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Linear–Quadratic control for a class of stochastic Volterra

equations: solvability and approximation

Eduardo ABI JABER ∗ Enzo MILLER † Huyên PHAM ‡

November 4, 2019

Abstract

We provide an exhaustive treatment of Linear–Quadratic control problems for a
class of stochastic Volterra equations of convolution type, whose kernels are Laplace
transforms of certain signed matrix measures which are not necessarily finite. These
equations are in general neither Markovian nor semimartingales, and include the frac-
tional Brownian motion with Hurst index smaller than 1/2 as a special case. We
establish the correspondence of the initial problem with a possibly infinite dimensional
Markovian one in a Banach space, which allows us to identify the Markovian controlled
state variables. Using a refined martingale verification argument combined with a
squares completion technique, we prove that the value function is of linear quadratic
form in these state variables with a linear optimal feedback control, depending on non-
standard Banach space valued Riccati equations. Furthermore, we show that the value
function of the stochastic Volterra optimization problem can be approximated by that
of conventional finite dimensional Markovian Linear–Quadratic problems, which is of
crucial importance for numerical implementation.
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1 Introduction

Let us consider the basic problem of controlling the drift α of a real-valued Brownian
motion W

Xα
t =

∫ t

0
αsds+Wt, t ≥ 0, (1.1)

in order to steer the system to zero with minimal effort by minimizing over a finite horizon
the cost functional

J(α) = E

[ ∫ T

0

(
|Xα

t |2 + α2
t

)
dt
]
.

This problem fits into the class of linear-quadratic (LQ) regulator problem, and can be
explicitly solved by different methods including standard dynamic programming, maximum
principle or spike variation methods relying on Itô stochastic calculus. It is well-known,
see e.g. [30, Chapter 6], that the optimal control α∗ is in linear feedback form with respect
to the optimal state process X∗ = Xα∗

:

α∗
t = −Γ(t)X∗

t , 0 ≤ t ≤ T,
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where Γ is a deterministic nonnegative function solution to a Riccati equation, actually
explicitly given by Γ(t) = tanh(T − t), and thus the associated optimal state process X∗

is a mean-reverting Markov process.
Suppose now that the noiseW is replaced by a Gaussian process with memory, typically

a fractional Brownian motion, or more generally by stochastic Volterra processes. It is then
natural to ask how the structure of the solution is modified, and how it can be derived,
knowing that, in this case, usual methods for Markov processes and stochastic calculus for
semimartingales can no longer be applied.

Stochastic Volterra processes appear in different applications for population dynamics,
tumour growth, or energy finance, and provide suitable models for dynamics with memory
and delay, see [8, 16, 25]. These processes have known a growing interest in finance with
the recent empirical findings on rough volatility in [15]. Stochastic Volterra equations have
been studied by numerous authors, see [4, 22, 23] and the references therein.

In this paper, we address the optimal control of d-dimensional stochastic Volterra equa-
tions of the form:

Xα
t = g0(t) +

∫ t

0
K(t− s)

(
b(s,Xα

s , αs)ds+ σ(s,Xα
s , αs)dWs

)
, (1.2)

where g0 is a deterministic function and K is a (convolution) matrix-valued kernel of the
form

K(t) =

∫

R+

e−θtµ(dθ), t > 0,

for some signed matrix measure µ. Our framework covers the case of the fractional kernel
K(t) = tH−1/2/Γ(H + 1/2) with H ≤ 1/2, arising from the Mandelbrot-Van Ness repre-
sentation of the fractional Brownian motion with Hurst index H. We shall mainly focus
on the case where the coefficients b and σ are in linear form with respect to the state and
control arguments, and the cost to be minimized is of linear-quadratic form.

Since the (controlled) stochastic Volterra process (1.2) is neither Markovian nor a semi-
martingale, it is natural to consider Markovian lifts for which suitable stochastic tools and
control methods apply. Inspired by the Markovian representation of fractional Brownian
motion introduced in [10], and more recently generalized to several un–controlled stochastic
Volterra equations in [2, 11, 18], we establish the correspondence of the initial problem with
a lifted Markovian controlled system (Y α

t )t∈[0,T ] taking its values in the possibly infinite-
dimensional Banach space L1(µ). Next, in the LQ case, i.e., when b, σ are of linear form,
and the cost function is linear-quadratic, we prove by means of a refined martingale veri-
fication argument combined with a squares completion technique, that the value function
is of quadratic form while the optimal control is in linear feedback form with respect to
these lifted state variables. The coefficients of the quadratic and linear form of the value
function and optimal control are expressed in terms of a non-standard system of integral
operator Riccati equations whose solvability (existence and uniqueness) is proved in [5]. A
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related infinite-dimensional Riccati equation appeared in [7] for the minimization problem
of an energy functional defined in terms of a non-singular (i.e. K(0) < ∞) completely
monotone kernel. We stress that, although there exists several results for LQ control prob-
lems in infinite-dimension, and even for Volterra processes (see [9]), they cannot be applied
in our Banach-space context as they only concern Hilbert spaces. As detailed above, the
first contribution of our paper lies in the rigorous derivation of the optimal solution for
the stochastic Volterra control problem. A second important feature of our approach is to
provide a natural approximation of such solution by a suitable discretization of the measure
µ, leading to conventional finite-dimensional LQ control problems, which involve standard
matrix Riccati equations that can be numerically implemented.

The paper is organized as follows. In Section 2, we formulate the control problem,
justify the correspondence with the lifted Markovian system in the Banach space L1(µ),
and formally derive the Riccati equation. Section 3 presents the main results:

(i) the analytic expression and solvability of the value function and optimal control in
terms of a Banach-space valued Riccati equation. We illustrate our general result
on the LQ regulator example mentioned in the beginning of the introduction with a
fractional noise with Hurst parameter H ≤ 1/2;

(ii) a general stability result for the solution of the stochastic Volterra control problem
with respect to the kernel and its application for the approximation of the solution.

In Section 4, we prove a general existence result for SDEs with Lipschitz coefficients in
Banach spaces, which is used in particular to get the existence of an optimal control for
the LQ Volterra control problem. In Section 5, we provide a refined martingale verification
theorem for LQ control problem in our context, which mainly relies on Itô’s formula for
quadratic functions in Banach spaces. The proof of the solvability result (i) is completed
in Section 6, and that of the stability result (ii) is detailed in Section 7.

Related literature. The optimal control of stochastic Volterra equations has been consi-
dered in [29] by maximum principle method leading to a characterization of the solution in
terms of a backward stochastic Volterra equation for the adjoint process. In [6], the authors
also use the maximum principle together with Malliavin calculus to obtain a corresponding
adjoint equation as a standard backward SDE. Although the kernel considered in these
aforementioned papers is not restricted to be of convolution type, the required conditions
do not allow singularity of K at zero, hence excluding the case of a fractional kernel with
parameter H < 1/2. More recently, an extended Bellman equation has been derived in [17]
for the associated controlled Volterra equation.

The solution to the LQ control problem as in (1.1) with controlled drift and additive
noise has been obtained in [21] when the noise is a fractional Brownian motion with Hurst
parameter H > 1/2, and in [12] when the noise is a general Gaussian process with an
optimal control expressed as the sum of the well-known linear feedback control for the
associated deterministic linear-quadratic control problem and the prediction of the response
of the system to the future noise process. Recently, the paper [28] investigated LQ problem
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of stochastic Volterra equations by providing characterizations of optimal control in terms
of some forward-backward system, but leaving aside their solvability, and under some
coefficients assumptions that preclude singular kernels such as the fractional kernel with
parameter H < 1/2.

Notations. For a Banach space B, L2([0, T ],B) denotes the space of measurable and
square integrable functions from [0, T ] to B.

For any d× d1-matrix valued measure µ1 on R+, we denote by |µ1| its total variation,
which is a scalar nonnegative measure, refer to [16, Section 3.5] for more details. The space
L1(µ1) consists of µ1-a.e. equivalence classes of |µ1|-integrable functions ϕ : R+ → R

d1

endowed with the norm ‖ϕ‖L1(µ1) =
∫
R+

|µ1|(dθ)|ϕ(θ)|, where we identify the function ϕ
with its class of equivalence. For any such ϕ the integral

∫

R+

µ1(dθ)ϕ(θ)

is well defined by virtue of the inequality

∣∣∣∣
∫

R+

µ1(dθ)ϕ(θ)

∣∣∣∣ ≤
∫

R+

|µ1|(dθ)|ϕ(θ)|,

see [16, Theorem 5.6]. If µ2 is a d × d2-matrix valued measure, the space L1(µ1 ⊗ µ2)
consists of µ1⊗µ2-a.e. equivalence classes of |µ1|⊗|µ2|-integrable functions Φ : R2

+ → R
d×d

endowed with the norm ‖Φ‖L1(µ1⊗µ2) =
∫
R2
+

|µ1|(dθ)|Φ(θ, τ)||µ2|(dθ) <∞. For any such Φ,

the integral ∫

R2
+

µ1(dθ)
⊤Φ(θ, τ)µ2(dτ)

is again well defined by virtue of [16, Theorem 5.6]. Both (L1(µ1), ‖ · ‖L1(µ)) and (L1(µ1 ⊗
µ2), ‖·‖L1(µ1⊗µ2)) are Banach spaces, see [24, Theorem 3.11]. We also denote by L∞(µ1) the

set of measurable functions ψ : R+ → R
d1 , which are bounded µ1-a.e., and by L∞(µ1⊗µ2)

the set of measurable functions Φ : R2
+ → R

d×d, which are bounded µ1 ⊗ µ2-a.e, that we
endow with their usual norms ‖ψ‖L∞(µ1) and ‖Φ‖L∞(µ1⊗µ2).

2 Formulation of the problem and preliminaries

Let (Ω,F ,F = (Ft)t≥0,P) be a filtered probability space supporting a one dimensional
Brownian motion W . Fix T > 0 and d, d′,m ∈ N. We consider a controlled d-dimensional
stochastic Volterra equation

Xα
t = g0(t) +

∫ t

0
K(t− s)b(s,Xα

s , αs)ds+

∫ t

0
K(t− s)σ(s,Xα

s , αs)dWs, (2.1)
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where α is an element of the admissible set

A =

{
α : Ω× [0, T ] → R

m progressively measurable such that sup
0≤t≤T

E
[
|αt|4

]
<∞

}
,

g0 : [0, T ] → R
d is a measurable function, K : [0, T ] → R

d×d′ is a measurable kernel, and
b, σ : [0, T ] × R

d × R
m → R

d′ are of affine form:

b(t, x, a) = β(t) +Bx+ Ca,

σ(t, x, a) = γ(t) +Dx+ Fa,

where B,D ∈ R
d′×d, C,F ∈ R

d′×m, and β, γ : [0, T ] → R
d′ are measurable functions. We

are chiefly interested in the case where K is the Laplace transform

K(t) =

∫

R+

e−θtµ(dθ), t > 0, (2.2)

of a signed d× d′–measure µ satisfying
∫

R+

(
1 ∧ θ−1/2

)
|µ|(dθ) <∞, (2.3)

where |µ| denotes the total variation of µ. While condition (2.3) does not exclude µij(R+) =
±∞ for some i ≤ d, j ≤ d′, or equivalently a singularity of the kernel K at 0, it does ensure
that K ∈ L2([0, T ],Rd×d′ ) and that |µ| is σ-finite, see Lemma A.1. The former implies that
the stochastic convolution

t 7→
∫ t

0
K(t− s)ξsdWs

is well defined as an Itô integral, for every t ≤ T , for any progressively measurable process
ξ such that

sup
t≤T

E
[
|ξt|2

]
<∞.

