.2 99 98.9 
87.3 91.3 88.8 88.6 

4 
87.7 91.6 86.9 87.0 
99.0 101.8 92.6 94.2 

102.0 104.2 93.8 97.6 
mean 93.7 96.4 91.2 92.1 
STD 6.8 6.4 4.9 5.5 

RSD (%) 7.3 6.6 5.4 6.0 



 

Chromatograms of untreated samples and the elution SPE fraction of non–spiked and spiked A375 

samples are presented in Figure 3. Chromatograms of untreated samples (Figure 3A) present weak 

retained compounds with high response signals of about 2000 mAU. In Figure 3B, chromatogram 

overlay of a sample before and after SPE shows that SPE disminishes large quantities of highly polar 

products that are weakly retained by the stationary phase. A peak at 8.30 min that co-eluted with TDCA 

is totally removed after SPE extraction, as are small interference peaks at the retention time of TTCA 

(5.42 min). Figures 3C and 3D allow the comparison of a crude sample before SPE and the sample 

spiked with a mixture of four markers at a concentration of 1 µg/mL after SPE. This comparison shows 

that melanin standard peaks are well separated from minor matrix sample peaks that remain after SPE 

extraction. All together, these results demonstrate the improvement of the chromatographic profile 

using SPE extraction. The remaining peaks after SPE extraction, other than melanin standards, are 

probably ionic compounds that have very similar UV spectra with a maximum of absorption around 

254nm.  

 

Figure 3. Chromatograms obtained by RP-HPLC-DAD (Column: Gemini C18, 150 x 3 mm, 3µm particle size, 100 Å 

pore size, Phenomenex) of A375 non-pigmented cells. A) crude sample before SPE method. A break was 

introduced in the x-axis and note the differences in y-axis scales. B) overlay of a crude sample before and after 

SPE. C) overlay of a crude sample before SPE and a spiked sample with a mixture of four markers (at a 

concentration of 1 µg/mL) after SPE. D) zoom of chromatogram C that shows the zone of interest between 5 and 

15 min of analysis. 

 

 



 

3.4 Application to melanoma samples 

The analysis of eumelanin and pheomelanin in melanoma cells and tumors was then achieved with the 

validated method. In Figure 4, we present an example of a chromatogram of a SK-MEL-3 pigmented 

tumor. Figure 4A shows the reduction of matrix peaks after SPE. Focus in analysis time between 1.5 

and 2 min (Figure 4B) highlights the TTCA markers present in SK-MEL-3 samples. Different detection 

wavelengths and UV spectrum library of melanin markers were used to confirm the identity of markers. 

The correlation of UV spectra between reference standards and markers in samples is expressed as a 

match factor (values from 0 to 1000). To confirm the peak identity we fixed the match factor upper 

limit to 970, corresponding to 97.0% peak purity. For Figure 4B, the match factor of peaks in the load 

and elution fraction that have the same retention time as TTCA are 905 and 996.5 respectively, 

confirming the presence of TTCA in the elution fraction and the removal of interference in the load 

fraction. The PTCA peak at 4.2 min is detected in the elution fraction.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Chromatograms of SK-MEL-3 tumor obtained by RP-HPLC-DAD (column: Kinetex Evo C18, 150 x 3 mm, 

2.6 µm particle size, 100 A pore size from Phenomenex ) after SPE: ___  fraction obtained during sample loading,  

___Elution-fraction, ___UV spectrum of standards,  UV−−−
−−−  spectrum of the sample. A) Chromatograms between 

0 and 6 min of analysis corresponding to maximum elution time of melanin markers B) Zoom between 1.5 and 3 

min corresponding to the TTCA elution zone C) Zoom between 3 and 5 min of analysis corresponding to the PTCA 

elution zone. 

We use the previously reported factors of 34 to convert TTCA to pheomelanin and 80 for conversion 

of PTCA into eumelanin [12], for human melanoma samples. We find a good positive ratio (0.91 +/-



 

0.22; n=10) between EM+PM obtained by HPLC and total melanin measured by the standard 

spectrophotometric method at 405nm, indicating a good fit of the conversion factor employed. 

