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26 Highlights

27

28 The Seine estuary ecosystem was described before and after the Port2000 extension. 

29 A toolbox of various indices was used, describing complementary characteristics. 

30 Port2000 effects were complex to separate from other human-induced and natural effects.

31 Ecological Network Analysis was useful in defining functional indicators. 

32 The need to continue long-term monitoring and to use multiple tools is emphasized.
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42 Abstract

43

44 During the last decades, the highly-anthropized Seine estuary has been impacted by 

45 modification of its habitats (building of a major extension of Le Havre harbour, i.e. Port2000) 

46 and a significant natural decrease in freshwater discharge. A Before/After analysis, using a 

47 toolbox of indicators, was applied to characterize the effects of both events on the estuarine 

48 ecosystem status. We selected from existing tool boxes several indicators derived from food 

49 web modelling or community composition data, such as biodiversity indicators, a guild-based 

50 index (i.e. Estuarine and Lagoon Fish Index ELFI) and ecological network analysis (ENA) 

51 indices. ENA and biodiversity indicators were applied on six spatial boxes describing the Seine 

52 estuary and its outlet. Results showed an increase in taxonomic and functional richness over 

53 time, mainly due to marinisation, and significant changes in food-web properties in relation to 

54 Port2000. ENA indices appeared as a promising method in ecological status assessment, 

55 especially for estuaries considered as inherently disturbed. 

56

57 Keywords: ecology, biodiversity, food web, ecosystem functioning, ecosystem health 

58 indicators

59

60 1. Introduction

61

62 Areas at the land-sea interface are often strongly impacted by human activities (e.g. Borja et 

63 al., 2012). Because estuaries are of great economic importance, they are commonly subject to 

64 physical modifications such as port development and channelization to enhance harbour and 

65 industrial activities (Marmin et al., 2014). In addition, pollution and other anthropogenic 

66 disturbances may cause modifications in aquatic communities (i.e. group of species or taxa 

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177



4

67 present in a given area that can be characterised by the distribution of individuals or biomasses 

68 among those species (Borja et al., 2012)), that could in turn influence the whole ecosystem 

69 functioning. A stressed ecosystem is here defined as an ecosystem undergoing changes in its 

70 structure (e.g. productivity of its species) or functioning (e.g. food-web dynamics) following 

71 physical, chemical or biological constraints or perturbations, either of a natural or an 

72 anthropogenic origin. A stressed ecosystem is therefore expected to show modifications in both 

73 its structure (e.g. species assemblages) and functioning (e.g. food-web properties), compared to 

74 a defined baseline. Estuarine ecosystems are constituted of a mosaic of habitats linked to natural 

75 (e.g. tide, freshwater input) and anthropogenic factors (McLusky and Elliott, 2004; Elliott and 

76 Whitfield, 2011). However, it is difficult to distinguish between natural and human-induced 

77 disturbances in estuaries due to their naturally high stress level and inherent variability: a 

78 concept known as estuarine quality paradox (Dauvin, 2007; Elliott and Quintino, 2007; Dauvin 

79 and Ruellet, 2009). 

80 Multiple tools exist to derive various indicators describing and reflecting the structure and 

81 functioning of ecosystems (Rombouts et al., 2003; de la Vega et al., 2018). Biodiversity and 

82 guild-based indices are the most commonly used and were largely developed for application to 

83 coastal and transition water masses in Europe under the EU Water Framework Directive (WFD) 

84 (EU, 2000; Hering et al., 2010). Biodiversity indices aim to describe communities’ 

85 characteristics and enable comparisons at different spatial scales (e.g. species richness, alpha, 

86 beta and gamma, diversities). Guild-based indicators are generally developed to assess the 

87 response of ecosystems to specific or more general disturbances (i.e. the comparison between 

88 the Ecology Quality Status of an estuary or a part of an estuary to a reference ecosystem with 

89 or without moderate disturbances) (Perez-Dominguez et al., 2012; Lepage et al., 2016). 

90 Delpech et al. (2010) suggested using a fish-based indicator called Estuarine and Lagoon Fish 

91 Index (ELFI) to assess the ecological status of French estuaries. ELFI was based on pressure-
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92 impact models and the purpose was to select relevant metrics that were known to be sensitive 

93 to anthropogenic pressures (Tableau et al., 2013; Pasquaud et al., 2013). However, this 

94 ecological quality indicator is mainly based on structural or taxonomic elements and do not 

95 sufficiently reflect neither the functioning of ecosystems (de Jonge et al., 2006; Rombouts et 

96 al., 2013) nor the biodiversity patterns between and within ecosystems (e.g. Vasconcelos et al., 

97 2013).

98 Ecological Network Analysis (ENA) corresponds to a collection of mathematical indices 

99 describing the structure and functioning of a trophic network and characterise the overall 

100 structural properties of food webs (Ulanowicz, 1997; Niquil et al., 2014). Mass-balanced food-

101 web models such as Linear Inverse Modelling (Vézina and Platt, 1988; Niquil et al., 2011; 

102 Tecchio et al., 2016) and Ecopath with Ecosim (Polovina, 1984) compute values of all carbon 

103 flows in a given food web and then calculate ENA indices to assess the properties emerging 

104 from the food-web architecture.