Indeed,

E

[∫ t

0
|K(t− s)|2|ξs|2ds

]
≤ ‖K‖2L2(0,T ) sup

s≤T
E
[
|ξs|2

]
<∞,

for every t ≤ T . The convolution

t 7→
∫ t

0
K(t− s)ξsds,

is also well defined for every t ≤ T , by virtue of the Cauchy–Schwarz inequality.
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We can now make precise the concept of solution to the controlled equation (2.1). By
a solution to (2.1), we mean an F-adapted process Xα with continuous sample paths such
that (2.1) holds for all t ≤ T , P-almost surely. Under (2.2)-(2.3), assuming that β, γ
are measurable and bounded, Theorem 4.4 shows that the controlled stochastic Volterra
equation (2.1) admits a unique continuous solution Xα, for any continuous input curve g0,
and any admissible control α ∈ A. Furthermore, it holds that

sup
0≤t≤T

E
[
|Xα

t |4
]
<∞. (2.4)

Remark 2.1. Notice that due to the possible singularity of the kernel K, and in contrast
with standard stochastic differential equations, the solution Xα to the controlled stochastic
Volterra equation does not satisfy in general the usual square integrability condition of
the form: E[sup0≤t≤T |Xα

t |2] < ∞. For this reason, we impose the stronger condition
supt≤T E[|α|4t ] < ∞ for the set of admissible controls A, which will turn out to be crucial
for the martingale verification result, see Section 5. �

We consider a cost functional given by

J(α) = E

[ ∫ T

0
f(Xα

s , αs)ds
]
, (2.5)

where the running cost f has the following quadratic form

f(x, α) = x⊤Qx+ α⊤Nα+ 2x⊤L, (2.6)

for some Q ∈ S
d
+, N ∈ S

m
+ and L ∈ R

d. Here S
d
+ denotes the set of d-dimensional nonnega-

tive symmetric matrices. Note that by virtue of (2.4), J(α) is well defined for any α ∈ A.
The aim is to solve

V0 = inf
α∈A

J(α). (2.7)

Before going further, let us mention several kernels of interest that satisfy (2.2)-(2.3).

Example 2.2. (i) Smooth kernels: if |µij(R+)| < ∞, for every i = 1, . . . , d, j = 1, . . . , d′,
then (2.3) is satisfied and K is infinitely differentiable on [0, T ]. This is the case,
for instance, when µ(dθ) =

∑n
i=1 c

n
i δθni (dθ), for some cni ∈ R

d×d′ and θni ∈ R+,
i = 1, . . . , n, which corresponds to

K(t) =

n∑

i=1

cni e
−θn

i
t.

(ii) The fractional kernel (d = d′ = 1)

KH(t) =
tH−1/2

Γ(H + 1/2)
, (2.8)
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for some H ∈ (0, 1/2), which is the Laplace transform of

µH(dθ) =
θ−H−1/2

Γ(H + 1/2)Γ(1/2 −H)
dθ, (2.9)

and more generally the Gamma kernel K(t) = KH(t)e−ζt for H ∈ (0, 1/2) and ζ ∈ R

for which

µ(dθ) =
(θ − ζ)−H−1/2

1(ζ,∞)(θ)

Γ(H + 1/2)Γ(1/2 −H)
dθ.

(iii) If K1 and K2 satisfy (2.2), then so does K1 + K2 and K1K2 with the respective
measures µ1 + µ2 and µ1 ∗ µ2. When µ1, µ2 satisfy (2.3), it is clear that µ1 + µ2
also satisfies (2.3). This condition is satisfied for the convolution µ1 ∗ µ2 provided∫
[1,∞)2(θ + τ)−1/2µ1(dθ)µ2(dτ) < ∞, which is the case for instance if either µ1(R+)

or µ2(R+) are finite.

(iv) If K is a completely monotone kernel, i.e. K is infinitely differentiable on (0,∞) such
that (−1)nK(n)(t) is nonnegative for each t > 0, then, by Bernstein’s theorem, there
exists a nonnegative measure µ such that (2.2) holds, see [16, Theorem 5.2.5].

�

2.1 Markovian representation

The solution Xα of (2.1) is in general neither Markovian nor a semimartingale as illustrated
by the Riemann–Liouville fractional Brownian motion

t 7→ 1

Γ(H + 1/2)

∫ t

0
(t− s)H−1/2dWs, H ∈ (0, 1/2],

which is Markovian and a martingale only for H = 1/2. Inspired by the Markovian repre-
sentation of fractional Brownian motion introduced in [10], and more recently generalized
to several un–controlled stochastic Volterra equations for kernels of the form (2.2), see
[2, Section 4]; [11, Section 5.1]; [18]; we establish in the following theorem, by means of
stochastic Fubini’s theorem, the correspondence of (2.1) with a possibly infinite dimensional
Markovian controlled system of the form





dY α
t (θ) =

(
−θY α

t (θ) + b̃
(
t,
∫
R+
µ(dτ)Y α

t (τ), αt

))
dt

+ σ̃
(
t,
∫
R+
µ(dτ)Y α

t (τ), αt

)
dWt

Y α
0 (θ) = 0,

(2.10)
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where the coefficients b̃ : [0, T ]×R
d ×R

m → R
d′ , σ̃ : [0, T ]×R

d ×R
m → R

d′ are defined by

b̃(t, x, a) = β̃(t) +Bx+ Ca,

σ̃(t, x, a) = γ̃(t) +Dx+ Fa,

with
β̃ = β +Bg0 and γ̃ = γ +Dg0.

Theorem 2.3. Let g0, β, γ be bounded functions on [0, T ] and K be given as in (2.2) such
that (2.3) holds. Fix α ∈ A. Assume that there exists a progressively measurable process

Xα that solves (2.1), P-a.s., for each t ≤ T , and that (2.4) holds. Then, for each t ≤ T ,
Xα

t admits the representation

Xα
t = g0(t) +

∫

R+

µ(dθ)Y α
t (θ), (2.11)

where, for each θ ∈ R+,

Y α
t (θ) =

∫ t

0
e−θ(t−s)b(s,Xα

s , αs)ds +

∫ t

0
e−θ(t−s)σ(s,Xα

s , αs)dWs. (2.12)

In particular, Y α can be chosen to have continuous sample paths in L1(µ), satisfies

sup
t≤T

E

[
‖Y α

t ‖4L1(µ)

]
<∞, (2.13)

sup
t≤T

sup
θ∈R+

|Y α
t (θ)| <∞, (2.14)

and for each θ ∈ R+, t 7→ Y α
t (θ) solves (2.10). Conversely, assume that there exists a

process Y α continuous in L1(µ) solution to (2.10), i.e., such that

Y α
t (θ) =

∫ t

0
e−θ(t−s)b̃

(
s,

∫

R+

µ(dτ)Y α
s (τ), αs

)
ds

+

∫ t

0
e−θ(t−s)σ̃

(
s,

∫

R+

µ(dτ)Y α
s (τ), αs

)
dWs, P⊗ µ− a.e. (2.15)

for each t ≤ T , and that (2.13) holds. Then, the process Xα given by (2.11) is a continuous

solution to (2.1) such that (2.4) holds.

Proof. Fix t ≤ T and set Zα
t =

∫ t
0 b(s,X

α
s , αs)ds+

∫ t
0 σ(s,X

α
s , αs)dWs. We first plug (2.2)

in (2.1) to get

Xα
t − g0(t) =

∫ t

0
K(t− s)dZα

s =

∫ t

0

(∫

R+

µ(dθ)e−θ(t−s)

)
dZα

s .

9



An application of stochastic Fubini’s, see [26, Theorem 2.2], yields

∫ t

0

(∫

R+

µ(dθ)e−θ(t−s)

)
dZα

s =

∫

R+

µ(dθ)

(∫ t

0
e−θ(t−s)dZα

s

)
,

where the interchange is possible since by Jensen’s inequality on the normalized measure
(1 ∧ θ−1/2)µ(dθ)/

∫
R+

(1 ∧ τ−1/2)µ(dτ) the term

∫

R+

(∫ t

0
e−2θ(t−s)

E [d〈Zα〉s]
)1/2

|µ|(dθ)

is bounded from above, for some c > 0 by,

c
√

sup
r≤T

(|γ(r)|2 + E [|αr|2] + E [|Xα
r |2])

(∫

R+

1− e−2θt

2θ

(
1 ∧ θ1/2

)
|µ|(dθ)

)1/2

which is finite due to the inequality

(
1− e−2θt

)

2θ
≤ 1

2
(1 ∨ 2t)

(
1 ∧ θ−1

)
, (2.16)

condition (2.3), the boundedness of γ, the admissible set A and the estimate (2.4). The
interchange is justified similarly for the drift part. If follows that

Xα
t = g0(t) +

∫

R+

µ(dθ)

(∫ t

0
e−θ(t−s)dZα

s

)
= g0(t) +

∫

R+

µ(dθ)Y α
t (θ)

where Y α
t (θ) is given by (2.12) and corresponds to the variation of constants formula

of (2.10). The claimed continuity statement together with (2.13)-(2.14) are proved in
Lemma 4.3. The converse is proved along the exact same lines by working them backward.

Remark 2.4. An alternative lift approach, in the spirit of [2, 13, 17, 20, 27], consists in
introducing the double-indexed (controlled) processes

Gα
t (u) = E

[
Xα

u −
∫ u

t
K(u− s)b(s,Xα

s , αs)ds
∣∣∣ Ft

]
, 0 ≤ t ≤ u ≤ T.

The control problem can then be reformulated in terms of the infinite dimensional controlled
Markov process {Gα

t (.), t ∈ [0, T ]} with Itô dynamics

dGα
t (u) = K(u− t) (b(t,Xα

t , αt)dt+ σ(t,Xα
t , αt)dWt) , 0 ≤ t < u ≤ T.

�
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2.2 Formal derivation of the solution

Thanks to Theorem 2.3, the possibly non-Markovian initial problem can be formally recast
as a degenerate infinite dimensional Markovian problem in L1(µ) on the state variables
Y α given by (2.10). To see this, we define the mean-reverting operator Amr acting on
measurable functions ϕ ∈ L1(µ) by

(Amrϕ)(θ) = −θϕ(θ), θ ∈ R+, (2.17)

and consider the dual pairing

〈ϕ,ψ〉µ =

∫

R+

ϕ(θ)⊤µ(dθ)⊤ψ(θ), (ϕ,ψ) ∈ L1(µ)× L∞(µ⊤).

For any matrix–valued kernel G, we denote by G the integral operator induced by G,
defined by:

(Gφ)(θ) =

∫

R+

G(θ, θ′)µ(dθ′)φ(θ′).

Notice that when G ∈ L∞(µ ⊗ µ), the operator G is well-defined on L1(µ), and we have
Gφ ∈ L∞(µ⊤) for φ ∈ L1(µ). In this case, 〈φ,Gψ〉µ is well defined for all ϕ,ψ ∈ L1(µ).
When G ∈ L1(µ⊗µ), the operator G is well-defined on L∞(µ), and we have Gφ ∈ L1(µ⊤),
for φ ∈ L∞(µ). In this case 〈Gφ,ψ〉µ⊤ is well defined for all ϕ,ψ ∈ L∞(µ).

To fix ideas we set g0 = β = γ ≡ 0 and L = 0. Noting that relation (2.15) is the mild
form of the linear controlled dynamics in L1(µ),

dY α
t = (AmrY α

t +BY α
t + Cαt) dt+ (DY α

t + Fαt) dWt, Y α
0 = 0,

we see that the optimization problem (2.7) can be reformulated as a Markovian problem
in L1(µ) with cost functional,

J(α) = E

[∫ T

0

(
〈Y α

s ,QY
α
s 〉µ + α⊤

s Nαs

)
ds

]
, (2.18)

where, by a slight abuse of notations, C and F denote the respective constant operators
from R

m into L∞(µ) induced by the matrices C and F :

(Ca)(θ) = Ca, (Fa)(θ) = Fa, θ ∈ R+, a ∈ R
m.

