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Abstract

The present work investigates the segmentation of textures by for-
mulating it as a strongly convex optimization problem, aiming to favor
piecewise constancy of fractal features (local variance and local regular-
ity) widely used to model real-world textures in numerous applications
very different in nature. Two objective functions combining these two
features are compared, referred to as joint and coupled, promoting ei-
ther independent or co-localized changes in local variance and regularity.
To solve the resulting convex nonsmooth optimization problems, because
the processing of large size images and databases are targeted, two cate-
gories of proximal algorithms (dual forward-backward and primal-dual),
are devised and compared. An in-depth study of the objective functions,
notably of their strong convexity, memory and computational costs, per-
mits to propose significantly accelerated algorithms. A class of synthetic
models of piecewise fractal texture is constructed and studied. They en-
able, by means of large-scale Monte-Carlo simulations, to quantify the
benefits in texture segmentation of combining local regularity and local
variance (as opposed to regularity only) while using strong-convexity ac-
celerated primal-dual algorithms. Achieved results also permit to discuss
the gains/costs in imposing co-localizations of changes in local regularity
and local variance in the problem formulation. Finally, the potential of
the proposed approaches is illustrated on real-world textures taken from
a publicly available and documented database.

1 Introduction

Context: unsupervised texture segmentation. Textured images appear
as natural models for a large variety of real-world applications very different in
nature. Often, fractal attributes are used to relevantly characterize such real-
world textures. This is the case with biological tissues [30], tomography-based
pathology diagnostics [20, 29], art painting expertise [1], and microfluidics [35],
to name a few examples.
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Often in these applications, texture segmentation (i.e., partitioning images
into regions with homogeneous features) remains an on-going and major chal-
lenge. In computer vision or scene analysis, there exist numerous well-established
and efficient methods to partition images, mostly relying on their geometrical
properties (cf. e.g., [19, 23, 31, 39]). For textured images, segmentation remains
challenging, as geometry is more difficult to capture, relying essentially on the
statistics of the texture features.

Most classical texture segmentation approaches rely on two-step procedures,
consisting of first computing a priori chosen texture features and, second, group-
ing features into regions with homogeneous feature statistics. Attempts to im-
prove these traditional approaches address their two main limitations: arbitrary
a priori feature selection and suboptimality of the two-step procedure. For in-
stance, deep learning and neural network approaches have strongly contributed
to renew image segmentation, avoiding notably the a priori selection of spe-
cific features, and combining feature estimation and segmentation (cf. e.g., [3]).
However, their use remains designed mostly for the specific context of supervised
segmentation: Typically, they require a very large labeled dataset, together with
massive computing capabilities. Often, the required databases are not available,
as expert annotations may be too expensive (in time and money) or technically
beyond reach. Besides technical and financial issues, assembling such databases
may raise non trivial ethical problems (cf. e.g., [13]). Along that line, a severe
drawback of neural network approaches lies in the lack of interpretability or
even of identification of the features decisions are based on: Doctors for instance
might legitimately remain reluctant to base diagnostics on undocumented fea-
tures. Therefore, despite the potential of deep learning, in contexts of absence
of labeled database, of requirements for accurately estimating boundaries, or
when there is a need of understandability, unsupervised segmentation strategies
remain of critical importance.

Similarly to supervised neural network approaches, the present contribution
aims to outperform traditional two-step texture segmentation procedures, while
remaining in an unsupervised framework. A major advantage of our proce-
dure, compared to neural networks or standard two-steps approaches, lies in its
strongly convex formulation. It guarantees the existence and the uniqueness of
the solution of the minimization problem involved in the segmentation proce-
dure. Further, it provides computational efficiency.

Related work. Amongst classical features commonly enrolled in texture seg-
mentation, one can list e.g., Gabor or short-term Fourier transform coeffi-
cients [18, 22], fractal dimension [11], Amplitude/Frequency Modulation mod-
els [24]. More recently, fractal (or scale-free) features were also involved in tex-
ture segmentation (cf. e.g., [47]). Notably, local regularity was used to quantify
the fluctuations of roughness along the texture. Local regularity is quantified
as an optimal local power-law behavior across scales for some multiscale quan-
tities [47]. Modulus of wavelet coefficients [27] were initially used as multiscale
quantities, followed by continuous wavelet transform modulus maxima [28, 32].
More recently, wavelet leaders (local suprema of discrete wavelet coefficients),
used here, were shown to permit a theoretically accurate and practically robust
estimation of local regularity [47], and successfully involved in texture charac-
terization in e.g., [1,29,33]. Wavelet leaders are used to estimate local regularity
at each pixel, mostly by linear regressions in log-log coordinates.
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For the segmentation step, local Gabor coefficient histograms were grouped
using matrix factorization [48] ; textons were combined with brightness and
color features to yield a multiscale contour detection procedure [4]. Further,
with fractal features, pixels sharing similar estimates of local regularity are
grouped together via the minimization of the Rudin-Osher-Fatemi (ROF) func-
tional [42], which amounts to performing total variation (TV) denoising of the
local regularity estimate [38].

Further, in [38], it was also attempted to combine both steps into a single
one by incorporating the regression weight estimation into the optimization pro-
cedure. The high computational burden implied by iteratively solving optimiza-
tion problems as well as by tuning the regularization parameter has tentatively
been addressed by block splitting approaches as suggested in [40] and explored
in [34]. Strong convexity [10] constitutes another proposed track to address iter-
ative optimization acceleration. However, the proposed joint features estimation
and segmentation procedures, despite showing satisfactory and state-of-the-art
segmentation performance suffered from major limitations: Their high comput-
ing cost prevents their use to process large images and databases ; While based
on a key fractal feature, local regularity, they neglect changes in local power,
potentially relevant information for texture segmentation, notably to extract
accurate region boundaries.

Goals, contributions and outline. Aiming to address the above limitations,
the overall goals of the present contribution are to investigate the potential
benefits for texture segmentation brought by

� the use of joint estimates of fractal features (local variance and local reg-
ularity) ;

� the formulation of feature estimation and segmentation as a single step
taking the form of a convex minimization ;

� the derivation of fast and scalable iterative algorithms to solve the opti-
mization problem, permitted by explicitly proving (and measuring) strong
convexity of the data fidelity term in the objective function ;

� the comparisons of several optimization formulations, favoring changes in
features that are either co-localized in space or independent ;

� the derivation of an explicit stochastic process, modeling piecewise fractal
textures, thus permitting to conduct large-size Monte-Carlo simulation for
performance benchmarking and comparisons.