105 A common feature of both biodiversity indices and holistic ENA indicators is that they can 

106 be related to concepts of stress, stability, resistance and resilience (Fath et al., 2019; Safi et al., 

107 2019). The stability of an ecosystem corresponds to its ability to maintain a comparable 

108 functioning in the presence of perturbations that drive it away from its original state 

109 (Vasconcellos et al., 1997; Lobry et al., 2008; Saint-Béat et al., 2015). Grimm & Wissel (1997) 

110 defined resistance as the property of populations, communities or ecosystems to remain 

111 “essentially unchanged”. Resilience is the ability or the time taken by a system to recover from 

112 a change due to perturbations and is linked to stability (Pimm, 1984; Mathevet and Bousquet, 

113 2014). Although ENA indices have great potential to inform management decisions in estuaries 

114 and large tidal areas (de la Vega et al., 2018), their implementation in ecosystem health 

115 assessment is not sufficiently established yet.

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295



6

116 The objective of the present study was to investigate the contribution of ENA indices to the 

117 assessment of the Seine estuarine ecosystem quality by confronting them to some more 

118 commonly used indicators (i.e. biodiversity and guild-based indices). The Seine estuary is a 

119 good example of a highly anthropogenic transitional area (Dauvin and Desroy, 2005; Dauvin 

120 et al., 2006). For more than 150 years, the Seine estuary has undergone many transformations, 

121 such as shores linearization and calibration of the navigation channel from Le Havre (i.e. 

122 entrance of the estuary) to port of Rouen (120 km upstream). Port2000 is an extension of the 

123 existing commercial port of Le Havre, located in the Northern Channel of the Seine estuary, 

124 that was constructed between 2002 and 2005 and that modified the morphological and 

125 hydrological characteristics of the estuary (Dauvin et al., 2006; Tecchio et al., 2016). This 

126 extension aimed to optimise the access of long-distance trade ships and to expand the available 

127 area for those vessels in the harbour. Moreover, the navigation channel is also continuously 

128 dredged to ensure maritime access of ships up to the port of Rouen (Marmin et al., 2014). A 

129 recent study using Ecopath models has shown that before the construction of Port2000, the 

130 northern and navigation channels of the Seine estuary already presented signs of disturbance 

131 (i.e. an effect, either biotic or abiotic, inducing a perturbation such as stress in an ecosystem; 

132 relative to a specified reference state, (Rykiel JR, 1985)) due to maritime traffic, dredging, and 

133 building works leading to a lack of connectivity between estuarine areas (Tecchio et al., 2015). 

134 Later, Tecchio et al. (2016) used a statistically more-advanced modelling framework (LIM-

135 MCMC) to estimate flows in the Seine estuary food web and compute ENA indices describing 

136 its functional properties before and after Port2000. They showed that the northern channel 

137 evolved towards a shorter food web and increased its resistance property. This was considered 

138 as a potential impact of the Port2000 construction. Results from ENA indices also evidenced 

139 that the food web in the navigation channel was constantly changing, probably due to 
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140 continuous dredging activities, and that the southern channel could be seen as the least disturbed 

141 area for both periods (Tecchio et al., 2016).

142 In addition to these anthropogenic disturbances, the Seine Estuary is also subject to an 

143 increase of salinity in the lower part of the estuary, called marinisation. Marinisation is due to 

144 a decrease in freshwater input coming from the river, associated with intrusion of marine water 

145 in the lower part of the estuary. Marinisation is a common evolution in estuaries receiving water 

146 from rivers and influenced by human activities (e.g. irrigation, dams) (David et al., 2007; 

147 Goberville et al., 2010; Chaalali et al., 2013).  

148 We used here an original combination of methods to assess the ecosystem health of the Seine 

149 estuary before and after the construction of Port2000. These analyses were performed on six 

150 spatial boxes previously defined to describe the estuary (Tecchio et al., 2016).

151 We first addressed the methodological question “Do the different indicators used in this 

152 study (species-based, guild-based and ecosystem-based indices) bring similar, complementary 

153 or different information on the ecological status of this estuarine ecosystem?”  We then 

154 addressed two ecological questions using this set of indicators: (i) How did physical distinct 

155 areas of the estuary (spatial boxes) react to perturbations? (ii) Can we distinguish the effects 

156 due to Port2000 from global change effects in the context of the estuary’s natural marinisation?

157

158 2. Materials and Methods

159

160 2.1. Study site and periods

161

162 Six spatial boxes, based on habitat characteristics and sediment types of the Seine estuary 

163 and the adjacent eastern part of the Seine Bay, previously defined in Tecchio et al. (2015) were 

164 considered: (a) three estuarine boxes: the navigation channel (CH), the northern channel (FN), 
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165 and the southern channel (FS); (b) an intermediate box located at the mouth of the estuary (E4), 

166 and (c) two marine spatial boxes (E2 and E14) (Fig. 1). Hydro-sedimentary and salinity 

167 conditions were considered homogenous within each spatial box (Tecchio et al., 2015). For 

168 each zone, two sets of data were gathered corresponding to two different periods: 1996–2002, 

169 representing the situation before the Port2000 construction, and 2005–2012, corresponding to 

170 the recent situation, after the Port 2000 construction. 

171

172 Fig. 1. Map showing the geographical position of the Seine estuary in France. The spatial boxes 

173 are composed of the navigation channel (CH), the northern channel (FN), and the southern 

174 channel (FS) as estuary boxes; an intermediate box located at the mouth of the estuary (E4), 

175 and two marine boxes (E2 and E14). Source: GIP Seine-Aval and SHOM.

176

177

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472



9

178 2.2. Indicators based on taxonomic diversity

179 2.2.1. Data

180 For the subsequent indices’ calculations, both fish data (from beam trawl) and 

181 macrozoobenthos data (from 0.1 m² Smith McIntyre or Van Veen grabs) were collected 

182 following identical sampling protocols between both periods, as results were standardised to 

183 take into account differences in sampling effort. This allows quantitative and qualitative 

184 comparisons to be made. 