Their adjoint operators C∗, F ∗ from L1(µ⊤) into R
m take the form

C∗g = C⊤

∫

R+

µ(dθ)⊤g(θ), F ∗g = F⊤

∫

R+

µ(dθ)⊤g(θ), g ∈ L1(µ⊤).

11



Given the linear–quadratic structure of the problem, standard results in finite-dimensional
stochastic control theory, see [30, Chapter 6], as well as in Hilbert spaces, see [14, 19],
suggest that the optimal value process V α associated to the functional (2.18) should be of
linear–quadratic form

V α∗

t = 〈Y α∗

t ,ΓtY
α∗

t 〉µ,
with an optimal feedback control α∗ satisfying

α∗
t = − (N + F ∗ΓtF )

−1 (C∗Γt + F ∗ΓtD)Y α∗

t , 0 ≤ t ≤ T,

where Γt is a symmetric operator from L1(µ) into L∞(µ⊤), and solves the operator Riccati
equation:





ΓT = 0

Γ̇t = −ΓtA
mr − (ΓtA

mr)∗ −Q−D∗ΓtD −B∗Γt − (B∗Γt)
∗

+ (C∗Γt + F ∗ΓtD)∗ (N + F ∗ΓtF )
−1 (C∗Γt + F ∗ΓtD) , t ∈ [0, T ].

In particular, when Γ is an integral operator, this formally induces the following Riccati
equation for the associated (symmetric) kernel Γ valued in L1(µ⊗ µ):





ΓT (θ, τ) = 0

Γ̇t(θ, τ) = (θ + τ)Γt(θ, τ)−Q−D⊤
∫
R2
+

µ(dθ′)⊤Γt(θ
′, τ ′)µ(dτ ′)D

− B⊤
∫
R+
µ(dθ′)⊤Γt(θ

′, τ)−
∫
R+

Γt(θ, τ
′)µ(dτ ′)B + St(θ)

⊤N̂−1
t St(τ),

where

St(τ) = C⊤

∫

R+

µ(dθ)⊤Γt(θ, τ) + F⊤

∫

R2
+

µ(dθ′)⊤Γt(θ
′, τ ′)µ(dτ ′)D

N̂t = N + F⊤

∫

R2
+

µ(dθ)⊤Γt(θ, τ)µ(dτ)F,

and provides an optimal control in the form

α∗
t = −N̂−1

t

∫

R+

St(θ)µ(dθ)Y
α∗

t (θ), 0 ≤ t ≤ T.

Although the aforementioned infinite dimensional results provide formal expressions for
the solution of the problem, they cannot be directly applied, since they concern Hilbert
spaces. Here the infinite dimensional controlled process Y α takes its values in the non
reflexive Banach space

(
L1(µ), ‖ · ‖L1(µ)

)
. The rigorous derivation of the solution is the

first main objective of the present paper. Our second goal is to show how to obtain an
analytic finite-dimensional approximation of the original control problem after a suitable
discretization of the operator Riccati equation.
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3 Main results

We collect in this section our main results.

3.1 Solvability: optimal control and value function

Let α ∈ A. Given the linear-quadratic structure of the problem and the formal analysis of
Section 2.2, it is natural to consider a candidate optimal value process (V α

t )t≤T of linear-
quadratic form in the state variable Y α given by (2.15), that is

V α
t =

∫

R2
+

Y α
t (θ)⊤µ(dθ)⊤Γt(θ, τ)µ(dτ)Y

α
t (τ) + 2

∫

R+

Λt(θ)
⊤µ(dθ)Y α

t (θ) + χt, (3.1)

where the functions t 7→ Γt,Λt, χt are solutions, in a suitable sense, of the following system
of Riccati equations:





Γ̇t(θ, τ) = (θ + τ)Γt(θ, τ)−R1(Γt)(θ, τ), ΓT (θ, τ) = 0

Λ̇t(θ) = θΛt(θ)−R2(t,Γt,Λt)(θ), ΛT (θ) = 0
χ̇t = −R3(t,Γt,Λt), χT = 0,

(3.2)

where we defined

R1(Γ)(θ, τ) = Q+D⊤

∫

R2
+

µ(dθ′)⊤Γ(θ′, τ ′)µ(dτ ′)D +B⊤

∫

R+

µ(dθ′)⊤Γ(θ′, τ)

+

∫

R+

Γ(θ, τ ′)µ(dτ ′)B − S(Γ)(θ)⊤N̂−1(Γ)S(Γ)(τ) (3.3)

R2(t,Γ,Λ)(θ) = L+Qg0(t) +B⊤

∫

R+

µ(dθ′)⊤Λ(θ′) +

∫

R+

Γ(θ, τ ′)µ(dτ ′)β̃(t)

+ D⊤

∫

R2
+

µ(dθ′)⊤Γ(θ′, τ ′)µ(dτ ′)γ̃(t)− S(Γ)(θ)⊤N̂(Γ)−1h(t,Γ,Λ) (3.4)

R3(t,Γ,Λ) = g0(t)
⊤Qg0(t) + γ̃(t)⊤

∫

R2
+

µ(dθ′)⊤Γ(θ′, τ ′)µ(dτ ′)γ̃(t)

+ β̃(t)⊤
∫

R+

µ(dθ′)⊤Λ(θ′)− h(t,Γ,Λ)N̂ (Γ)−1h(t,Γ,Λ), (3.5)

with

S(Γ)(τ) = C⊤

∫

R+

µ(dθ)⊤Γ(θ, τ) + F⊤

∫

R2
+

µ(dθ′)⊤Γ(θ′, τ ′)µ(dτ ′)D

N̂(Γ) = N + F⊤

∫

R2
+

µ(dθ)⊤Γ(θ, τ)µ(dτ)F

h(t,Γ,Λ) = C⊤

∫

R+

µ(dθ)⊤Λ(θ) + F⊤

∫

R2
+

µ(dθ)⊤Γ(θ, τ)µ(dτ)γ̃(t).

(3.6)
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The two following definitions specify the concept of solution to the system (3.2).

Definition 3.1. Let Γ : R2
+ → R

d×d such that Γ ∈ L∞(µ⊗µ). We say that Γ is symmetric

if

Γ(θ, τ) = Γ(τ, θ)⊤, µ⊗ µ− a.e.

and nonnegative if

∫

R2
+

ϕ(θ)⊤µ(dθ)⊤Γ(θ, τ)µ(dτ)ϕ(τ) ≥ 0, for all ϕ ∈ L1(µ).

We denote by S
d
+(µ⊗ µ) the set of all symmetric and nonnegative Γ ∈ L∞(µ ⊗ µ).

Remark 3.2. The integral operator Γ associated to a symmetric kernel L∞(µ⊗ µ) is sym-
metric, in the sense that

〈ϕ,Γψ〉µ, = 〈ψ,Γϕ〉µ, ϕ, ψ ∈ L1(µ).

Moreover, the nonnegativity of Γ translates into

〈ϕ,Γϕ〉µ ≥ 0, ϕ ∈ L1(µ).

�

Definition 3.3. By a solution to the system (3.2), we mean a triplet (Γ,Λ, χ) ∈ C([0, T ], L1(µ⊗
µ))× C([0, T ], L1(µ⊤))× C([0, T ],R) such that

Γt(θ, τ) =

∫ T

t
e−(θ+τ)(s−t)R1(Γs)(θ, τ)ds, 0 ≤ t ≤ T, µ⊗ µ− a.e. (3.7)

Λt(θ) =

∫ T

t
e−θ(s−t)R2(s,Γs,Λs)(θ)ds, 0 ≤ t ≤ T, µ− a.e. (3.8)

χt =

∫ T

t
R3(s,Γs,Λs)ds, 0 ≤ t ≤ T, (3.9)

where R1, R2 and R3 are defined respectively by (3.3), (3.4) and (3.5). In particular N̂(Γt)
given by (3.6) is invertible for all t ≤ T .

The existence and uniqueness of a solution to the Riccati system follows from [5], and
is stated in the next theorem. Its proof is given in Section 6.

Theorem 3.4. Let g0, β, γ be bounded functions on [0, T ]. Assume that µ satisfies (2.3)
and that

Q ∈ S
d
+, N − λIm ∈ S

m
+ , (3.10)

14



for some λ > 0. Then, there exists a unique triplet (Γ,Λ, χ) ∈ C([0, T ], L1(µ ⊗ µ)) ×
C([0, T ], L1(µ⊤)) × C([0, T ],R) to the system of Riccati equation (3.2) such that (3.7),
(3.8), (3.9) hold and Γt ∈ S

d
+(µ⊗µ), for all t ≤ T . Furthermore, there exists some positive

constant M > 0 such that
∫

R+

|µ|(dτ)|Γt(θ, τ)| ≤ M, µ− a.e., 0 ≤ t ≤ T. (3.11)

Remark 3.5. Since Γt ∈ S
d
+(µ ⊗ µ), we have Γt ∈ L1(µ ⊗ µ) ∩ L∞(µ ⊗ µ), for all t ≤ T .

Similarly, Λt ∈ L1(µ⊤) ∩ L∞(µ⊤). To see this, it suffices to observe that since Λ ∈
C([0, T ], L1(µ⊤)), it is bounded in L1(µ⊤). Combined with the boundedness of Γ in L1(µ⊗
µ), the estimate (3.11) and the boundedness of the coefficients, we obtain

|R1(Γt)(θ, τ)|+ |R2(t,Γt,Λt)(θ)| ≤ c, µ⊗ µ− a.e., t ≤ T,

for some constant c. Finally, from (3.8), we get that Λt ∈ L∞(µ⊤), for all t ≤ T .

Remark 3.6. The process V α given by (3.1) is well-defined and continuous, due to the
continuity of (Γ,Λ, χ), that of Y α from Theorem 2.3 together with the bounds (2.14) and
Remark 3.5. �

Our first main result addresses the solvability of the problem (2.7). Theorem 3.7 esta-
blishes the existence of an optimal feedback control of linear form and provides an explicit
expression for the value function in terms of the solution to the Riccati equation. The
proof is collected in Section 6 and builds upon the results developed in Sections 4 and 5.

Theorem 3.7. Let β, γ be bounded functions on [0, T ] and g0 continuous. Fix K,µ as

in (2.2)-(2.3). Under (3.10), let (Γ,Λ, χ) be the solution to the system of Riccati equation

(3.2) produced by Theorem 3.4. Then, there exists an admissible control α∗ ∈ A with

corresponding controlled trajectory Y α∗
as in (2.15) such that

α∗
t = −N̂(Γt)

−1
(
h(t,Γt,Λt) +

∫

R+

S(Γt)(θ)µ(dθ)Y
α∗

t (θ)
)

(3.12)

for all t ≤ T . Furthermore, α∗ is an admissible optimal control, in the sense that

inf
α∈A

J(α) = J(α∗),

Y α∗
is the optimally controlled trajectory of the state variable and V α∗

t given by (3.1) is

the optimal value process of the problem, that is

V α∗

t = inf
α∈At(α∗)

E

[∫ T

t
f(Xα

s , αs)ds
∣∣∣ Ft

]
, 0 ≤ t ≤ T, (3.13)

where At(α) = {α′ ∈ A : α′
s = αs, s ≤ t}.
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Remark 3.8. From (3.13), it follows that at initial time t = 0, the optimal value V0 is equal
to V0 = V α∗

0 = χ0, hence

V0 =

∫ T

0
R3(t,Γt,Λt)dt.

In particular, for a constant initial condition g0(t) ≡ X0 for some X0 ∈ R
d, we have

V0 = X⊤
0 Ψ(T )X0 +Φ(T )X0 + ξ(T ),

for suitable functions Ψ,Φ, ξ, which corresponds to the usual linear–quadratic form in X0.
However, because of the possible non-Markovianity of the problem, for t > 0, the optimal
value V α∗

t is not necessarily linear–quadratic in Xα∗

t as in the standard case. �

The following example treats the LQ regulator problem (1.1) with a general Volterra
noise.

