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1 Introduction

Context. Segmentation (partitioning images into homogeneous regions) consti-
tutes an on-going and major challenge for image analysis and computer vision.
There exist numerous well-established and efficient methods to partition images
according to their geometrical properties (cartoon) into homogeneous color (or
grayscale) regions (cf. e.g., [17, 21, 30, 38]). Segmentation of images in terms of
piecewise homogeneous textures [29] though remains particularly challenging,
when both the characteristics of the textures in each regions and the bound-
aries between regions have to be estimated jointly. Textured images appear as
natural models in a large variety of applications: Biologic tissues analysis [28],
tomography-based pathology diagnostic [18, 27], art painting expertise [1], mi-
crofluidics [34]. In these examples, accuracy in interface detection strongly im-
pacts medical diagnosis or physical interpretation. Along another line, texture
segmentation in real-world applications often entails processing both large-size
images and large-size databases, typically sequences of several hundreds of 107

pixel images, cf. e.g. [34], thus precluding the use of most state-of-the-art yet
too computationally demanding procedures, thus calling for solutions combining
both high performance and controlled computational costs.
Related work. Most bottom-up segmentation procedures rely on first com-
puting local features representing textures, such as Gabor or short-term Fourier
transform coefficients [16,20], fractal dimension [10], Amplitude/Frequency Mod-
ulation models [22]. These local features are then aggregated within regions
where they show homogeneous statistics. For example, in [47], local Gabor co-
efficient histograms were spatially grouped using matrix factorization ; in [3],
textons were combined with brightness and color features to yield a multiscale
contour detection procedure. More recently, fractal (or scale-free) features were
also involved in texture segmentation (cf. e.g., [46]). Notably, local regularity
was used to quantify the fluctuations of roughness along the texture. Local
regularity is quantified as an optimal local power-law behavior across scales
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for some multiscale quantities [46]. Modulus of wavelet coefficients [25] were
initially used as multiscale quantities, followed by continuous wavelet trans-
form modulus maxima [26, 31]. More recently, wavelet leaders (local suprema
of discrete wavelet coefficients), used here, were shown to permit a theoretically
accurate and practically robust estimation of local regularity [46], and success-
fully involved in texture characterization in e.g., [1, 27,32]. Wavelet leaders are
used to estimate local regularity mostly by linear regressions in log-log coordi-
nates. Local estimates are further grouped together in piecewise homogeneous
regions. For instance, in [37], it was proposed to force piecewise constant esti-
mates by regularization, using Rudin-Osher-Fatemi (ROF) model [41] (i.e. total
variation (TV) denoising). Further in [37], it was also attempted to combine
both steps into a single one by incorporating the regression weight estimation
into the optimization procedure. The high computational burden implied by
iteratively solving optimization problems as well as by tuning the regulariza-
tion parameter has tentatively been addressed by block splitting approaches as
suggested in [39] and explored in [33]. Strong convexity [9] constitutes another
recently proposed track to address iterative optimization acceleration. However,
the proposed procedures, despite showing satisfactory and state-of-the-art esti-
mation/segmentation performance suffered from two major limitations: i) Their
being computationally very intensive preclude their use of large-size images and
databases ; ii) While based on a key fractal feature, local regularity, they neglect
changes in power, a potentially relevant information for texture segmentation,
notably to extract accurate region boundaries.
Goals, contributions and outline. Aiming to address the two above limita-
tions, the goals of the present contribution are first to investigate the benefits
in texture segmentation potentially brought by the joint estimations of local
variance and local regularity, by means of nonsmooth optimization designed to
favor piecewise regions consisting of homogeneous textures, and second to devise
fast and efficient algorithms, for minimizing well-designed functionals. The key
concepts and definitions related to local regularity, wavelet leaders and corre-
sponding state-of-the-art linear regression and TV-based estimation procedures
are recalled in Section 2. Two objective functions for the estimation of both
local variance and regularity, referred to as joint and coupled, are proposed in
Section 3, based on a same data fidelity term but on two different total-variation
based regularization strategies. Studying strong convexity and duality gaps, two
classes of fast iterative algorithms (Primal-Dual and Dual Forward-backward),
are devised. Piecewise homogeneous fractal textures are defined in Section 4,
thus enabling performance assessment from Monte-Carlo simulations on well-
controlled synthetic textures, as reported in Section 5. Conducting such simu-
lations requires to address issues related to regularization parameter selection,
iterative algorithm stopping criterion, and performance metrics. It permits rel-
evant answers to the final aim of assessing the actual benefits of using both local
variance and regularity in texture segmentation with respect to issues such as
sensitivity to fractal parameter changes, computational costs, impact of the dif-
ferent optimization formulations. A matlab toolbox implementing the analysis
and synthesis procedures devised here will be made freely and publicly available
at the time of publication.
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2 Local regularity

2.1 Local regularity and Hölder exponent

Local regularity can classically be assessed by means of Hölder exponent [19,24],
defined as follows:

Definition 1 Let f : Ω → R denote a 2D real field defined on an open set
Ω ⊂ R2. The Hölder exponent h(z0) at location z0 ∈ Ω is defined as the largest
α > 0 such that there exists a constant χ > 0, a polynomial Pz0

of degree lower
than α and a neighborhood V(z0) satisfying:(

∀z ∈ V(z0)
) ∣∣f(z)− Pz0

(z)
∣∣ ≤ χ ‖z − z0‖

α

where ‖·‖ denotes the Euclidian norm.

Definition 1 does not provide a practical way to estimate local regularity. Thus,
the practical assessment of h(z0) usually relies on the use of multiscale quanti-
ties, such as wavelet coefficients, or wavelet leaders [19,24,46].

2.2 Local regularity and wavelet leaders

Because the practical aim is to analyse digitized images, definitions are given in a
discrete setting. Let X = (Xn)n∈Υ ∈ R|Υ| denote the digitized version of the 2D
real field f on a finite grid Υ = {1, . . . , N}2. Let dj = WjX denote the discrete
wavelet transform (DWT) coefficients of X, at resolution j ∈ {j1, . . . , j2}, with
Wj : RN×N → RMj×Mj the operator formulation of the DWT.