185

186 2.2.2. Indicators

187 The taxonomic richness is defined as the total number of taxa sampled at a given scale. It 

188 was computed by pooling all sampled taxa by spatial box and period (Before Port2000 = 1996-

189 2002 vs After Port2000 = 2005-2012). To limit bias due to sampling design, taxonomic richness 

190 was standardized with relation to the sampling effort by dividing it by the log-transformed total 

191 number of samples realised for a given space-time unit (Nicolas et al., 2010). 

192 Alpha (α), beta (β) and gamma (γ) diversity indices give information on changes in 

193 community composition and the processes driving them, between spatial units or periods 

194 (Barros et al., 2014). α-diversity describes the taxonomic diversity on a local scale (calculated 

195 for each spatial box), γ-diversity corresponds to the taxonomic diversity of the entire region of 

196 interest (all six spatial boxes considered in the study) and β-diversity represents the variation in 

197 taxonomic composition among the spatial boxes of the studied area (Barros et al., 2014). The 

198 mean α-diversity ( ) of a region or area comprising several spatial boxes was calculated as the ᾱ

199 average of α-diversity in each spatial box (Eq. 1).

200  =        (1); with αi the taxonomic richness in the spatial box i, and N the number of ᾱ ∑𝑁
𝑖 = 1𝛼i/𝑁

201 spatial boxes.
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202 β-diversity is the ratio between γ and  (Eq. 2) (Anderson et al., 2011) and represents the ᾱ

203 number of times by which the taxonomic richness in the whole region considered (i.e. the entire 

204 estuary) is greater than the average taxonomic richness in the different spatial boxes. In other 

205 words, it corresponds to the ratio between regional and local species diversity and is related to 

206 compositional heterogeneity.

207                  (2) 𝛽 = 𝛾/ᾱ

208 with γ-diversity = taxonomic diversity of the entire region of interest and  = mean α-diversity. ᾱ

209 Biodiversity analyses were performed using the software package PRIMER-E v.6 (Clarke 

210 & Gorley, 2006). A two-dimensional non-metric Multi-Dimensional Scaling (nMDS) 

211 ordination was implemented for the six spatial boxes for each of the two periods, based on 

212 square-root-transformed biomasses to reduce the asymmetry in species distributions, and a 

213 Bray-Curtis similarity index computed on a species composition matrix. The nMDS plot gives 

214 a visual representation of the proximity in species composition between samples: the closer 

215 they are on the plot, the more similar they are in their species composition (Clarke and Warwick, 

216 2001). The ‘stress’ index calculated by the routine in PRIMER reflects how well the ordination 

217 is capable of preserving the rank of similarities in a bi-dimensional space, providing information 

218 on the quality of the representation.

219

220 2.3. Multimetric fish-based indicator ELFI 

221 2.3.1. Data

222 Fish data ‘After Port2000’ were standardized data, collected from surveys following a 

223 normalized protocol especially designed for fish monitoring in the French estuaries for the 

224 WFD (Appendix A). Fish data used for multimetric fish-based indicator ELFI (Delpech et al., 

225 2010) calculation ‘Before Port2000’ were collected from surveys designed for various other 

226 monitoring purposes but were obtained using similar sampling gear (i.e. beam trawls with 
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227 similar net features). For standardization and comparison, we accounted for sampling effort 

228 (trawled surface area and time spent trawling) and considered that the spatial design was 

229 relevant regarding WFD fish sampling protocol (> 6 samples by haline zone, defined by salinity 

230 level) following the Venice estuarine system: oligohaline (0-5); mesohaline (5-18), polyhaline 

231 (18-30) and euhaline (<30) zones (Venice System, 1958; Elliott & McLusky, 2002). This 

232 allowed for comparison of ELFI values between both periods.

233

234 2.3.2. Indicator calculation

235 ELFI has already been used to assess the ecological status of French estuaries (Tableau et 

236 al., 2013; Teichert et al., 2018) (ecological status categories described in Appendix B). The 

237 ELFI indicator is composed of seven metrics: density of (1) benthic fish (DB), (2) diadromous 

238 migrant species (DDIA), (3) marine juveniles migrants (DMJ), (4) freshwater species (DFW), 

239 (5) resident species (DER), (6) total density of fish (DT) and (7) standardised taxonomic 

240 richness (RT/lnS) (Pasquaud et al., 2013). Indeed, taxonomic richness (RT) was divided by the 

241 log-transformed total number of samples in each spatial box (lnS) to limit the bias due to 

242 sampling design, defining RT/lnS as the standardised taxonomic richness. These metrics are 

243 proxies that reflect the physical quality of the habitat (DB, DER), the chemical quality of water 

244 and sediment (DB, DMJ, DFW), but also the habitat connectivity (i.e. the degree to which 

245 separate patches of habitat are connected; DDIA) (Hall et al., 2011) and the general degradation 

246 level, which reflects a general dysfunction in ecosystem health due to accumulation of negative 

247 impacts (DT, RT/lnS). Contrary to the diversity indices calculated at the spatial box level, ELFI 

248 represents the estuary level due to the high number of samples required to calculate this index. 