To that end, Section 2 recalls the key concepts and definitions related to local
regularity, wavelet leaders and corresponding state-of-the-art linear regression
followed by TV-based estimation procedures. The drawbacks of this approach
are discussed in detail, and illustrated on a texture segmentation example. Sec-
tion 3 describes the methodology of the first key contribution, a one-step estima-
tion/segmentation procedure aiming to overcome the limitations of the two-step
procedure. Thus, Section 3 proposes two alternative objective functions for the
combined estimation/segmentation of local variance and regularity, respectively
referred to as joint and coupled, based on the same data fidelity term but on
two different total-variation based regularization strategies. Studying strong
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convexity and duality gaps, two classes of fast iterative algorithms (Primal-
Dual and Dual Forward-backward), are devised. Section 4 proposes the second
contribution of this work. It describes a model of piecewise homogeneous frac-
tal textures, providing well-controlled synthetic textures. Section 5 describes
the third contribution. The performance of the estimation/segmentation pro-
cedures of Section 3 are assessed from Monte-Carlo simulations conducted on
synthetic texture samples generated from the model of Section 4. Conducting
such simulations requires to address issues related to regularization parameter
selection, iterative algorithm stopping criterion, and performance metrics. It
permits relevant answers to the final aim of assessing the actual benefits of
using both local variance and regularity in texture segmentation with respect
to issues such as sensitivity to fractal parameter changes, computational costs,
impact of the different optimization formulations. Finally, the potential of the
proposed segmentation approaches is illustrated at work on real-world piecewise
homogeneous textures taken from a publicly available and documented texture
database. Performance is also compared against a state-of-the-art segmentation
strategy.

A matlab toolbox implementing the analysis and synthesis procedures de-
vised here will be made freely and publicly available at the time of publication.

2 Local regularity

2.1 Local regularity and Hölder exponent

Local regularity can classically be assessed by means of the Hölder exponent [21,
26], defined as follows:

Definition 1 Let f : Ω → R denote a 2D real field defined on an open set
Ω ⊂ R2. The Hölder exponent h(z0) at location z0 ∈ Ω is defined as the largest
α > 0 such that there exists a constant χ > 0, a polynomial Pz0

of degree lower
than α and a neighborhood V(z0) satisfying:(

∀z ∈ V(z0)
) ∣∣f(z)− Pz0

(z)
∣∣ ≤ χ ‖z − z0‖

α

where ‖·‖ denotes the Euclidian norm.

Definition 1 does not provide a practical way to estimate local regularity. Thus,
the practical assessment of h(z0) usually relies on the use of multiscale quanti-
ties, such as wavelet coefficients, or wavelet leaders [21,26,47].

2.2 Local regularity and wavelet leaders

Because the practical aim is to analyse digitized images, definitions are given in a
discrete setting. Let X = (Xn)n∈Υ ∈ R|Υ| denote the digitized version of the 2D
real field f on a finite grid Υ = {1, . . . , N}2. Let dj = WjX denote the discrete
wavelet transform (DWT) coefficients of X, at resolution j ∈ {j1, . . . , j2}, with
Wj : RN×N → RMj×Mj the operator formulation of the DWT.

Further, let the wavelet leader Lj,k, at scale 2j and location n = 2jk, be
defined as the local supremum of modulus of wavelet coefficients in a small
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neighborhood across all finer scales, [21, 26, 47] Lj,k = sup
λj′,k′⊂3λj,k

|2jdj′,k′ |, with

λj,k = [k2j , (k + 1)2j) and 3λj,k =
⋃

p∈{−1,0,1}2
λj,k+p.

It was proven in [21,26,47] that wavelet leaders provide multiscale quantities
intrinsically tied to Hölder exponents, insofar as when the underlying field f has
Hölder exponent h(x) at location x, then the wavelet leaders Lj,k satisfy:

Lj,k ' η(x)2jh(x) as 2j → 0, (1)

for x ∈ λj,k. The quantity η(x), referred to as the local power, is proportional
to the local variance of f at location x. The discretized field X inherits from
the properties of f , and we denote by hn (resp. ηn) its local regularity (resp.
power) at pixel n.

2.3 Local regularity estimation

2.3.1 Linear regression

Eq. (1) naturally leads to estimate h and v = log2 η by means of linear regression

in log-log coordinates [21,26,47], denoted
(
v̂LR, ĥLR

)
:

(∀n ∈ Υ)

(
v̂LR,n

ĥLR,n

)
= J−1

(
Sn
Tn

)
(2)

with J =

(
R0 R1

R1 R2

)
and Rm =

∑
j

jm, (3)

and Sn =
∑
j

log2 Lj,n, Tn =
∑
j

j log2 Lj,n. (4)

The sum
∑
j implicitly stands for

∑j2
j=j1

with (j1, j2) the range of octaves
involved in the estimation. Though linear regressions provide estimates both
for h and log2 η, the later remains to date rarely used. Estimates of h were
for instance used in [34,38]. Bayesian based extension of linear regressions were
also and alternatively proposed to estimate η and h [46].

A sample of piecewise homogeneous fractal texture is displayed in Fig. 1b,
synthesized using the mask sketched in Fig. 1a. The corresponding linear re-
gression based estimates η̂LR ≡ 2v̂LR , and ĥLR (Fig. 1(c-d)) show too poor
performance (high variability) to permit to detect the two regions and the cor-
responding boundary.

2.3.2 Total variation based estimates

To address the poor estimation performance achieved by linear regressions for
local estimation, it has been proposed to denoise ĥLR by using an optimisation
framework involving TV regularization, as a mean to enforce piecewise constant
estimates [33,38]:

ĥROF = argmin
h∈R|Υ|

1

2
‖h− ĥLR‖22 + λTV(h). (5)
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(a) Mask (b) Texture X (c) v̂LR

(d) ĥLR (e) ĥROF (f) M̂ROF

Figure 1: Piecewise homogeneous fractal texture and local variance
and regularity estimates. (a) Synthesis mask (H0,Σ0) = (0.5, 0.6) and
(H1,Σ1) = (0.8, 0.65); (b) sample texture (see Section 4), (c) and (d) linear

regression based estimates of local variance and regularity v̂LR and ĥLR; (e)

and (f) Total variation based estimates of local regularity ĥROF and segmenta-

tion M̂ROF obtained with Alg. 1.

The above functional balances a data fidelity term against a total variation
penalization defined as:

TV(h) = ‖Dh‖2,1, (6)

where the operator D : R|Υ| → R2×|Υ|, consists of horizontal and vertical incre-
ments:

(Dh)n1,n2
=

(
hn1,n2+1 − hn1,n2

hn1+1,n2
− hn1,n2

)
(7)

and where the mixed norm, ‖·‖2,1, defined for z = [z1; . . . ; zI ]
> ∈ RI×|Υ| as:

‖z‖2,1 =

N1−1∑
n1=1

N2−1∑
n2=1

√√√√ I∑
i=1

(zi)2
n1,n2

(8)

which fosters an isotropic and piecewise constant behaviour of the estimates [38].
While showing substantial benefits compared to linear regression based es-

timates and although algorithmically efficient, the TV-based procedure above,
proposed in [38], suffers from several significant limitations: i) It is restricted
to the estimation of local regularity only and neglects local variance ; ii) It con-

sists of a two-step process (first, apply linear regression to obtain ĥLR ; second,

apply TV to ĥLR to obtain ĥROF) and is hence potentially not optimal. Sec-
tion 3 below will propose several solutions that address these two limitations by
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performing the estimate of both local variance and regularity in a single pass at
similar computational cost as the two-step procedure.