Further, let the wavelet leader Lj,k, at scale 2j and location n = 2jk, be
defined as the local supremum of modulus of wavelet coefficients in a small
neighborhood across all finer scales, [19, 24, 46] Lj,k = sup

λj′,k′⊂3λj,k

|2jdj′,k′ |, with

λj,k = [k2j , (k + 1)2j) and 3λj,k =
⋃

p∈{−1,0,1}2
λj,k+p.

It was proven in [19,24,46] that wavelet leaders provide multiscale quantities
intrinsically tied to Hölder exponents, insofar as when X has Hölder exponent
hn at location n, when the wavelet leaders Lj,k such that n ∈ λj,k,∀j satisfy:

Lj,k ' ηn2jhn as 2j → 0, with n = 2jk, (1)

with ηn proportional to local variance of X around pixel n.

2.3 Local regularity estimation

2.3.1 Linear regressions

Eq. (1) naturally leads to estimate h and v = log2 η by means of linear regres-

sions in log-log coordinates [19,24,46], denoted
(
v̂LR, ĥLR

)
:

(∀n ∈ Υ)

(
v̂LR,n

ĥLR,n

)
= J−1

(
Sn
Tn

)
(2)

with J =

(
R0 R1

R1 R2

)
and Rm =

∑
j

jm, (3)
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and Sn =
∑
j

log2 Lj,n, Tn =
∑
j

j log2 Lj,n. (4)

The sums
∑
j implicitly stand for

∑j2
j=j1

with (j1, j2) the range of octaves
involved in the estimation. Though linear regressions provide estimates both
for h and log2 η, the later remains to date rarely used. Estimates of h were
for instance used in [33,37]. Bayesian based extension of linear regressions were
also and alternatively proposed to estimate η and h [45].

A sample of piecewise homogeneous fractal texture is displayed in Fig. 1b,
synthesized using the mask sketched in Fig. 1a. The corresponding linear re-
gression based estimates η̂LR ≡ 2v̂LR , and ĥLR (Fig. 1(c-d)) show too poor
performance (high variability) to permit to detect the two regions and the cor-
responding boundary.

(a) Mask (b) Texture X (c) v̂LR

(d) ĥLR (e) ĥROF (f) M̂ROF

Figure 1: Piecewise homogeneous fractal texture and local variance
and regularity estimates. (a) Synthesis mask (H0, σ0) = (0.5, 0.6) and
(H1, σ1) = (0.8, 0.65); (b) sample texture (see Section 4), (c) and (d) linear

regression based estimates of local variance and regularity v̂LR and ĥLR; (e)

and (f) Total variation based estimates of local regularity ĥROF and segmenta-

tion M̂ROF obtained with Alg. 1.

2.3.2 Total variation based estimates

To address the poor estimation performance achieved by linear regressions for
local estimation, it has been proposed to denoise ĥLR by using an optimisation
framework involving TV regularization, as a mean to enforce piecewise constant
estimates [37]:

ĥROF = argmin
h∈R|Υ|

1

2
‖h− ĥLR‖22 + λTV(h). (5)
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The above functional balances a data fidelity term versus a total variation pe-
nalization defined as:

TV(h) = ‖Dh‖2,1, (6)

where the operator D : R|Υ| → R2×|Υ|, consists of horizontal and vertical incre-
ments:

(Dh)n1,n2
=

(
hn1,n2+1 − hn1,n2

hn1+1,n2
− hn1,n2

)
(7)

and where the mixed norm, ‖·‖2,1, defined for z = [z1; . . . ; zI ]
> ∈ RI×|Υ| as:

‖z‖2,1 =

N1−1∑
n1=1

N2−1∑
n2=1

√√√√ I∑
i=1

(zi)2
n1,n2

(8)

both ensures an isotropic and piecewise constant behaviour of the estimates [37].
While showing substantial benefits compared to linear regression based es-

timates and althought fast, the TV-based procedure above, proposed in [37],
suffers from several significant limitations: i) It is restricted to the estimation
of local regularity only and neglects local variance ; ii) It consists of a two-step

process (first apply linear regression to obtain ĥLR, second apply TV to ĥLR to

obtain ĥROF) and is hence potentially not optimal. Section 3 below will propose
several solutions that address these two limitations by performing the estimate
of both local variance and regularity in a single pass at similar computational
cost than the two-step procedure.

2.3.3 A posteriori segmentation and local regularity global estima-
tion

When the number of regions is known a priori, it has been shown in [6,7] that a

fast iterative thresholding post-processing procedure can be applied to ĥROF to
obtain a segmentation of the TV denoised estimate. In [6,7] were provided the-
oretical guarantees linking this Threshold-ROF (T-ROF) strategy to Mumford-
Shah-like segmentation. Alg. 1 explicitly describes the procedure applied to

ĥROF to obtain a two-region T-ROF segmentation M̂ROF with M̂ROF,n = 0 if
n ∈ Υ0 and 1 otherwise. Figs. 1e, 1f report examples of TV denoised estimate

ĥROF and T-ROF segmentation M̂ROF.
From T-ROF segmentation, Texture X can be interpreted as the concate-

nation of two fractal textures X0 and X1, each with its own uniform regularity
and variance. Therefore, a posteriori global estimates, Ĥ0,ROF and Ĥ1,ROF, for
the local regularity of each region, Υ0 and Υ1, can be obtained by performing
linear regressions applied to the logarithm of multiscale quantities Lj averaged
over Υ0 (resp. Υ1) (cf. [46]).
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Algorithm 1: T-ROF: iterative thresholding of ĥROF

Input: h

Initialization: m
[0]
0 = min

n∈Υ
hn, m

[0]
1 = max

n∈Υ
hn.

for t ∈ N∗ do
Compute the threshold:

T[t−1] =
(

m
[t−1]
0 + m

[t−1]
1

)
/2

Threshold h:

Υ
[t]
0 = {n |hn ≤ T[t]}, Υ

[t]
1 = {n |hn > T[t]}

Update region mean:

m
[t]
0 = 1/|Υ0|

∑
n∈Υ0

hn, m
[t]
1 = 1/|Υ1|

∑
n∈Υ1

hn.