249 ELFI values were computed using R (R Development Core Team, 2015). This fish index was 

250 inter-calibrated at the European level with seven other fish indices in use in the North East 

251 Atlantic region of Europe (Lepage et al., 2016) in order to ensure that assessments provided by 

591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649



12

252 these indices are consistent. Data were provided by ‘Agence de l’Eau Seine Normandie’ for the 

253 ‘After Port2000’ period whereas values were computed from Ifremer and CSLN (Cellule de 

254 Suivi du Littoral Normand) fish surveys for the ‘Before Port2000’ period. 

255

256 2.4. Indicators based on food-web models: Ecological Network Analysis (ENA)

257

258 2.4.1. Data sources and model construction 

259 We used the LIM model from Tecchio et al. (2016) for the three estuarine spatial boxes (FN, 

260 FS and CH; Fig. 1) for both periods, using 13 functional groups. A summary of data sources is 

261 given in Appendices C and D. Biomasses are expressed in gC.m-2. We constructed three 

262 additional LIM models representing the spatial boxes E2, E4 and E14 based on the same 

263 functional groups (Appendix C) and the same types of input data, including production, food 

264 conversion efficiency (i.e. ratio of the biomass produced by one compartment compared to its 

265 food intake (Christensen & Walters, 2004)), respiration, and excretion ratios. Data sources and 

266 references used for the construction of the LIM-MCMC models are presented in detail in 

267 Tecchio et al. (2015, 2016). Briefly, a system of linear equations was set up, linking species 

268 metabolic ratios (such as production/biomass, respiration/biomass, excretion/consumption 

269 ratios), species biomass, and diet compositions. In these equations, the unknowns were the 

270 flows connecting the compartments. The flow constraints were established using data from 

271 literature or other modelling works (Appendix C). Known equalities such as those including 

272 the biomass stocks were included to constrain the model into a finite multi-dimensional space. 

273 Metabolic parameters as well as dietary constraints (i.e. proportion of prey in predator diet) 

274 were implemented as "inequalities": minimum and maximum values were included in the linear 

275 equations to partially constrain the related flows. This approach produces solutions that are 

276 robust to the effect of parameterisation uncertainty (Hines et al., 2015; Hines et al., 2018). 
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277 Then, this space was sampled by using a Markov-Chain Monte Carlo routine to obtain 200,000 

278 solutions of the set of flow values.  Ecological Network Analysis was applied to these 200,000 

279 solutions, using the R software packages NetIndices (Soetaert et al., 2015) and enaR (Borrett 

280 & Lau, 2014), along with scripts developed for the present study [see Tecchio et al. (2016) for 

281 additional methodological details]. 

282 To assess statistical differences in ENA indices between both periods, the non-parametric 

283 effect size statistic introduced by Cliff (1993) was applied [see Tecchio et al. (2016) for 

284 methodological details] as we were dealing with a situation of large amount of data (each ENA 

285 index was calculated 200,000 times before Port2000 and the same number after Port2000) 

286 which renders the estimation of classical parametric test statistics unfeasible (Mulholland & 

287 Jones, 1968). 

288

289 2.4.2. Indices

290 We calculated six relevant ENA indices: the Total System Throughput (T..), the System 

291 Omnivory Index (SOI), the Finn’s Cycling Index (FCI), the Ascendency (A), the relative 

292 Redundancy (R/DC) and the Detritivory/Herbivory ratio (D/H). This set of indices was used by 

293 Tecchio et al. (2016) to characterize the inner part of the Seine estuary and most of them have 

294 been proposed as management tools in the OSPAR Convention context (Safi et al., 2019). The 

295 Total system throughput (T..) corresponds to the sum of all flows occurring in the system, and 

296 acts as an indicator of system size and activity (Rutledge et al., 1976; Aoki, 1988; Latham, 

297 2006). The Finn’s Cycling Index (FCI) represents the fraction of the flows in the system that is 

298 generated by recycling and was calculated as the proportion of T.. generated by cycling (Finn, 

299 1976; Finn, 1980). Although other FCI definitions exist, this particular one was chosen to 

300 remain consistent with previous work and another common modelling approach, Ecopath with 

301 Ecosim. The Ascendency was calculated as the product of the Total system throughput (T..) 
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302 and the Average Mutual Information (AMI), where AMI expresses the degree of organisation 

303 of exchanges between the different functional groups (increasing AMI indicates higher dietary 

304 specialisation; Hirata & Ulanowicz, 1984). High ascendency values mean that the system is 

305 more actively channelling flows along more specific pathways, whereas low values have been 

306 linked to system immaturity (Ortiz & Wolff, 2002). Relative redundancy (R/DC) was calculated 

307 as the ratio between the internal flows overhead and the total development capacity of the 

308 ecosystem (Ulanowicz, 1986; Ulanowicz, 2001) and measures the amount of parallel trophic 

309 pathways connecting the trophic compartments. R/DC acts as an indicator of inefficiency of the 

310 network (Hirata & Ulanowicz, 1984; Bondavalli et al., 2000) but it is also a way to increase 

311 ecosystem resilience because parallel pathways can replace each other (Ulanowicz, 1997). The 

312 System Omnivory Index (SOI) was calculated as the mean of the omnivory indices of each 

313 consumer compartment, weighted by the logarithm of their consumption (Christensen & 

314 Walters, 1993; Libralato, 2008). Omnivory is defined as the variability of prey trophic levels 

315 where high SOI values correspond to a food web with a web-like structure (i.e. with several 

316 pathways between compartments) whereas low SOI values reflect a chain-like structure with 

317 fewer pathways (Dimitrios et al., 2018). Therefore, SOI is an indicator of the overall dietary 

318 adaptation of the consumers, and an increase in SOI generally corresponds to a stabilizing 