2.3.3 A posteriori segmentation and local regularity global estima-
tion

When the number of regions is known a priori, it has been shown in [7,8] that a

fast iterative thresholding post-processing procedure can be applied to ĥROF to
obtain a segmentation of the TV denoised estimate. Papers [7,8] provided the-
oretical guarantees linking this Threshold-ROF (T-ROF) strategy to Mumford-
Shah-like segmentation. Alg. 1 explicitly describes the procedure applied to

ĥROF to obtain a two-region T-ROF segmentation M̂ROF with M̂ROF,n = 0 if
n ∈ Υ0 and 1 otherwise. Figs. 1e, 1f display examples of TV denoised estimate

ĥROF and T-ROF segmentation M̂ROF.

Algorithm 1: T-ROF: iterative thresholding of ĥROF

Input: h

Initialization: m
[0]
0 = min

n∈Υ
hn, m

[0]
1 = max

n∈Υ
hn.

for t ∈ N∗ do
Compute the threshold:

T[t−1] =
(

m
[t−1]
0 + m

[t−1]
1

)
/2

Threshold h:

Υ
[t]
0 = {n |hn ≤ T[t]}, Υ

[t]
1 = {n |hn > T[t]}

Update region mean:

m
[t]
0 = 1/|Υ0|

∑
n∈Υ0

hn, m
[t]
1 = 1/|Υ1|

∑
n∈Υ1

hn.

Output: Υ0 = Υ
[∞]
0 , Υ1 = Υ

[∞]
1

From T-ROF segmentation, Texture X can be interpreted as the concate-
nation of two fractal textures X0 and X1, each with its own uniform regularity
and variance. Therefore, a posteriori global estimates, Ĥ0,ROF and Ĥ1,ROF, for
the local regularity of each region, Υ0 and Υ1, can be obtained by performing
linear regressions applied to the logarithm of multiscale quantities Lj averaged
over Υ0 (resp. Υ1) (cf. [47]).

3 Total variation based estimation of local vari-
ance and regularity

3.1 Design of the objective function

3.1.1 Linear regression as functional minimization

Linear regression can (of course) be viewed as an optimization scheme. Indeed,
setting v = log2 η the following strictly convex functional (in variables (v,h)):

Φ(v,h;L) =
1

2

∑
j

‖v + jh− log2 Lj‖2Fro , (9)
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has a unique minimum corresponding to the linear regression estimates in 2.

3.1.2 Penalization

To improve on the poor performance of linear regression, a generic optimization
framework can be proposed as (v̂, ĥ) = arg min

v∈R|Υ|,h∈R|Υ|
Φ(v,h;L)+Ψ(v,h), where

the data fidelity term Φ is that of the linear regression (cf.(9)), and where
the penalization term Ψ favors piecewise constancy of v and h. Two different
strategies are proposed:

(i) Joint estimation:

(v̂J, ĥJ) = arg min
v,h∈R|Υ|×R|Υ|

Φ(v,h;L) + ΨJ(v,h), (10)

with ΨJ(v,h) = λ (TV(v) + αTV(h)) , (11)

that does not favor changes in v and h occurring at the same location;

(ii) Coupled estimation:

(v̂C, ĥC) = arg min
v,h∈R|Υ|×R|Υ|

Φ(v,h;L) + ΨC(v,h), (12)

with ΨC(v,h) = λTVα(v,h),

= λ
∥∥[Dv;αDh

]>∥∥
2,1

(13)

where TVα couples spatial variations of vn and hn and thus favor their
occurrences at same location.

For both constructions, λ > 0 and α > 0 constitute regularization hyperparam-
eters that need to be selected.

Further, the thresholding procedure in [7, 8] is generalized to “joint” and

“coupled” estimation strategies: Alg. 1, applied to ĥJ (resp. ĥC) provides

“joint” (resp. “coupled”) segmentation M̂J (resp. M̂C).

Finally, from the two-region segmentation M̂J (resp. M̂C) obtained with
Alg. 1, one can use global techniques [47] to obtain a posteriori estimates of

the Hölder exponents of each region Ĥ0,J and Ĥ1,J (resp. Ĥ0,C and Ĥ1,C) (cf.
Sec. 2.3.2).

3.2 Minimization algorithms

The data fidelity function Φ is Lipschitz differentiable. This is the case neither
for ΨJ nor for ΨC. Therefore, gradient descent methods may not be appro-
priate to solve (10) or (12). In contrast, proximal algorithms are often better
adapted to the minimization of such nonsmooth functions [15]. While the non-
differentiability stems from the mixed norm ‖·‖2,1, appearing both in ΨJ and
in ΨC, the linear operator D makes the computation of the proximal operator
of total variation difficult [12, 37]. Below, two algorithms are devised: the dual
FISTA and the primal-dual.
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3.2.1 Dual FISTA

The well-known Fast Iterative Shrinkage Thresholding Algorihtm (FISTA) al-
gorithm [9] is here customized to Problems (10) and (12), to achieve faster
convergence than with the basic dual forward-backward. Corresponding itera-
tions are detailed in Algorithms 2 and 3. Convergence guarantees are specified
in Theorems 1 and 2.

Theorem 1 (Convergence of FISTAJ) The sequence (v[t],h[t]) generated by
Algorithm 2 converges towards a solution of the joint estimation problem (10).

Theorem 2 (Convergence of FISTAC) The sequence (v[t],h[t]) generated by
Algorithm 3 converges towards a solution of coupled estimation problem (12).

Proof 1 The proofs of Theorems 1 and 2 stem directly from the choice of de-
scent parameters proposed in Algs. 2 and 3 following the reasoning in [9].