Output: Υ0 = Υ
[∞]
0 , Υ1 = Υ

[∞]
1

3 Total variation based estimation of local vari-
ance and regularity

3.1 Design of the objective function

3.1.1 Linear regressions as functional minimization

Linear regressions can be viewed as optimization schemes. Indeed, setting v =
log2 η the following strictly convex functional (in variables (v,h)):

Φ(v,h;L) =
1

2

∑
j

‖v + jh− log2 Lj‖2Fro , (9)

has a unique minimum corresponding to the linear regression estimates in 2.

3.1.2 Penalization

To improve on the poor performance of linear regressions, a generic optimization
framework can be proposed as (v̂, ĥ) = arg min

v∈R|Υ|,h∈R|Υ|
Φ(v,h;L)+Ψ(v,h), where

the data fidelity term Φ is that of the linear regression (cf.(9)), and where
the penalization term Ψ favors piecewise constancy of v and h. Two different
strategies are proposed:

(i) Joint estimation:

(v̂J, ĥJ) = arg min
v,h∈R|Υ|×R|Υ|

Φ(v,h;L) + ΨJ(v,h), (10)

with ΨJ(v,h) = λ (TV(v) + αTV(h)) , (11)

that does not favor changes in v and h that occur at same location;

(ii) Coupled estimation:

(v̂C, ĥC) = arg min
v,h∈R|Υ|×R|Υ|

Φ(v,h;L) + ΨC(v,h), (12)
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with ΨC(v,h) = λTVα(v,h),

= λ
∥∥[Dv;αDh

]>∥∥
2,1

(13)

where TVα couples spatial variations of vn and hn and thus favor their
occurrences at same location.

For both constructions, λ and α constitute regularization hyperparameters that
need to be selected.

Further, the thresholding procedure in [6, 7] is generalized to “joint” and

“coupled” estimation strategies: Alg. 1, applied to ĥJ (resp. ĥC) provides

“joint” (resp. “coupled”) segmentation M̂J (resp. M̂C).

Finally, from the two region segmentation M̂J (resp. M̂C) obtained with
Alg. 1, one can use global techniques [46] to obtain a posteriori estimates of

the Hölder exponents of each region Ĥ0,J and Ĥ1,J (resp. Ĥ0,C and Ĥ1,C) (cf.
Sec. 2.3.2).

3.2 Minimization algorithms

The data fidelity function Φ is Lipschitz differentiable. This is the case neither
for ΨJ nor for ΨC. Therefore, gradient descent methods are not appropriate
to solve (10) or (12). Instead, the use of proximal algorithms is adapted to
the minimization of nonsmooth functions [13]. While the non-differentiability
stems from the mixed norm ‖·‖2,1, appearing both in ΨJ and in ΨC, the linear
operator D into the nonsmooth term makes the computation of the proximal
operator of total variation difficult [11, 36]. Below two algorithms are devised:
the dual FISTA and the primal-dual.

3.2.1 Dual FISTA

The well-known Fast Iterative Shrinkage Thresholding Algorihtm (FISTA) al-
gorithm [8] is here customized to Pb (10) and (12), to achieve faster conver-
gences than with the basic dual forward-backward. Corresponding iterations
are detailed in Algorithms 2 and 4. Convergence guarantees are specified in
Theorems 1 and 2.

Theorem 1 (Convergence of FISTAJ) The sequence (v[t],h[t]) generated by
Algorithm 4 converges towards a solution of the joint estimation problem (10).

Theorem 2 (Convergence of FISTAC) The sequence (v[t],h[t]) generated by
Algorithm 2 converges towards a solution of coupled estimation problem (12).

Proof 1 The proofs of Theorems 1 and 2 stem directly from the choice of de-
scent parameters proposed in Algs. 2 and 4 following the reasoning in [8].

3.2.2 Primal-dual

Primal-dual algorithms [9, 14, 23, 43] can also be customized to solve Prob-
lems (10) and (12).

This requires the derivation of a closed form expression for the proximal
operator associated with the quadratic data fidelity term Φ, provided in Propo-
sition 1.
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Figure 2: Strong convexity constant as a function of the range of scales
involved in the estimation.

Proposition 1 (Computation of proxΦ) For every (v,h) ∈ R|Υ|×R|Υ|, de-
noting (p, q) = proxΦ(v,h) ∈ R|Υ| × R|Υ| one has{

p = (1+R2)(S+v)−R1(T +h)
(1+R0)(1+R2)−R2

1
,

q = (1+R0)(T +h)−R1(S+v)
(1+R0)(1+R2)−R2

1
.

with S and T defined in (4) and R0, R1, R2 defined in (3).

Further, in [9], it was described how to take advantage of the strong con-
vexity1 of the objective function to obtain fast implementation for primal-dual
algorithms, with linear convergence rates. In Proposition 2 below, we prove that
the data fidelity term Φ is strongly convex and derive the closed form expression
of the strong convexity coefficient.

Proposition 2 Function Φ(v,h;L) is µ-strongly convex w.r.t the variables (v,h),
with µ = χ where χ > 0 is the lowest eigenvalue of the symmetric and positive
definite matrix J defined in Eq. (3).

Indeed, since ∇Φ(v,h;L) = J (v,h)
>

is linear, the condition for Φ to be
µ−strongly convex can be recasted as:

〈∇Φ(v,h;L), (v,h)〉 =
〈
J (v,h)

>
, (v,h)

>
〉

≥ µ ‖(v,h)‖2 (14)

Intuitively a function with a large strong-convexity constant µ is very stitched
around its minimum, hence yielding a good theoretical convergence rate toward
the minimizer. The strong-convexity parameter is represented in Fig. 2 as a
function of the range of scales involved in the estimation procedure (cf. (9)).