319 response to an external disturbance (Fagan, 1997; Libralato, 2008). The Detritivory/Herbivory 

320 ratio (D/H) was calculated as the ratio between the sum of all predation flows on the detritus 

321 compartment (detritivory, flows from detritus to consumers) and the sum of all predation flows 

322 on primary producers (herbivory, flows from phytoplankton and microphytobenthos to 

323 consumers). An increase in D/H would indicate that the ecosystem shifts towards a more 

324 detritus-based food web, depending less on plant material for trophic interactions (Ulanowicz, 

325 1992; Luong et al., 2014; Niquil et al., 2014). 
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327 3. Results

328

329 Results concern “species-based” (species diversity and biomasses), “community-based” 

330 (fish index ELFI) and “ecosystem-based” (Ecological Network Analysis) indicators, which 

331 provide information at different levels. 

332

333 3.1. Species-based indices related to diversity and biomasses

334 3.1.1. Biomass trend

335 In the estuary boxes CH and FN, fish and macrozoobenthos biomasses increased between 

336 periods (Fig. 2, Table 1). For the southern channel (FS), while macrozoobenthos biomass 

337 increased, fish biomass remained stable, and it appeared that this was the case for all fish groups 

338 (Fig. 2). For instance, the biomass of piscivorous fish in FS averaged 0.057 g C.m-2 in the first 

339 period and approached 0.055 g C.m-2 in the second one. In CH, while total fish biomass 

340 increased, the biomass of planktivorous fish decreased (Fig. 2). This was mainly related to two 

341 pelagic species: Clupea harengus and Sprattus sprattus. In the same way, for FN, while the 

342 total fish biomass increased, the biomass of piscivorous and planktivorous fishes slightly 

343 decreased (Fig. 2). This was quantitatively compensated by a strong increase in benthos feeders’ 

344 biomass. The decrease in planktivorous fish biomass in FN was due to four species Clupea 

345 harengus, Gasterosteus aculeatus, Osmerus eperlanus and Sprattus sprattus. The overall 

346 biomass (including fish, macrozoobenthos and the suprabenthos) increased for the three 

347 estuarine spatial boxes. Among the three estuarine boxes, the ratio of fish biomass on benthic 

348 invertebrate biomass (BFish/BMacrozoobenthos) was the highest in CH (0.09 in the first period 

349 and 0.03 in the second one). Nonetheless, this ratio was divided by three in CH congruently to 

350 the sharp increase in benthic macrofauna biomass between periods that was multiplied by 7 

351 (Fig. 2, Table 1). 
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352

353 Fig. 2. Barplots representing fish biomass, macrozoobenthos biomass, the sum of fish and 

354 macrozoobenthos biomasses, and the ratio BFish/BMacrozoobenthos, for all spatial boxes 

355 before the construction of Port2000 (first bars) and after (second bars). The spatial boxes are 

356 composed of the navigation channel (CH), the northern channel (FN), and the southern channel 

357 (FS) as estuary boxes; an intermediate box located at the mouth of the estuary (E4), and two 

358 marine boxes (E2 and E14).
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361 Table 1. Summary of comparisons between periods (Before and After Port2000 construction) 

362 for biomass values, biodiversity indices, and the ELFI index. See text for details on the indices. 

363 < indicates that the value of the index is lower Before than After Port2000; > indicates that the 

364 value of the index is greater Before than After Port2000. 

Spatial boxes
CH FN    FS E4 E14 E2

Fish       <                <       <  > <     >
Biomass

Benthos       <                <       <    < <     <
Fish < <     <    < > >

TR
Benthos < <     <   < < <
Fish < <     <    < > >

       α
Benthos < <     <   < < <
Fish                                                  <

ᾱ *
Benthos                                                  <
Fish                                                  <

β *
Benthos                                                  >
Fish                                                  <

γ *
Benthos                                                  <

Diversity

ELFI*                                                                   <
365 * ᾱ, β and γ diversity indices are computed for the whole estuary

366

367 3.1.2. Taxonomic richness and species composition

368 The taxonomic richness increased between periods, from 16 to 47 fish taxa and from 5 to 29 

369 macrozoobenthos taxa in the navigation channel (CH) (Fig. 3). The same trend was observed 

370 in the Northern and Southern channels (FN and FS; Fig. 3). The estuary box CH showed 

371 particularly low values of macrozoobenthos taxonomic richness compared to the other spatial 

372 boxes (Fig. 3). The intermediate box E4 was the richest spatial box in terms of fish (with 51 

373 taxa during the first period and 59 taxa during the second one) and benthic macrofauna (with 

374 177 taxa during the first period and 307 during the second one). No strong changes were 

375 observed for the fish taxonomic richness in the marine spatial boxes E14 and E2. All taxa that 

376 were gained between periods, both for fish and macrozoobenthos, were exclusively of marine 

377 origin. Results on standardised taxonomic richness are given in Figure 3. 
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378

379 Fig. 3. Barplots representing taxonomic richness divided by the log-transformed total number 

380 of samples realised within the six spatial boxes before (first bars) and after (second bars) the 

381 construction of Port2000 for fish and macrozoobenthos. The spatial boxes are composed of the 

382 navigation channel (CH), the northern channel (FN), and the southern channel (FS) as estuary 

383 boxes; an intermediate box located at the mouth of the estuary (E4), and two marine boxes (E2 

384 and E14).