Algorithm 2: FISTAJ: Joint estimation (Pb. (10))

Initialization: Set u[0] ∈ R2×|Υ|, ū[0] = u[0];

Set `[0] ∈ R2×|Υ|, ¯̀[0]
= `[0];

Let
(
Sn, Tn

)
defined in (4);

Let J defined in (3);

Set (∀n)
(
v

[0]
n , h

[0]
n

)>
= J−1

(
Sn, Tn

)>
;

Set b > 2 and τ0 = 1;
Set α > 0 and λ > 0;

Set γ > 0 such that γ ‖J−1‖‖D‖2 < 1;

for t ∈ N do
Dual variable update:

u[t+1] = proxγ(λ‖.‖2,1)∗
(
ū[t] + γDv[t]

)
`[t+1] = proxγ(λα‖.‖2,1)∗

(
¯̀[t]

+ γDh[t]
)

FISTA parameter update

τt+1 = t+b
b

Auxiliary variable update

ū[t+1] = u[t+1] + τt−1
τt+1

(
u[t+1] − u[t]

)
¯̀[t+1]

= `[t+1] + τt−1
τt+1

(
`[t+1] − `[t]

)
Primal variable update(
v[t+1]

h[t+1]

)
=

(
v[t]

h[t]

)
− J−1

(
D∗(u[t+1] − u[t])

D∗(`[t+1] − `[t])

)

3.2.2 Primal-dual

Primal-dual algorithms [10, 16, 25, 44] can also be customized to solve Prob-
lems (10) and (12).

This requires the derivation of a closed-form expression for the proximal
operator associated with the quadratic data fidelity term Φ, provided in Propo-
sition 1.
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Algorithm 3: FISTAC: Coupled estimation (Pb. (12))

Initialization: Set u[0] ∈ R2×|Υ|, ū[0] = u[0];

Set `[0] ∈ R2×|Υ|, ¯̀[0]
= `[0];

Let
(
Sn, Tn

)
defined in (4);

Let J defined in (3);

Set (∀n)
(
v

[0]
n , h

[0]
n

)>
= J−1

(
Sn, Tn

)>
;

Set b > 2 and τ0 = 1;
Set α > 0 and λ > 0;

Set γ > 0 s. t. γmax(1, α) ‖J−1‖‖D‖2 < 1;

for t ∈ N do
Dual variable update:(
u[t+1]

`[t+1]

)
= proxγ(λ‖.‖2,1)∗

(
ū[t] + γDv[t]

¯̀[t]
+ γαDh[t]

)
FISTA parameter update

τt+1 = t+b
b

Auxiliary variable update

ū[t+1] = u[t+1] + τt−1
τt+1

(
u[t+1] − u[t]

)
¯̀[t+1]

= `[t+1] + τt−1
τt+1

(
`[t+1] − `[t]

)
Primal variable update(
v[t+1]

h[t+1]

)
=

(
v[t]

h[t]

)
− J−1

(
D∗(u[t+1] − u[t])

αD∗(`[t+1] − `[t])

)
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Proposition 1 (Computation of proxΦ) For every (v,h) ∈ R|Υ|×R|Υ|, de-
noting (p, q) = proxΦ(v,h) ∈ R|Υ| × R|Υ| one has{

p = (1+R2)(S+v)−R1(T +h)
(1+R0)(1+R2)−R2

1
,

q = (1+R0)(T +h)−R1(S+v)
(1+R0)(1+R2)−R2

1
.

with S and T defined in (4) and R0, R1, R2 defined in (3).

Further, in [10], it was described how to take advantage of the strong con-
vexity1 of the objective function to obtain fast implementation for primal-dual
algorithms, with linear convergence rates. In Proposition 2 below, we prove that
the data fidelity term Φ is strongly convex and derive the closed form expression
of the strong convexity coefficient.

Proposition 2 Function Φ(v,h;L) is µ-strongly convex w.r.t the variables (v,h),
with µ = χ where χ > 0 is the lowest eigenvalue of the symmetric and positive
definite matrix J defined in Eq. (3).

Indeed, since ∇Φ(v,h;L) = J (v,h)
>

is linear, the condition for Φ to be
µ−strongly convex can be recast as:

〈∇Φ(v,h;L), (v,h)〉 =
〈
J (v,h)

>
, (v,h)

>
〉

≥ µ ‖(v,h)‖2 . (14)

Intuitively, a function with a large strong-convexity constant µ is very peaked
around its minimum, hence yielding a good theoretical convergence rate toward
the minimizer. The strong-convexity parameter is represented in Fig. 2 as a
function of the range of scales involved in the estimation procedure (cf. (9)).

Figure 2: Strong convexity constant as a function of the range of scales
involved in the estimation.

The iterations of the devised fast primal-dual algorithms are detailed in
Algorithms 4 and 5. Convergence guarantees are specified in Theorem 3 (resp.
Theorem 4).

1A function ϕ : H → R, defined on an Hilbert spaceH, is said to be µ−strongly convex, for a
given µ > 0, if the function y 7→ ϕ(y)− µ

2
‖y‖22 is convex. When the function ϕ is differentiable,

ϕ is µ−strongly convex if and only if (∀(y, z) ∈ H×H) 〈∇ϕ(y)−∇ϕ(z), y− z〉 ≥ µ‖y− z‖2
where 〈· , ·〉 denotes the Hilbert scalar product and ‖·‖ the associated scalar product.
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Theorem 3 (Convergence of PDJ) The sequence (v[`],h[`]) generated by Al-
gorithm 4 converges towards a solution of the joint estimation problem (10).

Theorem 4 (Convergence of PDC) The sequence (v[`],h[`]) generated by Al-
gorithm 5 converges towards a solution of the joint estimation problem (12).

Proof 2 The proofs of Theorems 3 and 4 come directly from the choice of de-
scent parameters proposed in Algs. 4 and 5 following the reasoning of [10].

Algorithm 4: PDJ: Joint estimation (Pb. (10))

Initialization: Set v[0] ∈ R|Υ|, u[0] = Dv[0], ū[0] = u[0];

Set h[0] ∈ R|Υ|, `[0] = Dh[0], ¯̀[0]
= `[0];

Set α > 0 and λ > 0;
Set (δ0, ν0) such that δ0ν0‖D‖2 < 1;

for t ∈ N∗ do
Primal variable update:(
v[t+1]

h[t+1]

)
= proxδtΦ

((
v[t]

h[t]

)
− δt

(
D∗ū[t]

D∗¯̀
[t]

))
Dual variable update:

u[t+1] = proxνt(λ‖·‖2,1)∗
(
u[t] + νtDv

[t]
)

`[t+1] = proxνt(λα‖·‖2,1)∗

(
`[t] + νtDh

[t]
)

Descent steps update:

ϑt = (1 + 2µδt)
−1/2

, δt+1 = ϑtδt, νt+1 = νt/ϑt
Auxiliary variable update:(
ū[t+1]

¯̀[t+1]

)
=

(
u[t+1]

`[t+1]

)
+ ϑt

((
u[t+1]

`[t+1]

)
−
(
u[t]

`[t]

))

3.3 Duality gap

To ensure fair comparisons between the different algorithms, we construct a
stopping criterion based on the duality gap. Let H,G Hilbert spaces, Θ : H →
]−∞,+∞], Ξ : G →]−∞,+∞] and L : H → G a bounded linear operator. From
a primal optimization problem of the general form x̂ = arg min

x∈H
Θ(x) + Ξ(Lx),

and its associated dual problem ŷ = arg min
y∈G

Θ∗(−L∗y) + Ξ∗(y), we define:

Γ(x;y) := Θ(x) + Ξ(Lx) + Θ∗(−L∗y) + Ξ∗(y), (15)

Θ∗ (resp. Ξ∗), being the Fenchel conjugate of Θ (resp. Ξ).