Example 3.9. Let us consider a controlled equation with Volterra noise

Xα
t =

∫ t

0
αsds +

∫ t

0
K̃(t− s)dWs,

J(α) = E

[∫ T

0

(
QX2

s +Nα2
s

)
ds

]
,

where K̃(t) =
∫
R+
e−θtµ̃(dθ). Notice that X can be recast as

Xα
t =

∫ t

0
K(t− s) (Cαsds+ γdWs) ,

where K is the row vector (1, K̃), C = (1, 0)⊤ and γ = (0, 1)⊤. The kernel K is the Laplace
transform of the 1× 2-matrix measure µ = (δ0(dθ), µ̃(dθ)). An application of Theorem 3.7
gives an optimal control of feedback form in Y :

α∗
t = − 1

N

[
Γt(0, 0)Y

1
t (0) +

∫

R+

Γt(θ, 0)Y
2
t (θ)µ̃(dθ)

]
, (3.14)

where Γ is solution to the real-valued infinite dimensional Riccati equation

Γt(θ, τ) =

∫ T

t
e−(θ+τ)(s−t)

(
Q− Γs(θ, 0)N

−1Γs(0, τ)
)
ds, µ̃⊗ µ̃− a.e., t ∈ [0, T ],

and Yt(θ) = (Y 1
t (θ), Y

2
t (θ))

⊤ =
∫ t
0 e

−θ(s−t) (Cα∗
sds+ γdWs). In particular,

Y 2
t (θ) =

∫ t

0
e−θ(t−s)dWs

Y 1
t (0) =

∫ t

0
α∗
sds = X∗

t −
∫ t

0
K̃(t− s)dWs = X∗

t −
∫

R+

Y 2
t (θ)µ̃(dθ),
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where X∗ = Xα∗
, and the last equality holds by stochastic Fubini’s theorem. Plugging the

expressions of Y 1 and Y 2 into (3.14) yields

α∗
t = − 1

N

(
Γt(0, 0)X

∗
t +

∫

R+

(Γt(θ, 0)− Γt(0, 0)) Y
2
t (θ)µ̃(dθ)

)
,

which is the sum of a feedback form in X∗, and a second term capturing the non Marko-
vianity of X, as for example in the case of a fractional noise with Hurst parameter H ≤
1/2. Note that Γ(0, 0) satisfies the standard Riccati equation in LQ control problem. One
can also note that when K̃ ≡ 1 then µ̃(dθ) = δ0(dθ), which implies that the optimal control
takes the standard feedback form α∗

t = − 1
NΓt(0, 0)X

∗
t . �

Remark 3.10. Conventional linear–quadratic models, see for instance [30, Chapter 7], are
naturally nested in our framework. Indeed, they are recovered by setting d = d′ and µ =
δ0Id, which corresponds to K(t) ≡ Id. In this case, the Riccati equations for Γ(0, 0),Λ(0), χ
reduce to the conventional matrix Riccati equations and Y α = Xα so that we recover the
usual expression for the optimal control (3.12) and the value function

α∗
t = −N̂(Γt(0))

−1
(
h(t,Γt(0, 0),Λt(0)) + S(Γt)(0)X

α∗

t

)
,

Vt = X⊤
t Γt(0, 0)Xt + 2X⊤

t Λt(0) + χt.

�

Conventional linear–quadratic models can also be recovered by considering a kernel
which is a weighted sum of exponentials as detailed in the following example. This will
turn out to be of crucial importance in the next section.

Example 3.11. We set d = d′ = m = 1 and

Kn(t) =

n∑

i=1

cni e
−θni t, (3.15)

for some n ∈ N, cni ∈ R, θni ≥ 0, i = 1, . . . , n. This corresponds to (2.2) with µ(dθ) =∑n
i=1 c

n
i δθni (dθ) and Theorem 2.3 gives the representation

Xn,α
t = gn0 (t) +

n∑

i=1

cni Y
n,i,α
t , (3.16)

where Y n,i,α := Y α(θni ) are such that

dY n,i,α
t =

[
− θni Y

n,i,α
t + b̃

(
t,

n∑

j=1

cnj Y
n,j,α
t , αt

)]
dt+ σ̃

(
t,

n∑

j=1

cnj Y
n,j,α
t , αt

)
dWt

Y n,i,α
0 = 0, i = 1, . . . , n.

(3.17)
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Whence, the problem reduces to a conventional linear-quadratic control for the finite-
dimensional controlled system (Y n,i,α)1≤i≤n. In particular, the system of Riccati (3.2)
reduces to a a standard one in finite-dimension. For instance the equation for Γ reduces to
the standard n× n–matrix Riccati equation




Γ̇n
t = −Qn − (Bn)⊤Γn

t − Γn
t B

n − (Dn)⊤Γn
tD

n

+
(
(Fn)⊤Γn

tD
n + (Cn)⊤Γn

t

)⊤(
Nn + (Fn)⊤Γn

t F
n
)−1(

(Fn)⊤Γn
tD

n + (Cn)⊤Γn
t

)

Γn
T = 0,

(3.18)
where the coefficients (Bn, Cn,Dn, Fn, Nn, Qn) ∈ R

n×n ×R
n ×R

n×n ×R
n ×R+ × S

n
+ are

defined by

Bn
i,j = Bcni − θni δij , Dn

i,j = Dcni ,

Cn
i = Ccni , Fn

i = Fcni ,

Qn
i,j = Q, Nn = N,

for all 1 ≤ i, j ≤ n. �

Remark 3.12. The proofs of Theorems 3.4 and 3.7 can be easily adapted to account for a
multi-dimensional Brownian motion and time-dependent bounded coefficients. �

3.2 Stability and approximation by conventional LQ problems

The second main result of the paper concerns the approximation of the possibly non-
Markovian control problem by sequences of finite dimensional Markovian ones, which is of
crucial importance for numerical implementations. The main idea comes from the appro-
ximation of the measure µ, appearing in (2.2), by simpler measures µn, or equivalently
approximating K by simpler kernels Kn given by

Kn(t) =

∫

R+

e−θtµn(dθ), t > 0. (3.19)

We also authorize the approximation of the input curve g0. By substituting (K, g0) with
(Kn, gn0 ), the approximating problem reads

V n
0 = inf

α∈A
Jn(α) (3.20)

where

Jn(α) = inf
α∈A

E

[∫ T

0

(
(Xn,α

s )⊤QXn,α
s + 2L⊤

s X
n,α
s + αT

s Nαs

)
ds

]
,

Xn,α
t = gn0 (t) +

∫ t

0
Kn(t− s)b(s,Xn,α

s , αs)ds +

∫ t

0
Kn(t− s)σ(s,Xn,α

s , αs)dWs.

(3.21)

The following theorem establishes the stability of stochastic Volterra linear–quadratic
control problems. Its proof is given in Section 7.2.
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Theorem 3.13. Let β, γ be bounded and measurable functions on [0, T ] and g0 be contin-

uous. Assume that µ satisfies (2.3) and let K be as in (2.2). Let (gn0 )n≥1 be a sequence of

continuous functions and (Kn)n≥1 be a sequence of kernels of the form (3.19) with respec-

tive measures µn satisfying (2.3), for each n ∈ N. Assume (3.10) and that Q is invertible.

Denote by V ∗ and V n∗ the respective optimal value processes given by Theorem 3.7 for the

respective inputs (g0,K) and (gn0 ,K
n), for n ≥ 1. If

‖Kn −K‖L2(0,T ) → 0 and ‖gn0 − g0‖L2(0,T ) → 0, as n→ ∞, (3.22)

then,

V n∗
0 → V ∗

0 , as n→ ∞, (3.23)

with a rate of convergence given by

|V ∗
0 − V n∗

0 | ≤ c
(
‖gn0 − g0‖L2(0,T ) + ‖Kn −K‖L2(0,T )

)
, (3.24)

for some positive constant c independent of n.

Combined with Example 3.11, Theorem 3.13 provides an approximation of linear–
quadratic stochastic Volterra optimal control problems by conventional Markovian linear–
quadratic models in finite dimension. To ease notations we restrict to the case d = d′ =
m = 1, for higher dimension matrices need to be replaced by tensors in what follows. The
idea is to approximate µ by a discrete measure µn as follows. Fix n ≥ 1 and (ηni )0≤i≤n a
partition of R+. Let µ

n(dθ) =
∑n

i=1 c
n
i δθni (dθ) with

cni =

∫ ηn
i

ηn
i−1

µ(dx) and θni =
1

cni

∫ ηn
i

ηn
i−1

θµ(dθ), i = 1, . . . , n. (3.25)

Then, for a suitable choice of the partition (ηni )0≤i≤n, we obtain the convergence

‖Kn −K‖L2(0,T ) → 0, as n→ ∞,

where Kn is given by (3.15), see for instance [3, Proposition 3.3 and Remark 3.4]. In
particular, for the fractional kernel KH given by (2.8), an even n, and the geometric

partition ηni = r
i−n/2
n for i = 0, . . . , n, for some rn > 1, the coefficients (3.25) with µH as

in (2.9) are explicitly given by

cni =
(r1−α

n − 1)r
(α−1)(1+n/2)
n

Γ(α)Γ(2− α)
r(1−α)i
n and xni =

1− α

2− α

r2−α
n − 1

r1−α
n − 1

ri−1−n/2
n , i = 1, . . . , n,

where α := H + 1/2. If the sequence (rn)n≥1 satisfies

rn ↓ 1 and n ln rn → ∞, as n→ ∞,
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then,
‖Kn −KH‖L2(0,T ) → 0, as n→ ∞,

see [1, Lemma A.3]. In practice, the free parameter rn can be chosen by minimizing
the L2 norm between Kn and KH , for instance if n = 20, setting r20 = 2.5 yields very
good approximations for the un-controlled stochastic Volterra equation, see [1] for a more
detailed practical study. For each n, the approximate control problem is a conventional
linear quadratic one in finite dimension for the state variables (3.17) with the standard n×n
matrix Riccati equation (3.18). This allows to numerically solve the Riccati equations and
simulate the process Xn,α given by (3.16), leading to computation of the value function
V n∗
0 and the optimal control αn as in (3.12) with µ replaced by µn.

4 An infinite dimensional SDE with Lipschitz coefficients

We aim to establish the existence of a solution to the stochastic Volterra equation and that
of an admissible optimal control. For this, we shall study more generally the existence and
uniqueness of a solution to an infinite dimensional stochastic differential equation (SDE)
in L1(µ). Throughout this section, we fix t ∈ [0, T ], d, d′, n ∈ N, p ≥ 2, µ a d× d′-measure
satisfying (2.3), and W denotes an n–dimensional standard Brownian motion.

Let us consider the infinite dimensional SDE in L1(µ):

dỸs =
(
AmrỸs + δ(s, Ỹs)

)
ds+Σ(s, Ỹs)dWs, Ỹt = ξ, (4.1)

on [t, T ], where Amr is the mean-reverting operator as defined in (2.17), the inputs ξ ∈
L1(µ), and δ : [0, T ]× Ω× L1(µ) → L∞(µ), Σ : [0, T ] ×Ω× L1(µ) → L∞(µ)n.