385

386 3.1.3. Diversity indices

387 The α, β and γ taxonomic diversity analyses between periods showed that the average 

388 number of fish species ᾱ increased from 32.8 to 41 species, and from 65.7 to 177.2 for 

389 macrozoobenthos. γ-diversity increased from 54 to 71 taxa for fish and from 195 to 353 taxa 

390 for macrozoobenthos, and β-diversity increased from 1.65 to 1.73 for fish and decreased from 

391 2.97 to 1.99 for macrozoobenthos (Table 1). 

392

393 The MDS ordination based on fish composition data showed a remarkable spatial 

394 segregation according to the salinity gradient between the estuarine and the marine spatial boxes 

395 (Fig. 4 top). The same pattern was observed with the MDS ordination based on 

396 macrozoobenthos species (Fig. 4 bottom). The ‘stress’ value of 0.05 was very low, underlying 

397 the good quality of the representation. 
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399

400 Fig. 4. MDS ordination based on Bray-Curtis similarity matrices from biomass data (square-

401 root transformed) for fish (on the upper part) and for macrozoobenthos (on the lower part), for 

402 all spatial boxes during the first (first bars), before Port2000, and the recent (second bars) 

403 periods.

404

405 CH appeared as the spatial box that has experienced the greatest change in fish composition 

406 between periods, with less than 20% similarity in the community composition before and after 

407 Port2000. In addition, the benthic macrofauna composition in this estuary box demonstrated 

408 few similarities with the other spatial boxes, and this for both periods. For fish in the ‘Before’ 

409 period, marine boxes E2, E4 and E14 formed a group well separated from the inner estuary, 
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410 where FN and FS were grouped and CH isolated from these two other estuarine boxes. Similar 

411 results were obtained for macrozoobenthos. But in the ‘After’ period, the marine box E4 was 

412 grouped, for fish, with not only the estuary boxes FN and FS, but also CH (Fig. 4). This 

413 similarity in biodiversity composition was only limited to fish compartment; the benthos 

414 remained structured in a very similar way, in both periods.

415

416 3.2. A community-based index for fish: ELFI 

417 During the period before Port2000, the Seine estuary showed lower values of ELFI (from 

418 0.1 to 0.14) compared to the period after Port2000, the highest value recorded being 0.68 in 

419 2006 (Fig. 5). The metric DDIA, indicator of habitat connectivity related to diadromous species, 

420 showed strong changes in the recent period (after Port2000), with a value of 0.88 in 2006, 0.70 

421 in 2010 and 0.71 in 2012 (missing value in 2011), meaning that this metric gradually decreased 

422 after the Port2000 construction. 

423

424 Fig. 5. ELFI values for the whole estuary for 10 years, between 1995 and 2012, with the class 

425 boundaries of the Water Framework Directive.

426
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427 3.3. Ecosystem-based indicators: food webs and ENA

428 ENA indices showed that all indices in the two marine zones (E2 and E14) remained similar 

429 between the two periods (Table 2). R/DC and SOI decreased between before and after “Port 

430 2000” in the estuary box (FS). All indices, except SOI, increased between the two periods in 

431 the intermediate box E4 and in the estuary boxes CH and FN. 

432 Total System Throughput (T..), representing the size and activity of the system, significantly 

433 increased in the estuary boxes CH and FN as well as in the intermediate box E4 and remained 

434 stable in all the other spatial boxes (Table 2); Cliff’s delta; Fig. 6). 

435 The SOI, reflecting the omnivory in the system, significantly decreased in the estuary box 

436 FS between the two periods. (Fig. 6). The D/H ratio significantly increased in the estuary boxes 

437 CH, FN and in the intermediate box E4, while remaining stable in the marine boxes E14, E2 

438 and in FS (Table 2, Fig. 6).

439 The FCI reflecting the recycling in the system, significantly increased between the two 

440 periods in the estuary boxes CH, FN and in the intermediate box E4 (Table 2, Fig. 6). 

441 The ascendency (A) and relative redundancy (R/DC) indices significantly increased in CH 

442 between the two periods. The ascendency also significantly increased in the intermediary box 

443 E4 between the two periods (Table 2, Fig. 6). 

444
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446 Table 2. ENA means and standard deviations, derived from LIM-MCMC models, for all spatial 

447 boxes before (1996-2002) and after (2005-2012) Port2000 construction. < indicates that the 

448 value of the index is lower Before than After Port2000; > indicates that the value of the index 

449 is greater Before than After Port2000. Only statistically significant results based on Cliff’s delta 

450 are listed. ns: non-significant.

451

ENA Period CH FN FS E4 E14 E2

T.. Before
1935 ± 

337
2244 ± 

251
2600 ± 

240
2424 ± 

347
2475 ± 

296
2447 ± 

364

T.. After
2332 ± 

361
2463 ± 

273
2507 ± 

227
2687 ± 

352
2494 ± 

294
2564 ± 

328
Evolution 

T.. <             < ns < ns ns

FCI Before
0.087 ± 

0.03
0.124 ± 

0.03
0.163 ± 

0.03
0.128 ± 

0.03
0.135 ± 

0.02
0.149 ± 

0.04

FCI After
0.119 ± 

0.03
0.175 ± 

0.04
0.178 ± 

0.04
0.153 ± 

0.03
0.131 ± 

0.02
0.145 ± 

0.03
Evolution 

FCI <             < Ns < ns ns

Ascendency Before
3542 ± 

675
4066 ± 

465
4648 ± 

461
4382 ± 

692
4480 ± 

589
4408 ± 

721

Ascendency After
4285 ± 

742
4453 ± 

534
4532 ± 

450
4942 ± 

737
4590 ± 

588
4649 ± 

667
Evolution 

Ascendency <             < Ns < ns ns

R/DC (%) Before 32.6 ± 2 40.6 ± 2 43.7 ± 2 40.6 ± 2 40.9 ± 2 41.5 ± 2
R/DC (%) After 39.2 ± 2 41.8 ± 1 41.7 ± 2 42.4 ± 2 41.6 ± 2 42.6 ± 2
Evolution
R/DC(%) <             < > < ns ns