Definition 2 The duality gap δΓ associated to primal and dual optimization
problems is defined as the infimum:

δΓ := inf
(x,y)∈H×G

Γ(x;y). (16)
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Algorithm 5: PDC: Coupled estimation (Pb. (12))

Initialization:
Set v[0] ∈ R|Υ|, u[0] = Dv[0], ū[0] = u[0];

Set h[0] ∈ R|Υ|, `[0] = αDh[0], ¯̀[0]
= `[0];

Set α > 0 and λ > 0.
Set (δ0, ν0) such that δ0ν0 max(1, α)‖D‖2 < 1;

for t ∈ N∗ do
Primal variable update:(
v[t+1]

h[t+1]

)
= proxδtΦ

((
v[t]

h[t]

)
− δt

(
D∗ū[t]

αD∗¯̀
[t]

))
Dual variable update:(
u[t+1]

`[t+1]

)
= proxνt(λ‖.‖2,1)∗

(
u[t] + νtDv

[t]

`[t] + νtαDh[t]

)
Descent steps update:

ϑt = (1 + 2µδt)
−1/2

, δt+1 = ϑtδt, νt+1 = νt/ϑt
Auxiliary variable update:(
ū[t+1]

¯̀[t+1]

)
=

(
u[t+1]

`[t+1]

)
+ ϑt

((
u[t+1]

`[t+1]

)
−
(
u[t]

`[t]

))

Under some loose assumptions on Θ, Ξ and L, referred as strong duality in [5],
the duality gap δΓ is zero and the respective solutions x̂ and ŷ of primal and
dual problems are characterized by Γ(x̂; ŷ) = δΓ = 0.

Primal-dual algorithms presented above built a minimizing sequence (x[t],y[t])t∈N
for Γ, therefore converging towards the unique point achieving the infimum of
Eq. (16): (x̂, ŷ). Then the convergence of x[t] (resp. y[t]) towards x̂ (resp. ŷ)
can be measured evaluating the primal-dual functional Γ, as:

Γ(x[t];y[t]) −→
t→∞

0. (17)

The “joint” (10) and “coupled” (12) optimization problems, with primal
variable x = (v,h) ∈ R|Υ| × R|Υ|, share the same data fidelity term Θ(x) =
Φ(v,h;L) and a penalization based on the mixed norm Ξ = λ‖·‖2,1. Yet, the
linear operator L differs between joint and coupled formulations, as:
i) Lx = [Dv, αDh] ∈ R2×2|Υ|, for “joint” (10),
ii) Lx = [Dv;αDh] ∈ R4×|Υ|, for “coupled” (12).
For Pb. (10) (resp. (12)), denoting y = (u, `) the dual variable, the evaluation
of ΓJ (resp.C)(v,h;u, `) requires computing:
i) L∗ (straightforward from D∗),
ii) Ξ∗ = (λ‖·‖2,1)∗ = ι‖·‖2,+∞≤λ (direct computation),
iii) Θ∗ = Φ∗ which is devised in Proposition 3.
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Proposition 3 Let J and (S,T ) defined in (3) and (4),

Φ∗(v,h;L) =
1

2
〈(v,h)>,J−1(v,h)>〉+ 〈(S,T )>,J−1(v,h)>〉+ C, (18)

C =
1

2
〈(S,T )>,J−1(S,T )>〉 − 1

2

∑
j

(log2 Lj)
2.

Proof 3 By definition of the Fenchel conjugate,

F ∗(v,h;L) = sup
ṽ∈R|Υ|,h̃∈R|Υ|

〈ṽ,v〉+ 〈h̃,h〉 − F (ṽ, h̃;L). (19)

The supremum is obtained at (v̄, h̄) such that, for every n ∈ Ω,{
vn −

∑
j

(
v̄n + jh̄n − log2 Lj,n

)
= 0

hn −
∑
j j
(
v̄n + jh̄n − log2 Lj,n

)
= 0.

(20)

or equivalently, {
R0v̄n +R1h̄n = vn + Sn
R1v̄n +R2h̄n = hn + Tn

(21)

that yields (
v̄n
h̄n

)
= J−1

(
vn + Sn
hn + Tn

)
(22)

and it is then necessary to substitute this expression into the explicit expression
of Ψ.

4 Piecewise homogeneous fractal textures

Homogeneous fractal textures. Numerous models of homogeneous tex-
tures have been proposed in the literature, mostly consisting of 2D extensions
of fractional Brownian motion, the unique univariate Gaussian exactly selfsimi-
lar process with stationary increments [14]. These extensions are often referred
to as fractional Brownian field fBf. However, in most applications, real-world
textures are better modeled by stationary processes, hence by increments of
fBf, referred to as fractional Gaussian fields. Further, to construct a formally
relevant definition for piecewise homogeneous fractal textures, as originally pro-
posed here, it is easier to manipulate stationary processes.

For Gaussian processes, space or frequency domain definitions of fBf are
theoretically equivalent and several variations were proposed in either domain,
mostly consisting in different tuning of the 2D extension of the fractional in-
tegration kernel underlying selfsimilar textures (cf. e.g., [2, 14, 36]). Yet, in
practice, numerical issues need to be accounted for, such as discrete sampling
from a continuous process, or computation of integrals defined from a theoret-
ically infinite support kernel and related border effects. Further, fast circulant
embedding matrix algorithms were developed ; but they do not permit to reach
the full range 0 < H < 1 for the selfsimilarity parameter [43]. Therefore, we
will make use of a self-customized construction that combines an effective im-
plementation scheme with excellent theoretical and practical control of the local
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variance and regularity, while permitting direct extension to piecewise homoge-
neous construction.

Following e.g., [6, 17, 41], we start from an harmonizable representation of
fBf Bn, n ∈ R|Υ|, Υ = {1, . . . , N}2:

Bn =
Σ

C(H)

∫
e−if.n − 1

‖f‖H+1
dG̃(f), (23)

with dG̃(f) the Fourier transform of a white Gaussian noise and

C(H) =
π1/2Γ(H + 1/2)

2d/2HΓ(2H) sin(πH)Γ(H + d/2)
.