The iterations of the devised fast primal-dual algorithms are detailed in
Algorithms 3 and 5. Convergence guarantees are specified in Theorem 3 (resp.
Theorem 4).

1A function ϕ : H → R, defined on an Hilbert space H, is said to be µ−strongly convex, for
a given µ > 0 if the function y 7→ ϕ(y)− µ

2
‖y‖22 is convex. When the function ϕ is differentiable,

ϕ is µ−strongly convex if and only if (∀(y, z) ∈ H×H) 〈∇ϕ(y)−∇ϕ(z), y− z〉 ≥ µ‖y− z‖2
where 〈· , ·〉 denotes the Hilbert scalar product and ‖·‖ the associated scalar product.
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Theorem 3 (Convergence of PDJ) The sequence (v[`],h[`]) generated by Al-
gorithm 3 converges towards a solution of the joint estimation problem (10).

Theorem 4 (Convergence of PDC) The sequence (v[`],h[`]) generated by Al-
gorithm 5 converges towards a solution of the joint estimation problem (12).

Proof 2 The proofs of Theorems 3 and 4 come directly from the choice of de-
scent parameters proposed in Algs. 3 and 5 following the reasoning of [9].

3.3 Duality gap

To ensure fair comparisons between the different algorithms, we construct a
stopping criterion based on the duality gap. Let H,G Hilbert spaces, Θ : H →
]−∞,+∞], Ξ : G →]−∞,+∞] and L : H → G a bounded linear operator. From
a primal optimization problem of the general form x̂ = arg min

x∈H
Θ(x) + Ξ(Lx),

and its associated dual problem ŷ = arg min
y∈G

Θ∗(−L∗y) + Ξ∗(y), we define:

Γ(x;y) := Θ(x) + Ξ(Lx) + Θ∗(−L∗y) + Ξ∗(y), (15)

Θ∗ (resp. Ξ∗), being the Fenchel conjugate of Θ (resp. Ξ).

Definition 2 The duality gap δΓ associated to primal and dual optimization
problems is defined as the infimum:

δΓ := inf
(x,y)∈H×G

Γ(x;y). (16)

Under some loose assumptions on Θ, Ξ and L, referred as strong duality in [4],
the duality gap δΓ is zero and the respective solutions x̂ and ŷ of primal and
dual problems are characterized by Γ(x̂; ŷ) = δΓ = 0.

Primal-dual algorithms presented above built a minimizing sequence (x[t],y[t])t∈N
for Γ, therefore converging towards the unique point achieving the infimum of
Eq. (16): (x̂, ŷ). Then the convergence of x[t] (resp. y[t]) towards x̂ (resp. ŷ)
can be measured evaluating the primal-dual functional Γ, as:

Γ(x[t];y[t]) −→
t→∞

0. (17)

The “joint” (10) and “coupled” (12) optimization problems, with primal
variable x = (v,h) ∈ R|Υ| × R|Υ|, share the same data fidelity term Θ(x) =
Φ(v,h;L) and a penalization based on the mixed norm Ξ = λ‖·‖2,1. Yet, the
linear operator L differ between joint and coupled formulations, as:
i) Lx = [Dv, αDh] ∈ R2×2|Υ|, for “joint” (10),
ii) Lx = [Dv;αDh] ∈ R4×|Υ|, for “coupled” (12).
For Pb. (10) (resp. (12)), denoting y = (u, `) the dual variable, the evaluation
of ΓJ (resp.C)(v,h;u, `) requires computing:
i) L∗ (straightforward from D∗),
ii) Ξ∗ = (λ‖·‖2,1)∗ = ι‖·‖2,+∞≤λ (direct computation),
iii) Θ∗ = Φ∗ which is devised in Proposition 3.
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Proposition 3 Let J and (S,T ) defined in (3) and (4),

Φ∗(v,h;L) =
1

2
〈(v,h)>,J−1(v,h)>〉

+ 〈(S,T )>,J−1(v,h)>〉+ C, (18)

C =
1

2
〈(S,T )>,J−1(S,T )>〉 − 1

2

∑
j

(log2 Lj)
2.

Proof 3 By definition of the Fenchel conjugate,

F ∗(v,h;L) = sup
ṽ∈R|Ω|,h̃∈R|Ω|

〈ṽ,v〉+ 〈h̃,h〉 − F (ṽ, h̃;L). (19)

The supremum is obtained at (v̄, h̄) such that, for every n ∈ Ω,{
vn −

∑
j

(
v̄n + jh̄n − log2 Lj,n

)
= 0

hn −
∑
j j
(
v̄n + jh̄n − log2 Lj,n

)
= 0.

(20)

or equivalently, {
R0v̄n +R1h̄n = vn + Sn
R1v̄n +R2h̄n = hn + Tn

(21)

that yields to (
v̄n
h̄n

)
= J−1

(
vn + Sn
hn + Tn

)
(22)

and it is then necessary to re-inject this expression into the explicit expression
of Ψ.

4 Piecewise homogeneous fractal textures

Homogeneous fractal textures. Numerous models of homogeneous textures
were proposed in the literature, mostly consisting of 2D extensions (referred to
as fractional Brownian field fBf) of fractional Brownian motion, the unique
univariate Gaussian exactly selfsimilar process with stationary increments [12].
However, in most applications, real world textures are better modeled by sta-
tionary processes, hence by increments of fBf, referred to as fractional Gaussian
fields. Further, to construct a formally relevant definition for piecewise homo-
geneous fractal textures, as originally proposed here, it is easier to manipulate
stationary processes.