However, for murine tumors the best fit was obtained when eumelanin was calculated by multiplying 

PTCA by a factor of 60 (EM+PM/TM of 1.04 +/- 0.25) instead of 80 (EM+PM/TM of 1.35 +/- 0.35). The 

PTCA conversion factor is subject to several variables such as DHI/DHICA ratio in EM, which can be 

modified by the Tyrp activity. We hypothesize that the variation comes from a different ratio of 

DHI/DHICA in melanoma tumors between mice and humans.   

The determination of EM and PM in melanoma tumors and cells of different pigmentation is presented 

in Figures 5A and 5B respectively. B16BL6 murine melanoma tumors are highly pigmented with 98.2 % 

of eumelanin. In parallel, TTCA was below of the detection limit for the B16BL6 cells, highlighting the 

eumelanic pigmentation of this cell line. Similarly, the murine B16F10 cell line is mainly eumelanic but 

it is 35% less pigmented, although this difference is not perceived visually. These results are in 

agreement with the literature on cells from C57BL/6J black mice which contain mostly the EM pigment 

[15,24,25]. Less pigmented SK-MEL-3 human melanoma tumors and NHEM cells contain about 30% 

and 24% of pheomelanin respectively. The obtained percentage of pheomelanin in SK-MEL-3 tumors  

and NHEM can be compared to recent published data of melanin content in human epidermis that 

show approximately 26 % of pheomelanin and 74% of eumelanin independently of the degree of 

pigmentation [26].  

 

 

 

 

 

 

 

 

 

 

Figure 5. Content of eumelanin and pheomelanin in:  A) murine melanoma tumors B16BL6 (n=10) and human 

melanoma tumors SK-MEL-3 (n=10); B) murine melanoma cells B16BL6 (n=2), B16F10 (n=2) and human 

melanocytes (n=4). 
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A good correlation (r2 = 0.7849 and 0.9046; P <0.0001) is observed between total melanin obtained by 

chemical degradation method followed by SPE and HPLC analysis and total melanin measured by 

spectrophotometric method after potassium hydroxide solubilization for tumors and cells (Figure 6A 

and 6B), another indication of the good fit of the employed conversion factors.  

 

Figure 6. Correlation between total melanin obtained by chemical degradation method followed by SPE and HPLC 

analysis (eumelanin EM, and pheomelanin PM) versus total melanin (TM) content after potassium hydroxide 

solubilisation measured at 405nm. A) Melanoma tumors B16BL6 (n=10) and human melanoma tumors SK-MEL-

3 (n=10); B) murine melanoma cells B16BL6 (n=2), B16F10 (n=2) and human melanocytes (n=4). Correlation are 

significant at P < 0.0001. 

In order to confirm the advantages of the developed SPE-HPLC method, we present in Table 5 the 

comparison of results obtained after the analysis of melanoma tumors (B16BL6 and SK-Mel-3) and cell 

lines (B16BL6, B16F10 and human melanocytes) with and without SPE. The match factors between UV 

spectra of TTCA and PTCA markers of standards and samples are presented in heat map form. We fix 

minimum, middle and upper match factor limits at 960, 970 and 990 respectively. We show that match 

factors of chromatographic peaks corresponding to the retention time of TTCA obtained without SPE 

for SK-MEL-3 tumors are between 860 and 967, indicating the low purity produced by co-elution of 

matrix compounds. The TTCA marker was not detectable in the NHEM cells in this condition. After SPE 

 

A 

B 



 

treatment of the same sample, we observe an excellent improvement of TTCA match factors to 968 to 

999, reflecting the elimination of matrix interferences. In the case of NHEM cells, the TTCA becomes 

quantifiable and is unambiguously identified (match factor 974 to 999). The impact of SPE is less 

pronounced for the PTCA marker. Notwithstanding, improvements are evident in the analysis of 

B16BL6 and B16F10 cell lines, resulting in a best match between the melanin detected by HPLC after 

SPE and the total melanin measured by  the spectrophotometric method. 