We look for L1(µ)–valued solutions to (4.1) in the strong probabilistic sense and in the
mild analytical sense. More precisely, given a filtered probability space (Ω,F , (Fs)s≥0,P)
supporting a n dimensional Brownian motion W , we say that a progressively measurable
process Ỹ is a (mild) solution to (4.1) on [t, T ] if for each s ∈ [t, T ],

Ỹs(θ) = e−θ(s−t)ξ(θ)+

∫ s

t
e−θ(s−u)δ(u, Ỹu)(θ)du

+

∫ s

t
e−θ(s−u)Σ(u, Ỹu)(θ)dWu, µ− a.e.,

(4.2)

such that

sup
t≤s≤T

E

[
‖Ỹs‖pL1(µ)

]
<∞. (4.3)

The following theorem establishes the strong existence and uniqueness of a solution to
(4.2) under Lipschitz conditions.
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Theorem 4.1. Fix p ≥ 2 and t ≤ T . Assume that δ and Σ are progressively measurable

and that there exists positive constants cLG, cLip, and a progressively measurable process φ
with

sup
t≤s≤T

E[|φs|p] <∞,

such that for all y, y′ ∈ L1(µ), and t ≤ s ≤ T ,

|δ(s, y)(θ)| + |Σ(s, y)(θ)| ≤ cLG
(
1 + |φs|+ ‖y‖L1(µ)

)
, (4.4)

|δ(s, y)(θ) − δ(s, y′)(θ)|+ |Σ(s, y)(θ)− Σ(s, y′)(θ)| ≤ cLip‖y − y′‖L1(µ), (4.5)

P⊗ µ− a.e. Then, for any Ft–measurable random variable E[‖ξ‖p
L1(µ)

] <∞, there exists a

unique strong solution Y to (4.2) on [t, T ] such that (4.3) holds.

Proof. The proof is an application of the contraction mapping principle. We denote by
Sp
t,T the space of progressively measurable processes Ỹ : Ω× [t, T ] → L1(µ) such that

‖Ỹ ‖Sp

t,T
:= sup

t≤s≤T
E

[
‖Ỹs‖pL1(µ)

]1/p
<∞.

(Sp
t,T , ‖ · ‖Sp

t,T
) is a Banach space. We consider the following family of norms on Sp

t,T :

‖Ỹ ‖λ := sup
t≤s≤T

e−λ(s−t)
E

[
‖Ỹs‖pL1(µ)

]1/p
, λ > 0.

For every Ỹ ∈ Sp
t,T , define a new process T Ỹ by

(T Ỹ )s(θ) = e−θ(s−t)ξ(θ) +

∫ s

t
e−θ(s−u)δ(u, Ỹu)(θ)du

+

∫ s

t
e−θ(s−u)Σ(u, Ỹu)(θ)dWu

= Is(θ) + IIs(θ) + IIIs(θ), µ− a.e., t ≤ s ≤ T.

Since the norms ‖ · ‖Sp

t,T
and ‖ · ‖λ are equivalent, it is enough to find λ > 0 such that T

defines a contraction on (Sp
t,T , ‖ · ‖λ). That is, we look for λ > 0 and M < 1 such that

‖T Ỹ − T Z̃‖λ ≤M‖Ỹ − Z̃‖λ, Ỹ , Z̃ ∈ Sp
t,T . (4.6)

Step 1: We first prove that T (Sp
t,T ) ⊂ Sp

t,T . Fix Ỹ ∈ Sp
t,T and t ≤ s ≤ T . T Ỹ is again

progressively measurable. Jensen’s inequality applied to the convex function ‖·‖p
L1(µ)

leads
to

‖(T Ỹ )s‖pL1(µ)
≤ 3p−1

(
‖Is‖pL1(µ)

+ ‖IIs‖pL1(µ)
+ ‖IIIs‖pL1(µ)

)
.
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Since E[‖ξ‖p
L1(µ)

] <∞, we have

E
[
‖Is‖pL1(µ)

]
= E

[
‖e−(·)(s−t)ξ‖p

L1(µ)

]
≤ E

[
‖ξ‖p

L1(µ)

]
<∞,

where we used the bound e−θ(s−t) ≤ 1, since µ is supported on R+. Three successive
application of Jensen’s inequality on the normalized measures

(1 ∧ θ−1/2)µ(dθ)∫
R+

(1 ∧ τ−1/2)µ(dτ)
,

du

(s− t)
,

e−2θ(s−u)du
∫ t
s e

−2θ(s−v)dv
,

yield for a constant c that may vary from line to line

‖IIs‖pL1(µ)
=

(∫

R+

|µ|(dθ)
∣∣∣∣
∫ s

t
e−θ(s−u)δ(u, Ỹu)(θ)du

∣∣∣∣
)p

≤ c

∫

R+

|µ|(dθ)
(
1 ∧ θ(p−1)/2

) ∣∣∣∣
∫ s

t
e−θ(s−u)δ(u, Ỹu)(θ)du

∣∣∣∣
p

≤ c

∫

R+

|µ|(dθ)
(
1 ∧ θ(p−1)/2

) ∣∣∣∣
∫ s

t
e−2θ(s−u)|δ(u, Ỹu)(θ)|2du

∣∣∣∣
p/2

≤ c

∫

R+

|µ|(dθ)
(
1 ∧ θ(p−1)/2

)

×
∫ s

t
e−2θ(s−u)|δ(u, Ỹu)(θ)|pdu

(∫ s

t
e−2θ(s−v)dv

)(p−2)/2

.

Taking expectation combined with the growth condition (4.4) and the fact that Ỹ ∈ Sp
t,T

leads to

E

[
‖IIs‖pL1(µ)

]
≤ c

(
1 + sup

t≤u≤T
E [|φu|p] + ‖Ỹ ‖p

S
p

t,T

)

×
∫

R+

|µ|(dθ)
(
1 ∧ θ(p−1)/2

)(∫ s

t
e−2θ(s−u)du

)p/2

= c

∫

R+

|µ|(dθ)
(
1 ∧ θ(p−1)/2

)(1− e−2θ(s−t)

2θ

)p/2

.

Similarly, combining the same Jensen’s inequalities with the Burkholder-Davis-Gundy
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inequality, we get

E

[
‖IIIs‖pL1(µ)

]
= E

[(∫

R+

|µ|(dθ)
∣∣∣∣
∫ s

t
e−θ(s−u)Σ(u, Ỹu)(θ)dWudu

∣∣∣∣
)p]

≤ c

∫

R+

|µ|(dθ)(1 ∧ θ(p−1)/2)

×
∫ s

t
e−2θ(s−u)

E

[
|Σ(u, Ỹu)(θ)|p

]
du

(∫ t

s
e−2θ(s−v)dv

)(p−2)/2

≤ c

∫

R+

|µ|(dθ)
(
1 ∧ θ(p−1)/2

)(1− e−2θ(s−t)

2θ

)p/2

where the last inequality follows from the growth condition (4.4) and the fact that Ỹ ∈ Sp
t,T .

Recalling inequality (2.16), we get that

∫

R+

|µ|(dθ)
(
1 ∧ θ(p−1)/2

)(1− e−2θ(s−t)

2θ

)p/2

≤ c

∫

R+

|µ|(dθ)
(
1 ∧ θ−1/2

)
(4.7)

which is finite due to condition (2.3). This shows that

E

[
‖IIs‖pL1(µ)

]
+ E

[
‖IIIs‖pL1(µ)

]
≤ c < ∞.

Combining the above proves that ‖T Ỹ ‖Sp

t,T
<∞ and hence T : Sp

t,T → Sp
t,T .

Step 2: We prove that there exists λ > 0 such that (4.6) holds. Let Ỹ , Z̃ ∈ Sp
t,T such

that ‖Ỹ ‖λ and ‖Z̃‖λ are finite. Similarly to Step 1, Jensen and Burkholder–Davis–Gundy
inequalities combined with the Lipschitz condition (4.5) lead to

‖T Ỹ − T Z̃‖pλ ≤ M(λ)‖Ỹ − Z̃‖pλ,

where

M(λ) = c

∫

R+

|µ|(dθ)
(
1 ∧ θ(p−1)/2

) ∫ s

t
e−2θ(s−u)e−λp(s−u)du

(∫ s

t
e−2θ(s−v)dv

)(p−2)/2

.

By the dominated convegence theorem, recall (4.7), M(λ) tends to 0 as λ goes to +∞.
We can therefore choose λ0 > 0 so that (4.6) holds with M(λ0) < 1. An application of
the contraction mapping theorem yields the claimed existence and uniqueness statement
in (Sp

t,T , ‖ · ‖Sp

t,T
) together with (4.3).
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Example 4.2. Fix α ∈ A, the conditions (4.4)-(4.5) are satisfied for the following specifica-
tion of δ and Σ:

δ(s, ω, y)(θ) = b0(s, ω, θ) +

∫

R+

B0(s, ω, θ, τ)µ(dτ)y(τ) + C0(s, ω, θ)αs(ω)

Σ(s, ω, y)(θ) = γ0(s, ω, θ) +

∫

R+

D0(s, ω, θ, τ)µ(dτ)y(τ) + F0(s, ω, θ)αs(ω),

where

|b0(s, θ)|+ |γ0(s, θ)|+ |C0(s, θ)|+ |F0(s, θ)| ≤ c, P⊗ µ− a.e., t ≤ s ≤ T, (4.8)

|B0(s, θ, τ)|+ |D0(s, θ, τ)| ≤ c, P⊗ µ⊗ µ− a.e., t ≤ s ≤ T,(4.9)

for some constant c. �

The existence and uniqueness of a strong solution to the stochastic Volterra equation
(2.1) readily follows from Theorem 4.1 when combined with Theorem 2.3. To prove conti-
nuity of the solution we need the following lemma.

Lemma 4.3. Let Zt =
∫ t
0 bsds+

∫ t
0 σsdWs, 0 ≤ t ≤ T , such that b and σ are progressively

measurable and

sup
t≤T

E
[
|bt|4

]
+ sup

t≤T
E
[
|σt|4

]
<∞.

Then, the process

Ỹt(θ) =

∫ t

0
e−θ(t−s)dZs, θ ∈ R+,

solution in the mild sense to

dỸs = AmrỸsds+ dZs, Ỹ0 = 0,

admits a continuous modification in L1(µ) and satisfies (2.13)-(2.14).

Proof. The bound (2.13) follows along the lines of the estimates in step 1 of the proof of
Theorem 4.1 with p = 4, for getting (4.3), by successive applications of Jensen inequalities.
Let us now show (2.14) and the continuity statement. Fix θ ∈ R+ and t ≤ T . An
integration by parts leads to

Ỹt(θ) = e−θtZt + θ

∫ t

0
e−θ(t−s)(Zt − Zs)ds.

The Kolmogorov–Chentsov continuity criterion, yields that for each ζ ∈ (0, 1/4), the pro-
cess Z admits a version with ζ-Hölder sample paths on [0, T ]. We identify Z with this
version so that

|Zt(ω)− Zs(ω)| ≤ cT,ζ(ω)|t− s|ζ , s, t ≤ T,
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for some cT,ζ(ω) ≥ 0. Using this inequality and another integration by parts yields

|Ỹt(θ, ω)| ≤ cT,ζ(ω)e
−θttζ + cT,ζ(ω)θ

∫ t

0
e−θuuζdu

= cT,ζ(ω)ζ

∫ t

0
e−θuuζ−1du.

This proves (2.14). Furthermore,

sup
t≤T

|Ỹt(θ, ω)| ≤ cT,ζ(ω)ζ

∫ T

0
e−θuuζ−1du,

where the right hand side is in L1(|µ|) by virtue of the Cauchy–Schwarz inequality and
Lemma A.1. Since t 7→ Ỹt(θ, ω) is continuous for each θ ∈ R+, the dominated convergence
theorem yields that the process Ỹ is continuous in L1(µ).

Theorem 4.4. Let g0 be continuous, β, γ be bounded measurable functions on [0, T ] and
K be a kernel as in (2.2) such that (2.3) holds. Fix an admissible control α ∈ A. The

stochastic Volterra equation (2.1) admits a unique continuous and adapted strong solution

Xα such that (2.4) holds.