For Gaussian processes, space or frequency domain definitions of fBf are
theoretically equivalent and several variations were proposed in either domain,
mostly consisting in different tuning of the 2D extension of the fractional in-
tegration kernel underlying selfsimilar textures (cf. e.g., [2, 12, 35]). Yet, in
practice, numerical issues needs to be accounted for, such as discrete sampling
from a continuous process, or computation of integrals defined from a theoret-
ically infinite support kernel and related border effects. Further, fast circulant
embedding matrix algorithms were proposed, that yet do not permit to reach

10



Algorithm 2: FISTAJ: Joint estimation (Pb. (10))

Initialization: Set u[0] ∈ R2×|Υ|, ū[0] = u[0];

Set `[0] ∈ R2×|Υ|, ¯̀[0]
= `[0];

Let
(
Sn, Tn

)
defined in (4);

Let J defined in (3);

Set (∀n)
(
v

[0]
n , h

[0]
n

)>
= J−1

(
Sn, Tn

)>
;

Set b > 2 and τ0 = 1;
Set α > 0 and λ > 0;

Set γ > 0 such that γ ‖J−1‖‖D‖2 < 1;

for t ∈ N do
Dual variable update:

u[t+1] = proxγ(λ‖.‖2,1)∗
(
ū[t] + γDv[t]

)
`[t+1] = proxγ(λα‖.‖2,1)∗

(
¯̀[t]

+ γDh[t]
)

FISTA parameter update

τt+1 = t+b
b

Auxiliary variable update

ū[t+1] = u[t+1] + τt−1
τt+1

(
u[t+1] − u[t]

)
¯̀[t+1]

= `[t+1] + τt−1
τt+1

(
`[t+1] − `[t]

)
Primal variable update(
v[t+1]

h[t+1]

)
=

(
v[t]

h[t]

)
− J−1

(
D∗(u[t+1] − u[t])

D∗(`[t+1] − `[t])

)
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Algorithm 3: PDJ: Joint estimation (Pb. (10))

Initialization: Set v[0] ∈ R|Υ|, u[0] = Dv[0], ū[0] = u[0];

Set h[0] ∈ R|Υ|, `[0] = Dh[0], ¯̀[0]
= `[0];

Set α > 0 and λ > 0;
Set (δ0, ν0) such that δ0ν0‖D‖2 < 1;

for t ∈ N∗ do
Primal variable update:(
v[t+1]

h[t+1]

)
= proxδtΦ

((
v[t]

h[t]

)
− δt

(
D∗ū[t]

D∗¯̀
[t]

))
Dual variable update:

u[t+1] = proxνt(λ‖·‖2,1)∗
(
u[t] + νtDv

[t]
)

`[t+1] = proxνt(λα‖·‖2,1)∗

(
`[t] + νtDh

[t]
)

Descent steps update:

ϑt = (1 + 2µδt)
−1/2

, δt+1 = ϑtδt, νt+1 = νt/ϑt
Auxiliary variable update:(
ū[t+1]

¯̀[t+1]

)
=

(
u[t+1]

`[t+1]

)
+ ϑt

((
u[t+1]

`[t+1]

)
−
(
u[t]

`[t]

))

the full range 0 < H < 1 for the selfsimilarity parameter [42]. Therefore, we
will make use of a self-customized construction that combines an effective im-
plementation scheme with excellent theoretical and practical control of the local
variance and regularity, while permitting direct extension to piecewise homoge-
neous construction.

Following e.g., [5, 15, 40], we start from an harmonizable representation of
fBf Bn, n ∈ R|Υ|, Υ = {1, . . . , N}2:

Bn =
σ

C(H)

∫
e−if.n − 1

‖f‖H+1
dG̃(f), (23)

with dG̃(f) the Fourier transform of a white Gaussian noise

and C(H) =
π1/2Γ(H + 1/2)

2d/2HΓ(2H) sin(πH)Γ(H + d/2)
.

The covariance function of the zero mean process Bn reads:

E
[
BnBm

]
=
σ2

2

(
‖n‖2H + ‖m‖2H − ‖n−m‖2H

)
. (24)

Texture Yn is constructed from increments of Bn as (with e1, e2, unitary
vectors in horizontal and vertical directions):

Yn =
σ

2δH
√

1− 2H−2
( Bn+δe1

−Bn︸ ︷︷ ︸
horizontal increment

+ Bn+δe2
−Bn︸ ︷︷ ︸

vertical increment

), (25)
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Algorithm 4: FISTAC: Coupled estimation (Pb. (12))

Initialization: Set u[0] ∈ R2×|Υ|, ū[0] = u[0];

Set `[0] ∈ R2×|Υ|, ¯̀[0]
= `[0];

Let
(
Sn, Tn

)
defined in (4);

Let J defined in (3);

Set (∀n)
(
v

[0]
n , h

[0]
n

)>
= J−1

(
Sn, Tn

)>
;

Set b > 2 and τ0 = 1;
Set α > 0 and λ > 0;

Set γ > 0 s. t. γmax(1, α) ‖J−1‖‖D‖2 < 1;

for t ∈ N do
Dual variable update:(
u[t+1]

`[t+1]

)
= proxγ(λ‖.‖2,1)∗

(
ū[t] + γDv[t]

¯̀[t]
+ γαDh[t]

)
FISTA parameter update

τt+1 = t+b
b

Auxiliary variable update

ū[t+1] = u[t+1] + τt−1
τt+1

(
u[t+1] − u[t]

)
¯̀[t+1]

= `[t+1] + τt−1
τt+1

(
`[t+1] − `[t]

)
Primal variable update(
v[t+1]

h[t+1]

)
=

(
v[t]

h[t]

)
− J−1

(
D∗(u[t+1] − u[t])

αD∗(`[t+1] − `[t])

)

13



Algorithm 5: PDC: Coupled estimation (Pb. (12))

Initialization:
Set v[0] ∈ R|Υ|, u[0] = Dv[0], ū[0] = u[0];

Set h[0] ∈ R|Υ|, `[0] = αDh[0], ¯̀[0]
= `[0];

Set α > 0 and λ > 0.
Set (δ0, ν0) such that δ0ν0 max(1, α)‖D‖2 < 1;

for t ∈ N∗ do
Primal variable update:(
v[t+1]

h[t+1]