Table 5. Comparison of melanin content in tumor and cells samples after HPLC analysis with and 

without the developed SPE method. 

 Values of EM, PM, EM+PM and Total melanin at 405 nm are expressed in µg/mg tumor or µg/106 cells 

 Match factor between UV spectra of melanin markers standards and markers in sample is presented in heat map form. 
Minimum, middle and upper limit were fixed at 960, 970 and 990, respectively. 

 <LOD below the limit of detection 

 

4. Conclusions  

Weak anion exchange solid-phase extraction offers a consistent, inexpensive and suitable preparation 

method to improve eumelanin and pheomelanin determination in melanomas with high recoveries 

(97 to 103%) of melanin markers and good precision (RSD  5.6%). The optimized HPLC-DAD method 

increases the detection sensitivity of melanin markers, with detection limits ranging from 0.015 to 

0.020 µg/mL. This method reduces the time of analysis and enables a decrease of solvent consumption, 

since complete marker elution is achieved in 5 min and the total analysis of complex samples is 

accomplished in 15 min.   

UV

match
Aire 

(mAU*s)
match

Aire 

(mAU*s)
match

Aire 

(mAU*s)
match

Aire 

(mAU*s)

Tumor B16L6 #1 929.1 997.4 839 27.16 27.16 972.0 26.4 0.32 998.0 2024 23.84 24.16 23.05 1.3 98.7

Tumor B16BL6 #2 860.4 996.7 815 26.95 26.95 968.1 38.4 0.47 995.7 2075 24.96 25.43 17.53 1.8 98.2

Tumor B16BL6 #3 919.4 993.2 889 26.39 26.39 978.8 37.8 0.38 997.1 2280 22.57 22.95 18.39 1.7 98.3

Tumor  SK-MEL-3  #1 966.8 37.4 1.13 991.8 99 3.94 5.07 998.9 209.9 2.12 996.9 427 5.64 7.76 8.81 27.3 72.7

Tumor SK-MEL-3  #2 962.0 993.1 189 8.56 8.56 998.5 186.5 2.34 997.1 419 6.89 9.23 9.27 25.4 74.6

Tumor SK-MEL-3  #3 960.5 991.9 232 10.99 10.99 999.1 292.5 3.85 997.3 556 9.58 13.42 14.51 28.7 71.3

Cell B16BL6 #1 <LOD 978.2 133 15.22 15.22 <LOD 994.5 719 14.16 14.16 11.00 100

Cell B16L6 #2 <LOD 982.8 112 11.86 11.86 <LOD 989.9 429 8.66 8.66 8.71 100

Cell B16F10 #1 <LOD 968.7 63 6.20 6.20 <LOD 997.4 210 4.16 4.16 4.26 100

Cell B16F10 #2 <LOD 965.3 62 6.03 6.03 <LOD 995.6 205 4.00 4.00 4.12 100

Cell MHEN #1 <LOD 996.3 181 33.4 33.38 998.5 245.9 7.82 995.3 711 29.6 37.46 19.58 20.9 79.1

Cell MHEN #2 <LOD 992.3 173 23.3 23.27 992.4 174.6 5.60 992.2 426 17.9 23.48 14.27 23.9 76.1

Cell MHEN #3 <LOD 993.0 199 28.1 28.08 992.3 208.4 6.61 993.1 545 22.6 29.25 14.06 22.6 77.4

Cell MHEN #4 <LOD 990.4 229 50.8 50.75 973.9 107.2 7.26 992.3 209 18.5 25.76 11.408 28.2 71.8

Total 

melanin 

405 nm

%PM %EM
Sample

PM EM PM+EM PM

HPLC without SPE HPLC with SPE

TTCA PTCA TTCA PTCA
EM PM+EM
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