SOI Before
0.145 ± 

0.02
0.133 ± 

0.02
0.136 
±0.01

0.146 ± 
0,01

0.143 ± 
0.01

0.130 ± 
0.01

SOI After
0.146 ± 

0.01
0.125 ± 

0.01
0.119 ± 

0.01
0.148 ± 

0.01
0.142 ± 

0.01
0.137 ± 

0.01
Evolution 

SOI ns            ns > ns ns ns

D/H Before
0.317 ± 

0.12
0.589 ± 

0.12
0.796 ± 

0.13
0.600 ± 

0.11
0.637 ± 

0.11
0.692 ± 

0.16

D/H After
0.553 ± 

0.12
0.776 ± 

0.16
0.758 ± 

0.15
0.760 ± 

0.15
0.658 ± 

0.11
0.718 ± 

0.12
Evolution 

D/H <             < ns < ns ns
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452

453

Spatial box Spatial box Spatial box

Spatial box Spatial box Spatial box

454 Fig. 6. Ecological network analysis (ENA) indices for all spatial boxes for the period before 

455 (first bars) and after (second bars) Port2000. The spatial boxes are composed of the navigation 

456 channel (CH), the northern channel (FN), and the southern channel (FS) as estuary boxes; an 

457 intermediate box located at the mouth of the estuary (E4), and two marine boxes (E2 and E14). 

458 Means and standard deviations are represented. Asterisks represent significant changes assessed 

459 from Cliff’s delta statistics (level 0.05; between before and after construction).

460

461

462 4. Discussion

463

464 4.1. Limitations

465 Fish species were sampled using beam trawls, which target the first 50cm above the seafloor. 

466 The fish assemblage was therefore biased, the pelagic species likely being underestimated. In 

467 addition, the edges of each habitat were not sampled. Therefore, a few fish species might not 

468 have been sampled. However, the sampling gears and methods were similar between periods 
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469 and among spatial boxes, allowing comparison between time periods and spatial boxes. ELFI 

470 values, for both periods, need to be considered with some caution, given the differences in 

471 sampling protocol between periods that may slightly affect the comparability. 

472

473 4.2. Signs of estuarine marinisation

474 The biomasses of marine species increased between both periods in the Seine estuary. For 

475 example, Pomatoschistus minutus biomass increased in two estuarine boxes (FN, FS), and in 

476 the intermediate box (E4), and P. microps was newly observed in these areas after Port2000. 

477 These two fish species, especially P. minutus are mostly marine species (Leitão et al., 2006), 

478 suggesting a tendency of marinisation. Previously termed by David et al. (2007) and later used 

479 in several papers (Pasquaud et al., 2012; Chevillot et al., 2016, 2017), « marinisation » 

480 describes the process whereby marine waters flow far upstream into the basin along with a 

481 higher abundance of marine species in the estuarine transitional zone. The Seine estuary, as 

482 many north-eastern Atlantic Ocean estuarine ecosystems (Goberville et al., 2010), is going 

483 through a process of ‘marinisation’. The time period 2005-2012 was characterised by a 

484 significantly lower discharge of the Seine river (Dauvin and Pezy, 2013), resulting in an 

485 increase of salinity up to 5 in the estuarine boxes (Bacq et al., 2013). The salinity in the marine 

486 boxes remained stable between periods. The arrival of marine species finding newly suitable 

487 conditions in most spatial boxes might explain the increase in taxonomic richness. This 

488 marinisation tendency was supported by the MDS ordination showing a clear spatial (along the 

489 salinity gradient) and temporal (before and after Port2000) segregation, indicating that 

490 marinisation modified the ecological structure of communities. This is also supported by the 

491 higher ELFI values in the Seine estuary after Port2000 which is likely a consequence of the 

492 marinisation enhancing the taxonomic richness and biomass of fish in the estuarine spatial 

493 boxes. The same trend has already been observed in the Gironde estuary where changes in fish 
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494 assemblages and an increase of the ELFI index were attributed to an increase in temperature 

495 and salinity indicating marinisation (Pasquaud et al. 2012; Chevillot et al., 2016, 2017).  

496

497 4.3. Signs of anthropogenic impacts

498 4.3.1. The global estuary

499 In the Seine estuary, the ELFI indicator increases with ecosystem quality (Le Pape et al., 

500 2015). The ecological status of the Seine estuary therefore improved from a ‘bad’ status before 

501 Port2000 to a ‘poor’ status after Port2000. Diadromous species abundance was associated to 

502 habitat connectivity, as opposed to habitat fragmentation (barriers to migratory fish) (Pasquaud 

503 et al., 2013). After Port2000, the highest DDIA value recorded was 0.88 in 2006 and then the 

504 general pattern of this metric for that period was characterized by an overall decrease of DDIA, 

505 with values dropping down to 0.71 in 2012, likely due to a lower connectivity for migrant 

506 species such as eel Anguilla anguilla or grey mullet Liza ramada, associated with the extension 

507 of the breakwaters between FN and CH during the Port2000 construction. As an example, smelt 

508 O. eperlanus is a diadromous species which was formerly abundant in the upper part of the 

509 northern channel for reproduction (Morin et al., 2015). Extending the breakwaters between FN 

510 and CH during the Port2000 construction might have impacted the connectivity between these 

511 two zones, and O. eperlanus has been negatively affected by this rupture of connectivity. 