)
= proxδtΦ

((
v[t]

h[t]

)
− δt

(
D∗ū[t]

αD∗¯̀
[t]

))
Dual variable update:(
u[t+1]

`[t+1]

)
= proxνt(λ‖.‖2,1)∗

(
u[t] + νtDv

[t]

`[t] + νtαDh[t]

)
Descent steps update:

ϑt = (1 + 2µδt)
−1/2

, δt+1 = ϑtδt, νt+1 = νt/ϑt
Auxiliary variable update:(
ū[t+1]

¯̀[t+1]

)
=

(
u[t+1]

`[t+1]

)
+ ϑt

((
u[t+1]

`[t+1]

)
−
(
u[t]

`[t]

))

Proposition 4 The field Y = (Yn)n∈Υ is a zero-mean Gaussian process with

variance E
[
Y 2
n

]
= σ2 and covariance:

E
[
Yn+∆nYn

]
=
σ2δ−2H

4− 2H
(‖∆n+ δe1‖2H

+ ‖∆n− δe1‖2H + ‖∆n+ δe2‖2H + ‖∆n− δe2‖2H − 3‖∆n‖2H

− 1

2
‖∆n+ δe1 − δe2‖2H −

1

2
‖∆n− δe1 + δe2‖2H).

Piecewise homogeneous fractal textures. Piecewise homogeneous fractal
textures X = (Xn)n∈Υ are defined as the concatenation of M (pairwise disjoint)
regions, denoted (Υm)0≤m≤M−1, such that Υ = ∪mΥm, with textures in each

region consisting of an homogeneous fractal Y
(m)
n (0 ≤ m ≤ M − 1), with

variance and regularity (σ2
m, Hm):

Xn = Y (m)
n , whenn ∈ Υm.

Examples of piecewise fractal textures are shown in Fig. 3.

5 Estimation/Segmentation performance

5.1 Monte-Carlo simulation set-up

The proposed joint and coupled segmentations are now compared in terms of
performance and computational costs to the state-of-the-art T-ROF procedure,

14



(a) (b) (c) (d)

Figure 3: Piecewise homogeneous fractal textures X generated using the
mask displayed in Fig. 1a, with parameters (H0, σ0) = (0.5, 0.6) and (H1, σ1))
chosen as: (a) (0.5, 0.6), no change ; (b) (0.5, 0.65), change in σ ; (c) (0.8, 0.6)
change in H ; (d) (0.8, 0.65), change in σ and H.

in the context of a two-region segmentation, by means of Monte-Carlo simula-
tions.

5.1.1 Synthetic textures

Piecewise homogeneous fractal textures are generated as defined in Section 4,
using the mask shown in Fig. 1a, with N = 512. They consist of two regions: i) a
background, with variance and local regularity

(
σ2

0 , H0

)
= (0.6, 0.5) kept fixed,

ii) a central ellipse, for which variance and local regularity
(
σ2

1 , H1

)
are varied,

as illustrated in Fig. 6. For each configuration, 5 realizations of homogeneous
fractal are generated and analyzed ; performance are reported as averages over
realizations.

5.1.2 Wavelet transform

2D-Wavelet decompositions are performed using tensor product wavelets con-
structed from 1D-Daubechies orthonormal least asymmetric wavelets with Nψ =
3 vanishing moments [25]. Wavelet leaders are computed as in Section 2.2. Lo-

cal estimate ĥLR in T-ROF is computed as in Sec. 2.3. Estimates from all
procedures involve octaves (j1, j2) = (2, 5). Octave j1 = 1 is a priori excluded
as leaders are biased [44,46].

5.1.3 Optimization algorithm parameters

To achieve best convergence of the optimization schemes, descent steps are
chosen as large as permitted:

• Alg. 2 (FISTAJ): γ = 0.99/
(
‖J−1‖‖D‖2

)
,

• Alg. 4 (FISTAC): γ = 0.99/
(
max(1, α) ‖J−1‖‖D‖2

)
,

• Alg. 3 (PDJ): δ0 = ν0 = 0.99/‖D‖.

• Alg. 5 (PDC): δ0 = ν0 = 0.99/ (max(1,
√
α)‖D‖),

where ‖D‖ = 2
√

2, with D defined in Eq. (7), and where ‖J−1‖ depends on
the octaves involved in estimation (J defined in Eq. (3)): With (j1, j2) = (2, 5),
‖J−1‖ ' 2.88. For FISTA, the inertia parameter is set to b = 4.
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Figure 4: Stopping criteria for proximal algorithms. Convergence of
Alg. 3 solving joint problem (10) for five pairs of hyperparameters (λ, α) eval-
uated with: (a) (Normalized) increments of objective function, (b) Normalized

primal-dual functional Γ̃
[t]
J .

5.2 Issues in performance and algorithm comparison

5.2.1 Stopping criteria for proximal algorithms

To ensure fair comparisons either between algorithms or between joint and cou-
pled formulations (Pb. (10) vs. Pb. (12)), an effective stopping criterion is
needed. Fig. 4 illustrates the convergence toward zero of two potential candi-
dattes, for the particular case, chosen as representative example, of the joint
estimation using primal-dual Alg. 3, and for several choices of hyperparameters.

First, the normalized increments of objective function, as a function of the
number of iterations, are observed (Fig. 4a) to decrease with an extremely ir-
regular behavior, which makes them ill-suited to serve as effective stopping
criterion.

Second, the normalized primal-dual functional (with notations as in Sec. 3.3)

Γ̃[t] :=
Γ[t]∣∣Θ(x[t]) + Ξ(Lx[t])

∣∣+
∣∣Θ∗(−L∗y[t]) + Ξ∗(y[t])

∣∣ ,
is observed (Fig. 4b) to decrease smoothly. Systematic inspections of such de-
creases together with that of the corresponding achieved solutions lead us to
devise a stopping criterion, which is effective both for primal-dual and forward-
backward algorithms and for joint and coupled estimations, as,

Γ̃
[t]
• < 5.10−3, for • ∈ {ROF, J}, and Γ̃

[t]
C < 10−4. (26)

The use of the normalized quantities, Γ̃[t], makes this stopping criterion robust
to variations of the hyperparameters. For practical purposes, we also impose an
upper limit on the number of iterations: t < 2.5 105.
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Figure 5: Explored ∆σ2 and ∆H.