Proof. Existence, uniqueness and (2.4) are straightforward from Theorem 4.1 combined
with Theorem 2.3 and Example 4.2 for the coefficients

b0(s, θ) = β(s) +Bg0(s), B0(s, θ, τ) = B, C0(s, θ, τ) = C,

γ0(s, θ) = γ(s) +Dg0(s), D0(s, θ, τ) = D, F0(s, θ, τ) = F.

The statement concerning the continuity of Xα is a direct consequence of the continuity
of Y α established in Lemma 4.3 and the converse direction in Theorem 2.3.

5 A martingale verification theorem

We first derive an Itô formula for quadratic functions in L1(µ).

Lemma 5.1. Fix a d×d′-matrix measure µ on R+ such that |µ| is σ-finite, and t ∈ [0, T ].
Let Ỹ be a L1(µ)-valued progressively measurable processes solution in the mild sense to

dỸs = AmrỸs + bsds+ σsdWs, t ≤ s ≤ T, Ỹt = ξ, (5.1)

for ξ ∈ L1(µ) and some progressively measurable b, σ valued in L∞(µ) and satisfying

∫ T

t
‖bs‖L∞(µ)ds+

∫ T

t
‖σs‖2L∞(µ)ds < ∞, P− a.s. (5.2)
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Assume that Ỹ is bounded in s ∈ [t, T ], P ⊗ µ-a.e, and has continuous sample paths in

L1(µ). Let Γ̃, Λ̃ ∈ C([t, T ], L1(µ⊗ µ))× C([t, T ], L1(µ⊤)) be solutions to

˙̃
Γs(θ, τ) = (θ + τ)Γ̃s(θ, τ)−R1

s(θ, τ), t ≤ s ≤ T, µ⊗ µ− a.e.

˙̃
Λs(θ) = θΛ̃s(θ)−R2

s(θ), t ≤ s ≤ T, µ− a.e. (5.3)

with Γ̃T ∈ L∞(µ⊗ µ), Λ̃T ∈ L∞(µ⊤), and for some measurable functions s 7→ R1
s and R2

s

valued respectively in L∞(µ⊗ µ) and L∞(µ⊤), such that

∫ T

t
‖R1

s‖L∞(µ⊗µ)ds +

∫ T

t
‖R2

s‖L∞(µ⊤)ds <∞. (5.4)

Then, for all t ≤ s ≤ T , Γ̃s ∈ L∞(µ⊗ µ), Λ̃s ∈ L∞(µ⊤), so that the processes

U1
s = 〈Ỹs, Γ̃sỸs〉µ = 〈Γ̃sỸs, Ỹs〉µ⊤ U2

s = 〈Ỹs, Λ̃s〉µ = 〈Λ̃s, Ỹs〉µ⊤ , t ≤ s ≤ T,

are well defined, where Γ̃ is the integral operator associated to the kernel Γ̃. Furthermore,

we have for i = 1, 2,

dU i
s = ∆i

sds +Σi
sdWs, t ≤ s ≤ T, (5.5)

where

∆1
s = −〈Ỹs,R1

s
Ỹs〉µ + 〈Γ̃sσs, σs〉µ⊤ + 〈Γ̃sỸs, bs〉µ⊤ + 〈Γ̃sbs, Ỹs〉µ⊤ ,

Σ1
s = 〈Γ̃sỸs, σs〉µ⊤ + 〈Γ̃sσs, Ỹs〉µ⊤ ,

∆2
s = −〈Ỹs, R2

s〉µ + 〈Λ̃s, bs〉µ⊤ , Σ2
s = 〈Λ̃s, σs〉µ⊤ ,

where R1 is the integral operator associated to the kernel R1.

Proof. We illustrate the proof only for U2, that of U1 follows along the same lines. The
idea is to apply Itô’s formula θ by θ. By virtue of the inequality |µ(B)| ≤ |µ|(B), for any
Borel set B, and the σ-finiteness of |µ|, an application of the Radon–Nikodym theorem
yields the existence of a measurable function h : R+ → R

d×d′ such that

µ(dθ) = h(θ)|µ|(dθ) (5.6)

with |h(θ)| = 1, for all θ ∈ R
d, and |h| ∈ L1(|µ|), see for instance [16, Lemma 3.5.9]. Recall

that by definition of a mild solution to (5.1), we mean that

Ỹs(θ) = e−θ(s−t)ξ(θ) +

∫ s

t
e−θ(s−u)bu(θ)du

+

∫ s

t
e−θ(s−u)σu(θ)dWu, t ≤ s ≤ T, P⊗ µ− a.e. (5.7)
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Fix t ≤ T , and observe that the solution Λ̃ to (5.3) is given by

Λ̃s(θ) = e−θ(T−s)Λ̃T (θ) +

∫ T

s
e−θ(u−t)R2

u(θ)du, t ≤ s ≤ T, µ− a.e.,

which implies, with (5.4), that Λ̃s ∈ L∞(µ⊤), t ≤ s ≤ T , together with the boundedness
of s 7→ Λ̃s:

sup
t≤s≤T

∣∣Λ̃s(θ)
∣∣ ≤

∥∥Λ̃T

∥∥
L∞(µ⊤)

+

∫ T

t
‖R2

u‖L∞(µ⊤)du < ∞, µ− a.e. (5.8)

Moreover, since Ỹ is bounded in s, we have

sup
t≤s≤T

|Ỹs(θ)| <∞, P⊗ µ− a.e. (5.9)

Define the P⊗ µ-nullset

N = {(ω, θ) : such that either (5.7) or (5.3) or (5.8) or (5.9) does not hold}.

Let (ω, θ) ∈ Ω× R+ \ N and observe that s 7→ Ỹs(θ, ω) and s 7→ Λ̃s(θ) solve:

dỸs(θ, ω) =
(
−θỸs(θ, ω) + bs(θ, ω)

)
ds+ σs(θ, ω)dWs,

dΛ̃s(θ) =
(
θΛ̃s(θ)−R2

s(θ)
)
ds.

An application of Itô’s formula to the process u2(θ, ω) : s 7→ Λ̃s(θ)
⊤h(θ)Ỹs(θ) gives

u2s(θ, ω) = u2t (θ, ω) +

∫ s

t
δ2u(θ, ω)du+

∫ s

t
Λ̃u(θ)

⊤h(θ)σu(θ, ω)dWu, t ≤ s, (5.10)

with
δ2u(θ, ω) = −R2

u(θ)
⊤h(θ)Ỹu(θ, ω) + Λ̃u(θ)

⊤h(θ)bu(θ, ω).

All the quantities appearing on the right hand side of (5.10) are well-defined thanks to the
integrability assumptions (5.2)-(5.4) on the coefficients (b, σ,R2) and the boundedness in
s of (Λ̃s, Ỹs) from (5.8)-(5.9). Whence, (5.10) holds P ⊗ µ almost everywhere. Next, by
the boundedness (resulting from the continuity) of s 7→ Ỹs in L1(µ), s 7→ Λ̃s in L1(µ⊤),
and again by the integrability conditions (5.2)-(5.4) on (b, σ,R2), all the terms appearing
in (5.10) are in L1(|µ|) so that an integration with respect to the θ variable against |µ|
combined with the identity (5.6) and the stochastic Fubini’s theorem, see [26, Theorem 2.2],
lead to (5.5).

The next theorem establishes a martingale verification result for the possibly non-
Markovian optimization problem (2.1)-(2.7).
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Theorem 5.2. Let β, γ be bounded functions on [0, T ], g0 continuous and N ∈ S
m
+ . Fix

K,µ as in (2.2)-(2.3). Assume that:

(i) there exists a solution (Γ,Λ, χ) ∈ C([0, T ], L1(µ⊗µ))×C([0, T ], L1(µ⊤))×C([0, T ],R)
such that (3.7), (3.8), (3.9) hold, and Γt ∈ S

d
+(µ⊗µ), for all t ≤ T , together with the

estimate (3.11),

(ii) there exists an admissible control process α∗ ∈ A such that (3.12) holds for all t ≤ T .

Then, α∗ is an optimal control, Y α∗
given by (2.10) is the optimally controlled trajectory

of the state variable and V α∗
given by (3.1) is the optimal value process of the problem, in

the sense that (3.13) holds, for all t ≤ T .

Proof. Step 1. For any α ∈ A, we know from Theorem 4.4 that there exists a continuous
solution Xα to (2.1) such that (2.4) holds. Let us then define the continuous process

Mα
t =

∫ t

0
f(Xα

s , αs)ds+ V α
t −

∫ t

0
(αs − α∗

s)
⊤N̂s(αs − α∗

s)ds,

where f is the quadratic function in (2.6), V α is the process given by (3.1) from the
solution (Γ,Λ, χ) to the Riccati equation (3.2), α∗ is given by (3.12), and N̂ by (3.6), recall
Remark 3.6. The main point is to check that Mα is martingale for any α ∈ A. Indeed, if
this the case, then, for each t ≤ T , the equality E[Mα

T |Ft] =Mα
t leads to

Jt(α)− V α
t = E

[∫ T

t
(αs − α∗

s)
⊤N̂s(αs − α∗

s)ds
∣∣∣ Ft

]
, (5.11)

where we have set Jt(α) = E

[∫ T
t f(Xα

s , αs)ds
∣∣∣ Ft

]
, and used V α

T = 0, due to the vanishing

terminal conditions of (Γ,Λ,Θ) and the continuity of V α. Since N ∈ S
m
+ and Γ is Sd+(µ⊗µ)

valued, then N̂ ∈ S
m
+ so that the right hand side of (5.11) is always nonnegative and vanishes

for α = α∗. Fix now t ≤ T , and observe that V α∗

t = V α′

t for all α′ ∈ At(α
∗). We then

deduce from (5.11) that

V α∗

t = Jt(α
∗) = inf

α′∈At(α∗)
Jt(α

′),

which is the relation (3.13), and shows that α∗ is an optimal control.

Step 2. We now prove that Mα is indeed a martingale by means of Itô’s formula. To
ease notations, we drop the superscript α from Xα and Y α. The process V α is written as

V α
t = U1

t + 2U2
t + χt, 0 ≤ t ≤ T,

where

U1
t = 〈Yt,ΓtYt〉µ, U2

t = 〈Λt, Yt〉µ⊤ ,
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and we recall that Y is bounded in (t, θ) from (2.14), and has continuous sample path in
L1(µ) by Theorem 2.3. From (2.14), and the admissibility condition on α ∈ A combined
with Cauchy-Schwarz inequality, it is clear that the drift bt := β̃(t) + BYt + Cαt, and
the diffusion coefficient σt := γ̃(t) + DYt + Fαt of Y take values in L∞(µ), and satisfy
the integrability condition (5.2). Moreover, from (3.11), and since t ∈ [0, T ] 7→ Γt, Λt are
bounded (by continuity) in L1(µ⊗µ) and L1(µ⊤), we see that t 7→ R1

t := R1(Γt) is valued
in L∞(µ⊗ µ), t 7→ R2

t := R2(t,Γt,Λt) is valued in L∞(µ⊤), and satisfy (see Remark 3.5):

sup
t≤T

[
‖R1

t ‖L∞(µ⊗µ) + ‖R2
t ‖L∞(µ⊤)

]
< ∞,

which clearly implies the integrability condition (5.4). We can then apply Lemma 5.1 on
U1, U2. Recalling that Γ is symmetric, this yields, after re-arranging the quadratic and
linear terms in Y and α, using the equation for Γ in (3.2) and applying Fubini’s theorem:

dU1
t =

∫

R2
+

Yt(θ)
⊤µ(dθ)⊤

(
S(Γt)(θ)N̂(Γt)

−1S(Γt)(τ) −Q
)
µ(dτ)Yt(τ)dt

+

∫

R+

2Yt(θ)
⊤µ(dθ)⊤

(∫

R+

Γt(θ, τ
′)µ(dτ ′)β̃(t) +D⊤

∫

R2
+

µ(dθ′)⊤Γt(θ
′, τ ′)µ(dτ ′)γ̃(t)

)
dt

+ α⊤
t F

⊤

∫

R2
+

µ(dθ)⊤Γt(θ, τ)µ(dτ)Fαtdt

+ 2α⊤
t

(∫

R+

S(Γt)(τ)µ(dτ)Yt(τ) + F⊤

∫

R2
+

µ(dτ)⊤Γt(θ, τ)µ(dτ)γ̃(t)

)
dt

+

(
γ̃(t)⊤

∫

R2
+

µ(dθ′)⊤Γt(θ
′, τ ′)µ(dτ ′)γ̃(t)

)
dt + H1

t dWt,

with

H1
t = 2σ(t,Xt, αt)

⊤

∫

R2
+

µ(dθ)⊤Γt(θ, τ)µ(dτ)Yt(τ).