The covariance function of the zero mean process Bn reads:

E
[
BnBm

]
=

Σ2

2

(
‖n‖2H + ‖m‖2H − ‖n−m‖2H

)
. (24)

Texture Yn is constructed from increments of Bn as (with e1, e2, unitary
vectors in horizontal and vertical directions):

Yn =
Σ

2δH
√

1− 2H−2
( Bn+δe1

−Bn︸ ︷︷ ︸
horizontal increment

+ Bn+δe2
−Bn︸ ︷︷ ︸

vertical increment

), (25)

Proposition 4 The field Y = (Yn)n∈Υ is a zero-mean Gaussian process with

variance E
[
Y 2
n

]
= Σ2 and covariance:

E
[
Yn+∆nYn

]
=

Σ2δ−2H

4− 2H
(‖∆n+ δe1‖2H

+ ‖∆n− δe1‖2H + ‖∆n+ δe2‖2H + ‖∆n− δe2‖2H − 3‖∆n‖2H

− 1

2
‖∆n+ δe1 − δe2‖2H −

1

2
‖∆n− δe1 + δe2‖2H).

Piecewise homogeneous fractal textures. Piecewise homogeneous fractal
textures X = (Xn)n∈Υ are defined as the concatenation of M (pairwise disjoint)
regions, denoted (Υm)0≤m≤M−1, such that Υ = ∪mΥm, with textures in each

region consisting of an homogeneous fractal Y
(m)
n (0 ≤ m ≤ M − 1), with

variance and regularity (Σ2
m, Hm):

Xn = Y (m)
n , whenn ∈ Υm.

Examples of piecewise fractal textures are shown in Fig. 3.

5 Estimation/Segmentation performance

5.1 Monte-Carlo simulation set-up

The proposed joint and coupled segmentations are now compared in terms of
performance and computational costs to the state-of-the-art T-ROF procedure,
in the context of a two-region segmentation, by means of Monte-Carlo simula-
tions.
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Figure 3: Piecewise homogeneous fractal textures X generated using the
mask displayed in Fig. 1a, with parameters (H0,Σ0) = (0.5, 0.6) and (H1,Σ1))
chosen as: (a) (0.5, 0.6), no change ; (b) (0.5, 0.65), change in Σ ; (c) (0.8, 0.6)
change in H ; (d) (0.8, 0.65), change in Σ and H.

5.1.1 Synthetic textures

Piecewise homogeneous fractal textures are generated as defined in Section 4,
using the mask shown in Fig. 1a, with N = 512. They consist of two regions:
i) a background, with variance and local regularity

(
Σ2

0, H0

)
= (0.6, 0.5) kept

fixed, ii) a central ellipse, for which variance and local regularity
(
Σ2

1, H1

)
are

varied, as illustrated in Fig. 5. For each configuration, 5 realizations of piece-
wise homogeneous fractal textures are generated and analyzed ; performance is
reported as averages over realizations.

5.1.2 Wavelet transform

2D-Wavelet decompositions are performed using tensor product wavelets con-
structed from 1D-Daubechies orthonormal least asymmetric wavelets with Nψ =
3 vanishing moments [27]. Wavelet leaders are computed as in Section 2.2. Lo-

cal estimate ĥLR in T-ROF is computed as in Sec. 2.3. Estimates from all
procedures involve octaves (j1, j2) = (2, 5). Octave j1 = 1 is a priori excluded
as leaders are biased [45,47].

5.1.3 Optimization algorithm parameters

To achieve best convergence of the optimization schemes, descent steps are
chosen as large as permitted:

� Alg. 2 (FISTAJ): γ = 0.99/
(
‖J−1‖‖D‖2

)
,

� Alg. 3 (FISTAC): γ = 0.99/
(
max(1, α) ‖J−1‖‖D‖2

)
,

� Alg. 4 (PDJ): δ0 = ν0 = 0.99/‖D‖.

� Alg. 5 (PDC): δ0 = ν0 = 0.99/ (max(1,
√
α)‖D‖),

where ‖D‖ = 2
√

2, with D defined in Eq. (7), and where ‖J−1‖ depends on
the octaves involved in estimation (J defined in Eq. (3)): With (j1, j2) = (2, 5),
‖J−1‖ ' 2.88. For FISTA, the inertia parameter is set to b = 4.
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5.2 Issues in performance and algorithm comparison

5.2.1 Stopping criteria for proximal algorithms

To ensure fair comparisons either between algorithms or between joint and cou-
pled formulations (Pb. (10) vs. Pb. (12)), an effective stopping criterion is
needed. Fig. 4 illustrates the convergence toward zero of two potential can-
didates, for the particular case, chosen as representative example, of the joint
estimation using primal-dual Alg. 4, and for several choices of hyperparameters.

First, the normalized increments of the objective function, as a function
of the number of iterations, are presented in Fig. 4a ; they decrease with an
extremely irregular behavior, which makes them ill-suited to serve as effective
stopping criterion.

Second, the normalized primal-dual functional (with notations as in Sec. 3.3)

Γ̃[t] :=
Γ[t]∣∣Θ(x[t]) + Ξ(Lx[t])

∣∣+
∣∣Θ∗(−L∗y[t]) + Ξ∗(y[t])

∣∣ ,
is presented in Fig. 4b, where it is observed to decrease smoothly. Systematic
inspections of such decreases together with that of the corresponding achieved
solutions lead us to devise a stopping criterion, which is effective both for primal-
dual and forward-backward algorithms and for joint and coupled estimations,
as,

Γ̃
[t]
• < 5.10−3, for • ∈ {ROF, J}, and Γ̃

[t]
C < 10−4. (26)

The use of the normalized quantities, Γ̃[t], makes this stopping criterion robust
to variations of the hyperparameters. For practical purposes, we also impose an
upper limit on the number of iterations: t < 2.5 105.

5.2.2 Choice of regularization hyperparameters

The choice of regularization parameters (λ, α) appearing in Pb (5), (10), (12)
is of prime importance as λ tunes the trade-off between fidelity to the fractal
model (1) and expected piecewise constancy, while α controls the relative weight
given to local wavelet log-variance v compared to local regularity h, in the
(joint (11) and coupled (13)) total variation penalization. The automated choice
of the regularization parameters is a difficult issue, beyond the scope of the
present work. In this study, a grid search strategy is used to find the parameters
λ and α achieving the best segmentation. In practice, logarithmically spaced
ranges are used, from 10−1 to 103 for λ and from 10−2 to 103 for α.

5.2.3 Performance assessment

A natural performance criterion consists in comparing the achieved classifica-

tion, denoted M̂ROF, M̂J and M̂C respectively for the three segmentation
procedures compared here, (ROF, joint and coupled), to the mask in Fig 1a,
regarded as ground truth. It leads to define the classification score as the per-

centage of correctly labeled pixels. Classification scores for M̂ROF, M̂J and

M̂C, applied to different configurations of piecewise fractal textures are re-
ported in Table 1, together with the difference between the a posteriori global
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Figure 4: Stopping criteria for proximal algorithms. Convergence of
Alg. 4 solving joint problem (10) for five pairs of hyperparameters (λ, α) eval-
uated with: (a) (Normalized) increments of objective function, (b) Normalized

primal-dual functional Γ̃
[t]
J .

estimates obtained for each segmented regions Υ0 and Υ1 (cf. Section 2.3.3):

∆̂H• := Ĥ1,• − Ĥ0,•, for • ∈ {ROF, J, C}.