I II III IV V VI

∆σ2 = 0.1
∆H = 0.2

∆σ2 = 0.15
∆H = 0.1

∆σ2 = 0.1
∆H = 0.1

∆σ2 = 0.05
∆H = 0.1

∆σ2 = 0.1
∆H = 0.05

∆σ2 = 0.1
∆H = 0.025

T-ROF
Score
∆̂H

86.7 ± 2.1%
0.21± 0.07

79.5 ± 1.2%
0.05± 0.02

78.5 ± 1.1%
0.05± 0.06

77.5 ± 2.9%
0.07± 0.04

69.9 ± 7.1%
0.01± 0.06

59.5 ± 2.4%
0.05± 0.07

T-joint
Score
∆̂H

91.6 ± 1.7%
0.21± 0.06

91.5 ± 2.0%
0.07± 0.03

90.2 ± 1.9%
0.10± 0.02

84.2 ± 4.5%
0.04± 0.07

84.3 ± 3.2%
0.05± 0.02

74.7 ± 8.2%
0.11± 0.28

T-coupled
Score
∆̂H

91.7% ± 1.7%
0.20± 0.05

91.9% ± 4.0%
0.06± 0.04

91.1% ± 1.5%
0.10± 0.02

85.5% ± 3.8%
0.08± 0.04

86.1% ± 4.3%
0.05± 0.02

74.3% ± 8.2%
0.06± 0.04

Table 1: Optimal segmentation performance for different configura-
tions of fractal textures, averaged over 5 realizations. Piecewise fractal
textures are characterized by (σ2

0 , H0) = (0.6, 0.5) and different (∆σ2,∆H) as
sketched in Fig. 1a. First row: T-ROF segmentation. Second row: T-joint
segmentation. Third row: T-coupled segmentation.

5.2.2 Choice of regularization hyperparameters

The choice of regularization parameters λ and α appearing in Problems (5), (10), (12)
is of prime importance as λ tunes the trade-off between fidelity to the frac-
tal model (1) and expected piecewise constancy, while α controls the relative
weight given to local wavelet log-variance v compared to local regularity h, in
the (joint (11) and coupled (13)) total variation penalization. The automated
choice of the regularization parameters is a difficult issue, beyond the scope of
the present work. In this study, a grid search strategy is used to find the pa-
rameters λ and α achieving the best segmentation. In practice, logarithmically
spaced ranges are used, from 10−1 to 103 for λ and from 10−2 to 103 for α.

5.2.3 Performance assessment

A natural performance criterion consists in comparing the achieved classifica-

tion, denoted M̂ROF, M̂J and M̂C respectively for the three segmentation
procedures compared here, (ROF, joint and coupled), to the mask in Fig 1a,
regarded as ground truth. It leads to define the classification score as the per-

centage of correctly labeled pixels. Classification scores for M̂ROF, M̂J and

M̂C, applied to different configurations of piecewise fractal textures are re-
ported in Table 1, together with the difference between the a posteriori global
estimates obtained for each segmented regions Υ0 and Υ1 (cf. Section 2.3.3):

∆̂H• := Ĥ1,• − Ĥ0,•, for • ∈ {ROF, J, C}.
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I II III IV V VI

∆σ2 = 0.1
∆H = 0.2

∆σ2 = 0.15
∆H = 0.1

∆σ2 = 0.1
∆H = 0.1

∆σ2 = 0.05
∆H = 0.1

∆σ2 = 0.1
∆H = 0.05

∆σ2 = 0.1
∆H = 0.025
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Figure 6: Compared optimal segmentation. Piecewise fractal textures are
characterized by σ2

0 = 0.6, H0 = 0.5 and different ∆σ2, ∆H as sketched in

Fig. 1a. First row: T-ROF segmentation M̂ROF. Second row: T-joint segmen-

tation M̂J. Third row: T-coupled segmentation M̂C.

5.3 Performance comparisons

5.3.1 Segmentation and estimation performance

Fig. 6 and Table 1 report segmentation and estimation performance for 7 differ-
ent configurations and for the optimal set of hyperparameters (i.e., those that
maximize the classification scores).

Configurations I, III, V, VI correspond to a decrease in the difference between
the regularity of each region of the piecewise fractal texture: ∆H = H1 −H0,
(hence to an increase in difficulty) for a fixed ∆σ2 = 0.1. While the segmenta-
tion performance of the three procedures (T-ROF, T-joint and T-coupled) are
comparable for easy configuration, those of T-ROF decrease drastically when
∆H decreases while those of T-joint and T-coupled decrease significantly less.
Along the same line, the estimation of ∆H remains more satisfactory at small
∆H for T-joint and T-coupled than for T-ROF. It can also be observed that
the performance of T-coupled degrade slightly less than those T-joint.

Configurations II, III, IV correspond to a decrease in variance, ∆σ2, (hence
to an increase in difficulty) for a fixed ∆H = 0.1 which can already be regarded
as a difficult case. As expected, T-ROF is not helped by the increase of variance
between IV and II as estimation of local regularity does not depend on variance
[37, 46], and T-ROF segmentation results are not satisfactory. It can also be
observed that performance of T-joint and T-coupled improve when ∆σ2 increase,
and again that the improvement is slightly larger for T-coupled than for T-joint.

These results permit to draw two clear conclusions. First, there are quantifi-
able benefits in using the side information brought by ∆σ2, notably when the
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Configuration I Configuration III

T-ROF T-joint T-coupled T-ROF T-joint T-coupled
It

er
at

io
n
s

(1
0

3
it

.)