Similarly, using the equation for Λ in (3.2) we get

dU2
t =

∫

R+

Yt(θ)
⊤µ(dθ)⊤

(
S(Γt)(θ)

⊤N̂(Γt)
−1h(t,Γt,Λt)− L

)
dt

+ α⊤
t

(
C⊤

∫

R+

µ(dθ′)⊤Λt(θ
′)

)
dt+ β̃(t)⊤

∫

R+

µ(dθ′)⊤Λt(θ
′)dt + H2

t dWt,

where

H2
t = σ(t,Xt, αt)

⊤

∫

R+

µ(dθ)⊤Λt(θ).
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Now we write that

dMα
t =

(
X⊤

t QXt + α⊤
t Nαt − (αt − α∗

t )
⊤N̂t(αt − α∗

t ) + L⊤Xt + χ̇t

)
dt+ dU1

t + 2dU2
t .

Completing the squares for the terms in α, observing that

X⊤
t QXt =

∫

R2
+

Yt(θ)
⊤µ(dθ)⊤Qµ(dτ)Yt(τ) + 2g0(t)

⊤

∫

R+

µ(dθ)Yt(θ) + g0(t)
⊤Qg0(t),

L⊤Xt = L⊤

∫

R+

µ(dθ)Yt(θ) + L⊤g0(t),

using the equation for χ in (3.2), and adding all the above makes the drift in Mα vanish
so that

dMα
t =

(
H1

t + 2H2
t

)
dWt.

This shows that Mα is a local martingale. To argue true martingality, successive appli-
cations of Jensen and Cauchy–Schwarz inequalities combined with the bound (3.11) yield,
for a constant c,

∫ T

0
E
[
|H1

s |2
]
ds ≤ cM2

∫ T

0
E

[(
1 + |Xs|2 + |αs|2

)
‖Ys‖2L1(µ)

]
ds

≤ cM2

∫ T

0
E
[(
1 + |Xs|4 + |αs|4

)]1/2
E

[
‖Ys‖4L1(µ)

]1/2
ds

which is finite due to (2.4), (2.13) and the admissibility of α. Since Λ ∈ C([0, T ], L1(µ⊤)),
we get similarly that ∫ T

0
E
[
|H2

s |2
]
ds <∞.

Whence, by the Burkholder-Davis-Gundy inequality, Mα is a true martingale, and the
proof is complete.

Remark 5.3. Theorem 5.2 is still valid if one adds a linear quadratic terminal cost to the
cost functional (2.5), that is

J(α) = E

[∫ T

0
f(Xα

s , αs)ds + (Xα
T )

⊤PXα
T + 2U⊤Xα

T

]
,

provided the terminal conditions of the system of Riccati equations (3.2) are updated to

ΓT (θ, τ) = P, ΛT (θ) = U + Pg0(T ), χT = g0(T )
⊤Pg0(T ) + 2U⊤g0(T ).

The main technical difficulty resides in Assumption (i). If K has no singularities at 0,
then one can still construct continuous solutions to (3.2). However, in the presence of
a singularity, the solution t → Γt inherits the singularity of the kernel and is no longer
continuous but only lies in L1([0, T ], L1(µ⊗ µ)). �
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6 Proof of solvability result

Proof of Theorem 3.4. First, the existence and uniqueness of a solution Γ ∈ C([0, T ], L1(µ⊗
µ)) to the Riccati equation (3.7) satisfying the estimate (3.11) and such that Γt ∈ S

d
+(µ⊗µ),

for all t ≤ T , follow from [5, Theorem 2.3].
Second, we note that equation (3.8) for Λ is a Lyapunov equation of the form

Ψt(θ, τ) =

∫ T

t
e−(θ+τ)(s−t)F (s,Ψs)(θ, τ)ds, t ≤ T, µ⊗ µ− a.e.

where

F (s,Ψ)(θ, τ) = Q̃s(θ, τ) + D̃1
s(θ)

⊤

∫

R2
+

µ1(dθ
′)⊤Ψ(θ′, τ ′)µ2(dτ

′)D̃2
s(τ)

+ B̃1
s (θ)

⊤

∫

R+

µ1(dθ
′)⊤Ψ(θ′, τ) +

∫

R+

Ψ(θ, τ ′)µ2(dτ
′)B̃2

s (τ),

where µi, i = 1, 2, di1 × di2-matrix valued measures on R+, with

d11 = d, d12 = d′, d21 = d22 = 1, µ1 = µ, µ2 = 0,

and with coefficients

Q̃t(θ, τ) = L+Qg0(t) +

∫

R+

Γt(θ, τ
′)µ(dτ ′)β̃t

− S(Γt)(θ)
⊤N̂(Γt)

−1F⊤

∫

R2
+

µ(dθ′)⊤Γt(θ
′, τ ′)µ(dτ ′)γ̃t,

B̃1
t (θ) = B − CN̂(Γt)

−1S(Γt)(θ), B̃2
t (θ) = D̃1

t (θ) = D̃2
t (θ) = 0.

From [5, Theorem 3.1], we then get the existence and uniqueness of a solution Λ ∈
C([0, T ], L1(µ⊤)) to the equation (3.8). Finally, we notice that the right hand side of
equation (3.9) for χ, does not involve χ. Therefore, the existence and the continuity of χ
follow upon simple integration, which is justified by the boundedness of g0, β, γ, that of Λ
in L1(µ⊤) and that of Γ in L1(µ⊗ µ) together with the bound (3.11).

Proof of Theorem 3.7. The result is a direct consequence of Theorem 5.2 once we prove that
conditions (i)-(ii) are satisfied. Condition (i) follows from Theorem 3.4. It remains to prove
condition (ii), i. e. that there exists a progressively measurable process α∗ ∈ A associated
to a controlled SDE Y α∗ ∈ L1(µ) such that (3.12) holds, and supt≤T E

[
|α∗

t |4
]
< ∞. To
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this end, we consider the coefficients δ,Σ as in Example (4.2) with

b0(t, θ) = β̃(t)− CN̂(Γt)
−1h(t,Γt,Λt)

γ0(t, θ) = γ̃(t)− FN̂(Γt)
−1h(t,Γt,Λt)

B0(t, θ, θ
′) = B − CN̂(Γt)

−1S(Γt)(θ
′)

D0(t, θ, θ
′) = D − FN̂(Γt)

−1S(Γt)(θ
′)

C0(t, θ) = F0(t, θ) = 0.

By the boundedness of β, γ, g0, on [0, T ], the continuity hence the boundedness on [0, T ]
of Γ in L1(µ ⊗ µ) and Λ in L1(µ⊤) together with the bound in Theorem 3.4, the previ-
ous coefficients satisfy (4.8)-(4.9). Whence, for any p ≥ 2, Example 4.2, combined with
Theorem 4.1, yields the existence of a process Y ∗ with initial condition Y ∗

0 ≡ 0, for the
coefficients δ,Σ as defined above and such that (4.3) holds. One can therefore define a
process α∗ by

α∗
t = −N̂(Γt)

−1

(
h(t,Γt,Λt) +

∫

R+

S(Γt)(θ)µ(dθ)Y
∗
t (θ)

)
,

and see, again from the boundedness on [0, T ] of (Γ,Λ) in L1(µ ⊗ µ) × L1(µ⊤) together
with the bound (3.11), that

E
[
|α∗

t |p
]
≤ c(1 +M4) sup

0≤t≤T
E
[
‖Y ∗

t ‖pL1(µ)

]
, 0 ≤ t ≤ T,

which is finite due to (4.3). In particular, for p = 4, we get that α∗ lies in A.
Finally, by construction, the coefficients of Y ∗ can be re-written in terms of α∗ as

δ(t, ω, Y ∗
t ) = β̃(t) +B

∫

R+

µ(dθ)Y ∗
t (θ) + Cα∗

t ,

Σ(t, ω, Y ∗
t ) = γ̃(t) +D

∫

R+

µ(dθ)Y ∗
t (θ) + Fα∗

t ,

which means that Y ∗ = Y α∗
, and ends the proof.

7 Stability and approximation

In this section, we prove Theorem 3.13 starting with a priori L2–estimates for the controlled
stochastic Volterra equation before approximating the value function.
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7.1 A-priori L2–estimates for stochastic Volterra equations

Let Xα be the solution produced by Theorem 4.4. We provide an explicit bound for

E

[
‖Xα‖2L2(0,T )

]
, which is finite due to (2.4). For this, let us introduce the resolvent of the

second kind R of a scalar kernel k, defined as the unique L1([0, T ],R) solution to the linear
convolution equation

R(t) = k(t) +

∫ t

0
k(t− s)R(s)ds = k(t) +

∫ t

0
R(t− s)k(s)ds, t ≤ T.

Recall that the resolvent R exists, for any kernel k ∈ L1([0, T ],R), see [16, Theorems 2.3.1
and 2.3.5].

Lemma 7.1. Fix K ∈ L2([0, T ],Rd×d′), α ∈ A, g0 ∈ L2([0, T ],Rd) and β, γ ∈ L2([0, T ],Rd′).
If Xα is a progressively measurable process satisfying (2.1) with

E

[
‖Xα‖2L2(0,T )

]
<∞, (7.1)

then, it holds that

E

[
‖Xα‖2L2(0,T )

]
≤ cmT (g0,K, α)

(
1 + ‖R‖L1(0,T )

)
,

where c is a constant only depending on (T,B,C,D,F ),

mT (g0,K, α) = ‖g0‖2L2(0,T ) + ‖K‖2L2(0,T )

(
‖β‖2L2(0,T ) + ‖γ‖2L2(0,T ) + E

[
‖α‖2L2(0,T )

])

and R is the resolvent of c|K|2.

Proof. Throughout the proof, we make use of the notations (f ∗ g)(t) =
∫ t
0 f(t− s)g(s)ds

and (f ∗ dZ)t =
∫ t
0 f(t − s)dZs, and c will denote a constant depending exclusively on

(T,B,C,D,F ) that may vary from line to line. We first observe that by Jensen’s inequality

‖Xα
t ‖2L2(0,T ) ≤ 5‖g0‖2L2(0,T ) + 5‖K ∗ (β + Cα) ‖2L2(0,T ) + 5‖K ∗BXα‖2L2(0,T )

+ 5‖K ∗DXαdW‖2L2(0,T ) + 5‖K ∗ (γ + Fα) dW‖2L2(0,T )

= 5(I+ II+ III+ IV+V).