5.3 Performance comparisons

5.3.1 Segmentation and estimation performance

Fig. 5 and Table 1 report segmentation and estimation performance for 7 differ-
ent configurations and for the optimal set of hyperparameters (i.e., those that
maximize the classification scores).

Configurations I, III, V, VI correspond to a decrease in the difference between
the regularity of each region of the piecewise fractal texture: ∆H = H1 −H0,
(hence to an increase in difficulty) for a fixed ∆Σ2 = 0.1. While the segmenta-
tion performance of the three procedures (T-ROF, T-joint and T-coupled) are
comparable for easy configuration, those of T-ROF decrease drastically when
∆H decreases while those of T-joint and T-coupled decrease significantly less.
Along the same line, the estimation of ∆H remains more satisfactory at small
∆H for T-joint and T-coupled than for T-ROF. It can also be observed that
the performance of T-coupled degrade slightly less than those T-joint.

Configurations II, III, IV correspond to a decrease in variance, ∆Σ2, (hence
to an increase in difficulty) for a fixed ∆H = 0.1 which can already be regarded
as a difficult case. As expected, T-ROF is not helped by the increase of vari-
ance between IV and II as estimation of local regularity does not depend on
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Figure 5: Compared optimal segmentation. Piecewise fractal textures are
characterized by Σ2

0 = 0.6, H0 = 0.5 and different ∆Σ2, ∆H as sketched in

Fig. 1a. First row: T-ROF segmentation M̂ROF. Second row: T-joint segmen-

tation M̂J. Third row: T-coupled segmentation M̂C.

variance [38, 47], and T-ROF segmentation results are not satisfactory. It can
also be observed that performance of T-joint and T-coupled improve when ∆Σ2

increases, and, again, that the improvement is slightly larger for T-coupled than
for T-joint.

These results permit to draw two clear conclusions. First, there are quantifi-
able benefits in using the side information brought by ∆Σ2, notably when the
changes in regularity become small (low ∆H): T-joint and T-coupled outper-
form T-ROF. Second, T-coupled –which in principle favors co-localized changes
in regularity and variance– shows overall better performance than T-joint –
which does not favor co-localized changes. This is a satisfactory outcome, as all
the configurations chosen follow the a priori intuition, relevant for real-world
applications, that changes of textures naturally imply co-localized changes in
local variance and local regularity.

5.3.2 Computational costs

Comparisons in terms of computational costs both between the three approaches,
and between the two classes of proximal algorithms, dual forward-backward,
standard and accelerated (FISTA), vs. primal-dual, standard and accelerated
by strong convexity (cf. Sec. 3), are reported in Table 2, for configurations I and
III (regarded as easy and difficult) considered as representative. Computational
costs are reported in number of iterations actually used to reach the stopping
criterion and in real time, for the optimal set of hyperparameters and averaged
over 5 realizations.

Table 2 shows first that, as expected, accelerated algorithms always require
fewer iterations than non-accelerated ones, thus generally leading to lower com-
putational times (though this is not always the case with FISTA whose com-
plexity per iteration is larger). Also, T-ROF shows always lower computational
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I II III IV V VI

∆Σ2 = 0.1
∆H = 0.2

∆Σ2 = 0.15
∆H = 0.1

∆Σ2 = 0.1
∆H = 0.1

∆Σ2 = 0.05
∆H = 0.1

∆Σ2 = 0.1
∆H = 0.05

∆Σ2 = 0.1
∆H = 0.025

T-ROF
Score
∆̂H

86.7± 2.1%
0.21± 0.07

79.5± 1.2%
0.05± 0.02

78.5± 1.1%
0.05± 0.06

77.5± 2.9%
0.07± 0.04

69.9 ± 7.1%
0.01± 0.06

59.5± 2.4%
0.05± 0.07

T-joint
Score
∆̂H

91.6± 1.7%
0.21± 0.06

91.5± 2.0%
0.07± 0.03

90.2± 1.9%
0.10± 0.02

84.2± 4.5%
0.04± 0.07

84.3± 3.2%
0.05± 0.02

74.7± 8.2%
0.11± 0.28

T-coupled
Score
∆̂H

91.7± 1.7%
0.20± 0.05

91.9± 4.0%
0.06± 0.04

91.1± 1.5%
0.10± 0.02

85.5± 3.8%
0.08± 0.04

86.1± 4.3%
0.05± 0.02

74.3± 8.2%
0.06± 0.04

Table 1: Optimal segmentation performance for different configura-
tions of fractal textures, averaged over 5 realizations. Piecewise fractal
textures are characterized by (Σ2

0, H0) = (0.6, 0.5) and different (∆Σ2,∆H) as
sketched in Fig. 1a. First row: T-ROF segmentation. Second row: T-joint seg-
mentation. Third row: T-coupled segmentation.

costs compared to T-joint and T-coupled. This is expected, as T-ROF only
works with the regularity and does not use variance.

FISTA vs. Accelerated primal-dual. For T-ROF, FISTA is overall preferable
to the accelerated primal-dual algorithm, as both show equivalent computa-
tional costs for Configuration I but FISTA is ten times faster (both in number
of iterations and computation time) for Configuration III. For T-joint and T-
coupled, for both configurations, accelerated primal-dual is faster than FISTA.
For T-coupled, in configuration III, FISTA has actually not converged when
meeting the the upper limit of iterations. Therefore, FISTA is to be preferred
for T-ROF, while accelerated primal-dual algorithms are more relevant for T-
joint and T-coupled.

T-joint vs. T-coupled. Focusing on T-joint and T-coupled and thus on the
accelerated primal-dual algorithm that is faster for these two methods, Table 2
shows that T-joint is solved 3 to 4 times faster (both in number of iterations
and computational cost) than T-coupled.

Configuration I Configuration III

T-ROF T-joint T-coupled T-ROF T-joint T-coupled

It
er

at
io

n
s

(1
03

it
.)