DFB 96± 48 > 250 > 250 241± 18 > 250 > 250
FISTA 1.7± 0.4 50.2± 21.0 231± 37 3.7± 0.7 48.1± 3.4 > 250

PD 31.8± 17.0 > 250 > 250 201± 69 > 250 > 250
AcPD 1.5± 0.4 31.4± 4.6 125± 67 45.2± 43 40.5± 2.8 121± 42

T
im

e
(s

) DFB 1, 090± 520 4, 840± 15 4, 210± 76 2, 010± 73 4, 810± 215 4, 200± 76
FISTA 16± 4 1, 030± 410 4, 800± 560 30± 5 989± 64 5, 110± 340

PD 297± 150 4, 180± 69 4, 110± 43 1, 580± 490 4, 150± 18 4, 100± 15
AcPD 15± 4 619± 96 2,420± 1,300 349± 330 785± 59 2,320± 790

Table 2: Number of iterations and computational time necessary to reach
Condition (26) for the different proximal algorithms investigated, illustrated
on two configurations I (∆H = 0.2, ∆σ2 = 0.1) and III (∆H = 0.1, ∆σ2 =
0.1). DFB: Dual Forward-Backward, FISTA: inertial acceleration of DFB,
PD: primal-dual, AcPD: strong-convexity based acceleration of PD.

changes in regularity become small (low ∆H): T-joint and T-coupled outper-
form T-ROF. Second, T-coupled, that, by principle, favor co-localized changes
in regularity and variance, shows overall better performance than T-joint, that
does not favor co-localized changes. This is a satisfactory outcome as all the
configurations chosen follow the a priori intuition, relevant for real-world appli-
cations, that changes of textures naturally imply co-localized changes in local
variance and local regularity.

5.3.2 Computational costs

Comparisons in terms of computational costs both between the three approaches,
and between the two classes of proximal algorithms, dual forward-backward,
standard and accelerated (FISTA), vs. primal-dual, standard and accelerated
by strong convexity (cf. Sec. 3), are reported in Table 2, for configurations I and
III (regarded as easy and difficult) considered as representative. Computational
costs are reported in number of iterations actually used to reach the stopping
criterion and in real time, for the optimal set of hyperparameters and averaged
over 5 realizations.

Table 2 shows first that, as expected, accelerated algorithms are always re-
quire less iterations than non accelerated ones, thus generally leading to lower
computational times (though this is not always the case with FISTA whose
complexity per iteration is larger). Also, T-ROF shows always lower compu-
tational costs compared to T-joint and T-coupled. This is expected as T-ROF
only works with the regularity and do not use variance.

FISTA vs. Accelerated primal-dual. For T-ROF, FISTA is overall preferable
to the accelerated primal-dual algorithm, as both show equivalent computa-
tional costs for Configuration I but FISTA is ten times faster (both in number
of iterations and computation time) for Configuration III. For T-joint and T-
coupled, for both configurations, accelerated primal-dual is faster than FISTA.
For T-coupled, in configuration III, FISTA has actually not converged when
meeting the the upper limit of iterations. Therefore, FISTA is to be preferred
for T-ROF, while accelerated primal-dual algorithms are more relevant for T-
joint and T-coupled.

T-joint vs. T-coupled. Focusing on T-joint and T-coupled and thus on the
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accelerated primal-dual algorithm that is faster for these two methods, Table 2
shows that T-joint is solved 3 to 4 times faster (both in number of iterations
and computational cost) than T-coupled.

5.3.3 Overall comparison

As an overall conclusion, results reported above show that there are benefits to
use together local regularity and variance, compared to regularity only, when
the changes in regularity become small. This implies switching from accelerated
dual forward-backward algorithms (FISTA, for T-ROF) to accelerated primal-
dual algorithms (for T-joint and T-coupled).

For difficult configurations, T-coupled (slightly) outperforms T-joint in terms
of segmentation performance, at the price of non negligible increases of compu-
tational costs. In that sense, T-joint can be considered a reasonable trade-off
between too poor segmentation performance (as those of T-ROF) and too large
computational costs (as those of T-coupled).

6 Conclusion and future work

The present article has significantly advanced the state-of-the-art in the seg-
mentation of piecewise fractal textures.

First, it has been proposed to base the segmentation of fractal textures not
only on the estimation of the sole local regularity parameter, but to use an
additional local parameter, the log-wavelet variance, tightly related to the local
variance of the textures. Two variations were investigated, coupled and joint,
that respectively enforce or not co-localized changes in regularity and variance.
It has been shown, using large size Monte Carlo simulations, that the use of
this additional features improves drastically segmentation performance when
the difference in regularity becomes negligible. This yet comes at the price of a
non negligible increase in computational costs.

Therefore, a second contribution has been to construct accelerated primal-
dual algorithms, requiring the explicit calculation of the strong convexity con-
stant underlying the data fidelity term form. The achieved substantial reduction
in computational costs has turned critical both to be able to conduct large size
Monte Carlo simulation and to perform the greedy search of the optimal set of
hyper–parameters. This low computational cost is also crucial for application
on real-world data.

The investigations reported here have permitted to show that accelerated
primal-dual algorithms outperform accelerated dual forward-backward (FISTA-
type) algorithms for piecewise fractal texture segmentation as soon as the joint
use of regularity and variance is required. Further, they showed that the coupled
formulation, that favor co-localized changes in regularity and variance, performs
better than the joint formulation, yet at the price of a significantly larger com-
putational cost. Thus, depending on budget constraints on time and requested
quality of the solution, the joint formulation can be regarded as an effective
trade-off.

The proposed theoretical formulations for piecewise fractal texture segmen-
tation and the corresponding accelerated algorithms are matured enough for
applications on real-world data. Application to the segmentation of multipha-
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sic flows is under current investigations. The automation of the tuning of the
hyperparameters is also been investigated. Extensions to piecewise multifractal
textures are also targeted.

A matlab toolbox implementing the analysis and synthesis procedures de-
vised here will be made freely and publicly available at the time of publication.
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