An application of Young and Cauchy–Schwarz inequalities yields

II ≤ c‖K‖2L2(0,T )

(
‖β‖2L2(0,T ) + ‖α‖2L2(0,T )

)
.
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Successive applications of Cauchy–Schwarz, Tonelli’s theorem and changes of variables lead
to

III ≤ c

∫ T

0

∫ t

0
|K(t− s)|2|Xα

s |2dsdt

= c

∫ T

0

∫ t

0
|K(s)|2|Xα

t−s|2dsdt

= c

∫ T

0
|K(s)|2

∫ T

s
|Xα

t−s|2dtds

= c

∫ T

0
|K(T − s)|2

∫ s

0
|Xα

u |2duds

= c

∫ T

0
|K(T − s)|2‖Xα‖2L2(0,s)ds.

Taking the expectation, we get

E[II+ III] ≤ c‖K‖2L2(0,T )

(
‖β‖2L2(0,T ) + E

[
‖α‖2L2(0,T )

])

+ c

∫ T

0
|K(T − s)|2E

[
‖Xα‖2L2(0,s)

]
ds.

Similarly, Itô’s isometry combined with Tonelli’s theorem and multiple changes of variables
give

E[IV] = |D|2E
[∫ T

0

∫ t

0
|K(t− s)|2|Xα

s |2dsdt
]

= |D|2
∫ T

0
|K(T − s)|2E

[
‖Xα‖2L2(0,s)

]
ds.

Another application of Itô’s isometry and Young’s inequality shows that

E[V] ≤ c‖|K|2 ∗
(
|γ|2 + |F |2|α|2

)
‖2L1(0,T )

≤ c‖K‖2L2(0,T )

(
‖γ‖2L2(0,T ) + E

[
‖α‖2L2(0,T )

])
.

Combining the above yields

E

[
‖Xα‖2L2(0,T )

]
≤ c‖g0‖2L2(0,T ) + c‖K‖2L2(0,T )

(
‖β‖2L2(0,T ) + ‖γ‖2L2(0,T ) + E

[
‖α‖2L2(0,T )

])

+ c

∫ T

0
|K(T − s)|2E

[
‖Xα‖2L2(0,s)

]
ds,

≤ cmT (g0,K, α)
(
1 + ‖R‖L1(0,T )

)

where the last line follows from the generalized Gronwall inequality for convolution equa-
tions with R the resolvent of c|K|2, see [16, Theorem 9.8.2].

34



Lemma 7.2. Fix n ∈ N. Let K,Kn ∈ L2([0, T ],Rd×d′), α ∈ A, g0, g
n
0 ∈ L2([0, T ],Rd)

and β, γ ∈ L2([0, T ],Rd′). Assume that there exist two progressively measurable processes

X and Xn satisfying (2.1) and (7.1) for the respective inputs (g0,K, α) and (gn0 ,K
n, α).

Then,

E

[
‖Xn −X‖2L2(0,T )

]
≤ cmn

(
1 + ‖Rn‖L1(0,T )

)
, (7.2)

where

mn = ‖gn0 − g0‖2L2(0,T ) + ‖Kn −K‖2L2(0,T )

(
E

[
‖X‖2L2(0,T )

]
+ E

[
‖α‖2L2(0,T )

])

and Rn is the resolvent of c|Kn|2. If in addition

‖gn0 − g0‖L2(0,T ) → 0, ‖Kn −K‖L2(0,T ) → 0, (7.3)

as n→ ∞, then,

E

[
‖Xn −X‖2L2(0,T )

]
→ 0, as n→ ∞. (7.4)

Proof. Fix t ≤ T . We start by writing

Xt −Xn
t = (g0(t)− gn0 (t)) +

∫ t

0
(K(t− s)−Kn(t− s)) (BXs + Cαs) ds

−
∫ t

0
Kn(t− s)B(Xn

s −Xs)ds

+

∫ t

0
(K(t− s)−Kn(t− s)) (DXs + Fαs) dWs

−
∫ t

0
Kn(t− s)D(Xn

s −Xs)dWs

= It + IIt + IIIt + IVt +Vt.

In the sequel, c denotes a constant independent of n that may vary from line to line.
Repeating the same argument as in the proof of Lemma 7.1, we get

E

[
‖II‖2L2(0,T ) + ‖IV‖2L2(0,T )

]
≤ c‖Kn −K‖2L2(0,T )

(
E

[
‖X‖2L2(0,T )

]
+ E

[
‖α‖2L2(0,T )

])
,

which is finite due to Lemma 7.1. Similarly,

E

[
‖III‖2L2(0,T ) + ‖V‖2L2(0,T )

]
≤ c

∫ T

0
|Kn(T − s)|2E

[
‖Xn −X‖2L2(0,s)

]
ds.

Combining the above and invoking [16, Theorem 9.8.2] for the generalized Gronwall in-
equality for convolution equations yields the estimate (7.2). We now prove that its right
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hand side goes to 0, as n goes to infinity. We first note that Rn → R in L1, by virtue of the
continuous dependence of the resolvent on the kernel combined with the L2–convergence
of (Kn)n≥1 in (7.3), see [16, Lemma 9.3.11]. Consequently, the sequences (‖Rn‖L1(0,T ))n≥1

and (‖Kn‖L2(0,T ))n≥1 are uniformly bounded in n, that is

sup
n≥1

‖Rn‖L1(0,T ) + sup
n≥1

‖Kn‖L2(0,T ) <∞. (7.5)

Thus, it follows from (7.2) that it is enough to prove that mn → 0 to get the claimed
convergence (7.4). This is straightforward from (7.3) and the proof is complete.

7.2 Approximation of the value function

The proof of Theorem 3.13 now follows from the two following lemmas. In the sequel, we
work under the assumptions of Theorem 3.13 and we recall the expressions of Jn,Xn,α in
(3.21). To ease notations, we drop the α superscripts.

Lemma 7.3. Let α ∈ A. Under (3.22) we have

|J(α) − Jn(α)|2 ≤ c

(
2 +

(
E

[
‖α‖2L2(0,T )

])2)(
‖gn0 − g0‖2L2(0,T ) + ‖Kn −K‖2L2(0,T )

)
,

where c is a constant independent of n.

Proof. Fix α ∈ A, we start by writing

J(α)− Jn(α) = E

[∫ T

0

(
X⊤

s QXs − (Xn
s )

⊤QXn
s

)
ds

]
+ E

[∫ T

0
(Xs −Xn

s )
⊤Lds

]

= E

[∫ T

0
(Xs −Xn

s )
⊤Q(Xs +Xn

s )ds

]
+ E

[∫ T

0
(Xs −Xn

s )
⊤Lds

]

= I+ II

so that

|J(α) − Jn(α)|2 ≤ 2
(
I2 + II2

)
.

We let c denote a constant independent of n that may vary from line to line. Successive
applications of Cauchy-Schwarz inequality and Lemma 7.2 yield

II2 ≤ cE
[
‖X −Xn‖2L2(0,T )

]

≤ c
(
1 + ‖Rn‖L1(0,T )

) (
1 + E

[
‖α‖2L2(0,T )

])(
‖gn0 − g0‖2L2(0,T ) + ‖Kn −K‖2L2(0,T )

)
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where Rn is the resolvent of c|Kn|2. By virtue of the L2 convergence of the kernels (Kn)n≥1

in (3.22), ‖Rn‖L1(0,T ) is uniformly bounded in n, see (7.5). Whence,

II2 ≤ c
(
1 + E

[
‖α‖2L2(0,T )

])(
‖gn0 − g0‖2L2(0,T ) + ‖Kn −K‖2L2(0,T )

)
.

Similarly, we get from Lemmas 7.1 and 7.2

I2 ≤ c
(
E

[
‖X‖2L2(0,T )

]
+ E

[
‖Xn‖2L2(0,T )

])
E

[
‖X −Xn‖2L2(0,T )

]

≤ c

(
1 +

(
E

[
‖α‖2L2(0,T )

])2)(
‖gn0 − g0‖2L2(0,T ) + ‖Kn −K‖2L2(0,T )

)
,

where the last inequality follows from the fact that supn≥1 E

[
‖Xn‖2L2(0,T )

]
< ∞, since

E

[
‖Xn −X‖2L2(0,T )

]
→ 0 from Lemma 7.2. Combining the above yields the desired esti-

mate.

Lemma 7.4. Assume (3.10), (3.22) and that Q is invertible. Let α∗ and αn∗ be the optimal

controls produced by Theorem 3.7 respectively for the problem (2.5) and its approximation

(3.20). There exists a constant κ > 0 such that

E

[
‖α∗‖2L2(0,T )

]
+ sup

n≥1
E

[
‖αn∗‖2L2(0,T )

]
≤ κ. (7.6)

Proof. Under (3.10), there exists c > 0 such that

|a|2 ≤ ca⊤Na, a ∈ R
m.

Denoting by Xn = Xn,αn∗
, it follows that

E

[
‖αn∗‖2L2(0,T )

]
≤ (1 ∨ c)E

[∫ T

0

(
(αn∗

s )⊤Nαn∗
s +

(
Xn

s +Q−1L
)⊤
Q
(
Xn

s +Q−1L
))
ds

]

= (1 ∨ c)
(
Jn(αn∗) + L⊤Q−1L

)

≤ (1 ∨ c)
(
Jn(0) + L⊤Q−1L

)
,

for all n ∈ N, where the last inequality follows from the optimality of αn∗ and 0 corresponds
to the admissible control αs = 0, for all s ≤ T . Applying Lemma 7.3, with α = αn = 0, we
obtain the convergence of the un-controlled functional cost: limn→∞ Jn(0) = J(0), which
ensures that Jn(0) is uniformly bounded in n. We then deduce the existence of a constant
κ such that (7.6) holds.

The proof of Theorem 3.13 is now straightforward.
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Proof of Theorem 3.13. Fix an arbitrary ε > 0, and let cε > 0 to be determined later.
First note that Lemma 7.4 ensures the existence a constant κ > 0 such that for all n ∈ N:

V n
0 = inf

α∈A
Jn(α) = inf

α∈Aκ

Jn(α),

V0 = inf
α∈A

J(α) = inf
α∈Aκ

J(α),
(7.7)

where Aκ = {α ∈ A : E[‖α‖2L2(0,T )] ≤ κ}. Under condition (3.22), there exists nε ∈ N such

that for every n ≥ nε we have ‖gn0 − g0‖2L2(0,T ) + ‖Kn −K‖2L2(0,T ) ≤ cε. By Lemma 7.3, it
follows that for any α ∈ Aκ, and n ≥ nε,

|J(α) − Jn(α)|2 ≤ c(2 + κ2)cε = ε,

by choosing cε =
ǫ

c(2+κ2)
. Combined with (7.7), this gives (3.23) and also (3.24).

A An elementary lemma

Lemma A.1. Let K be given as in (2.2), and K defined by

K(t) =

∫

R+

e−θt|µ|(dθ), t > 0.

Assume that (2.3) holds, then
∫ T

0
|K(s)|2ds ≤

∫ T

0
K(s)2ds <∞.

Furthermore, |µ| is σ-finite.
Proof. Since, |K(t)| ≤ K(t), for all t > 0, it is clear that

∫ T
0 |K(s)|2ds ≤

∫ T
0 K(s)2ds.

Furthermore,

‖K‖L2(0,T ) =

∥∥∥∥
∫

R+

e−θ(·)|µ|(dθ)
∥∥∥∥
L2(0,T )

≤
∫

R+

∥∥∥e−θ(·)
∥∥∥
L2(0,T )

|µ|(dθ) =

∫

R+

√
1− e−2θT

2θ
|µ|(dθ)

which is finite due to inequality (2.16) and condition (2.3). To prove that |µ| is σ-finite,
we observe that R+ = ∪n∈N[0, n] such that for each n ≥ 1,

|µ|([0, n]) =

∫ 1

0
|µ|(dθ) +

∫ n

1
|µ|(dθ) ≤

∫ 1

0
|µ|(dθ) +√

n

∫ n

1
θ−1/2|µ|(dθ)

≤ √
n

∫

R+

(1 ∧ θ−1/2)|µ|(dθ) <∞.
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