DFB 96± 48 > 250 > 250 241± 18 > 250 > 250
FISTA 1.7± 0.4 50.2± 21.0 231± 37 3.7± 0.7 48.1± 3.4 > 250

PD 31.8± 17.0 > 250 > 250 201± 69 > 250 > 250
AcPD 1.5± 0.4 31.4± 4.6 125± 67 45.2± 43 40.5± 2.8 121± 42

T
im

e
(s

) DFB 1, 090± 520 4, 840± 15 4, 210± 76 2, 010± 73 4, 810± 215 4, 200± 76
FISTA 16± 4 1, 030± 410 4, 800± 560 30± 5 989± 64 5, 110± 340

PD 297± 150 4, 180± 69 4, 110± 43 1, 580± 490 4, 150± 18 4, 100± 15
AcPD 15± 4 619± 96 2,420± 1,300 349± 330 785± 59 2,320± 790

Table 2: Number of iterations and computational time necessary to reach
Condition (26) for the different proximal algorithms investigated, illustrated
on two configurations I (∆H = 0.2, ∆Σ2 = 0.1) and III (∆H = 0.1, ∆Σ2 =
0.1). DFB: Dual Forward-Backward, FISTA: inertial acceleration of DFB,
PD: primal-dual, AcPD: strong-convexity based acceleration of PD.
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5.3.3 Overall comparison

As an overall conclusion, results reported above show that there are benefits to
use together local regularity and variance, compared to regularity only, when
the changes in regularity become small. This implies switching from accelerated
dual forward-backward algorithms (FISTA, for T-ROF) to accelerated primal-
dual algorithms (for T-joint and T-coupled).

For difficult configurations, T-coupled (slightly) outperforms T-joint in terms
of segmentation performance, at the price of non negligible increases of compu-
tational costs. In that sense, T-joint can be considered a reasonable trade-off
between relatively poor segmentation performance (as those of T-ROF) and
relatively large computational costs (as those of T-coupled).

5.4 Real-world textures

The actual potential of the proposed segmentation strategies is further illus-
trated on real-world textures, arbitrarily chosen from the commonly used large,
documented and publicly available University of Maryland, HighResolution (UMD
HR)2 texture dataset. This dataset consists of 50 classes of homogeneous tex-
tures, each consisting of 40 images of specific texture classes under different
imaging conditions (light, angle,. . . ). From arbitrarily chosen pairs of images,
piecewise homogeneous textures are constructed by including textures one into
the other using the ellipse-shaped mask used above, as sketched and illustrated
in Fig. 6. Homogeneous textures are centered and normalized in variance inde-
pendently and prior to inclusion, to avoid detections be based only on change
of means or variances.

The T-ROF, T-Joint and T-Coupled segmentation approaches proposed here
are applied to and compared on these real-world piecewise homogeneous tex-
tures. Further, they are compared against one of the state-of-the-art texture
segmentation procedures, based on matrix factorization and local spectral his-
togram clustering, proposed in [48] ; this joint feature selection and segmentation
procedure is hereafter referred to as LSHC-MF.

Fig. 7 reports and compares segmentation performance, in terms of percent-
age of pixels correctly labelled. For the T-ROF, T-Joint and T-Coupled ap-
proaches, optimal performance is reported, after a grid search for the selection
of the hyperparameters λ and α. For LSHC-MF, optimal performance is also
reported, after a grid search on the window size, within which local histogram
statistics are computed.

Fig. 7 clearly shows that the LSHC-MF approach fails to segment correctly
the piecewise homogeneous texture and is outperformed by the T-ROF, T-Joint
and T-Coupled strategies. It also shows that T-ROF, while not being inconsis-
tent, does not yield satisfactory segmentations, whereas T-Joint and T-Coupled
do. Further, it is worth noting that not only does the Coupled strategy reach
(slightly) better segmentation performance compared to the Joint one, but that
it also yields smoother boundaries, an outcome of utmost relevance for deci-
sion/diagnosis in numerous real-world applications, cf. e.g. [35]. Such significant
improvement in segmentation performance is at the cost of significantly higher
computational cost: When LSHC-MF requires of the order of 1s to perform its
most accurate segmentation, as in Fig. 7(d), the T-ROF, T-Joint and T-Coupled

2http://legacydirs.umiacs.umd.edu/ fer/website-texture/texture.htm
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(a) Texture A (b) Texture B (c) Mask (d) Mixture A-B

Figure 6: Real world textures. two samples of real-world textures taken
from the UMD HR texture dataset ((a) and (b)), piecewise constant mask (c)
and piecewise homogeneous texture (d).

82.6% 86.1% 87.9% 55.2%
(a) T-ROF (b) Joint (c) Coupled (d) LSHC-MF

Figure 7: Segmentation performance on real-world textures. For the
piecewise homogeneous texture shown in Fig. 6(d), performance are computed
in term of the percentage of well-classified pixels for T-ROF (a), Joint (b),
Coupled (c) and LSHC-MF (d).

segmentation approaches require 10s, 600s 1800s respectively, in agreement with
computational cost evaluation reported in Table 2. Similar conclusions can be
drawn for other choices of classes of textures in the UMD HR dataset.

6 Conclusion and future work

The present article has aimed to significantly advanced the state-of-the-art in
the segmentation of piecewise fractal textures.

First, it has been proposed to base the segmentation of fractal textures not
only on the estimation of the sole local regularity parameter, but to use an
additional local parameter, the log-wavelet variance, tightly related to the local
variance of the textures. Two variations were investigated, coupled and joint,
that respectively enforce or not co-localized changes in regularity and variance.
It has been shown, using large-scale Monte-Carlo simulations, that the use of
this additional feature improves drastically segmentation performance when the
difference in regularity becomes negligible. This, however, comes at the price of
a non-negligible increase in computational costs.

Therefore, a second contribution has been to construct accelerated primal-
dual algorithms, requiring the explicit calculation of the strong convexity con-
stant underlying the data fidelity term form. The achieved substantial reduction
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in computational costs has turned critical both to be able to conduct large-scale
Monte-Carlo simulations and to perform the greedy search for an optimal set
of hyperparameters. This low computational cost is also crucial for application
on real-world data.

The investigations reported here have permitted to show that accelerated
primal-dual algorithms outperform accelerated dual forward-backward (FISTA-
type) algorithms for piecewise fractal texture segmentation as soon as the joint
use of regularity and variance is required. Further, they showed that the cou-
pled formulation, that favors co-localized changes in regularity and variance,
performs better than the joint formulation, yet at the price of a significantly
larger computational cost. Thus, depending on budget constraints on time and
requested quality of the solution, the joint formulation can be regarded as an
effective trade-off.

The proposed theoretical formulations for piecewise fractal texture segmen-
tation and the corresponding accelerated algorithms are mature enough for ap-
plications on real-world data, and competitive with respect to state-of-the-art as
shown in Sec. 5.4. Application to the segmentation of multiphasic flows is under
current investigations. The automation of the tuning of the hyperparameters,
which is a crucial point for real-world applications, as underlined in Sec. 5.4, is
also being investigated. Extensions to piecewise multifractal textures are fur-
ther targeted.

A matlab toolbox implementing the analysis and synthesis procedures de-
vised here will be made freely and publicly available at the time of publication.
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