512 Moreover, it seemed that the differences in fish assemblages between the spatial boxes widened 

513 (β-diversity increased from 1.65 to 1.73), which might be related to availability of new habitats 

514 for marine species inside the estuary. Concerning benthic species, the diversity trend between 

515 spatial boxes showed the reverse trend, showing signs of standardisation (β-diversity decreased 

516 from 2.97 to 1.99).

517

518 4.3.2. Estuarine disturbed boxes
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519 Comparatively to the rest of the estuary, strong effects of perturbations were expected in the 

520 navigation channel (CH) because of the continuous dredging and the high hydrodynamics. The 

521 estuarine box FN was the spatial box the most directly affected by the construction of Port2000 

522 and by the mitigation measures such as the artificial formation of meanders, which might have 

523 modified the hydrodynamics (Cuvilliez et al., 2015). In addition, an increase in water turbidity 

524 was noted in this box (S. Lesourd, personal communication).

525 The increase in detritivory/herbivory ratio (D/H) observed in both CH and FN between the 

526 two periods suggests an ecosystem more stressed after the Port2000 construction (Niquil et al., 

527 2014), probably reacting to perturbations by enhancing opportunistic behaviours such as 

528 detritivory. The higher carbon recycling (FCI) observed after Port2000 in these two estuarine 

529 spatial boxes can also be a sign of increasing stress (Vasconcellos et al., 1997). However, 

530 increasing FCI and D/H values could also be interpreted by a sign of increasing maturity 

531 (Odum, 1969; Christensen, 1995; Allesina and Ulanowicz, 2004; Vasconcelos et al., 2007) but 

532 other ENA indices support the statement of increasing stress. Indeed, the relative redundancy 

533 (R/DC) significantly increased across periods in CH and FN, highlighting the fact that the 

534 system was enduring a higher level of stress (Hirata & Ulanowicz, 1984; Bondavalli et al., 

535 2000) but was also more able to resist to disturbances as the energy transfers could be 

536 maintained through the trophic network via other pathways (Ulanowicz, 1997; Rybarczyk & 

537 Elkaïm, 2003).

538

539 4.3.3. Estuarine reference box

540 The FS, which was initially considered as the least varying spatial box (Tecchio et al., 2015) 

541 and thus a reference, showed a reduction in redundancy (R/DC), omnivory (SOI) and detritivory 

542 (D/H), while maintaining a stable system activity (T..) and carbon recycling (FCI). The trophic 

543 specialisation was evidenced by the congruent reduction in omnivory (leading to a more chain-
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544 like structure of the food web) and redundancy (reduction of parallel pathways), which can be 

545 a sign of maturity. Results for FS therefore suggested that the reduced disturbance conditions 

546 here favoured an expected ecological succession.

547

548 4.3.4. Intermediate box

549 E4 is the transitional area between the inner estuary and the marine environment. Results 

550 from ENA indices show an increase in system activity (T..), redundancy (R/DC), carbon cycling 

551 (FCI), omnivory (SOI) and detritivory (D/H). Therefore, as for CH and FN, following the same 

552 interpretation framework, we could assume that the system in E4 was increasing its stabilizing 

553 mechanisms when facing stronger disturbances.

554

555 4.3.5. Marine boxes

556 Results from ENA indices show no significant differences between the two periods for both 

557 spatial boxes E14 and E2. Therefore, we can assume that the construction of Port2000 has no 

558 negative effect on the food web dynamics of these two marine boxes. However, the spatial box 

559 E2 contains the dumping site of Octeville for dredged sediments from the Le Havre harbour 

560 (Marmin et al., 2014). For these two spatial boxes, we noticed that the fish taxonomic richness 

561 decreased whereas the benthic macrofauna richness increased. The relative importance of 

562 benthic communities had intensified in E2, as shown by the decrease in the 

563 BFish/BMacrozoobenthos ratio between both periods, contrary to what was noticed in E14. 

564 This might be explained by a potential increasing turbidity in E2 due to the dumping of 

565 sediments that could affect fish more than the benthic communities. However, the effect of the 

566 Port2000 construction on these two marine boxes cannot be evidenced.

567
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568 4.4. Relative effects of marinisation and port construction

569 4.4.1. The global estuary 

570 The higher taxonomic diversity and ELFI index values observed after Port2000 in a context 

571 of marinisation suggest a decrease of ecosystem stress after Port2000, as taxonomic richness is 

572 considered a key factor in ecosystem stability in response to anthropogenic pressures (e.g. 

573 McCann, 2000; Chapin et al., 2000). However, investigations in the different spatial boxes were 

574 necessary to detect potential effects of the Port2000 construction.

575

576 4.4.1. Estuarine disturbed boxes 

577 The food web in CH is continuously disturbed due to the dredging activity, greatly limiting 

578 the colonisation of the seafloor by benthic organisms, as seen in other locations (e.g. in the 

579 Venice lagoon: Pranovi et al., 2003). In CH, the community was characterized by an extremely 

580 low benthos richness and biomass compared to the other spatial boxes. Nonetheless, 

581 communities subjected to regular disturbances are also more adapted, less sensitive, and recover 

582 more quickly than undisturbed communities (Dernie et al., 2003; Marmin et al., 2014). Results 

583 from ENA indices in the two boxes CH and FN suggest an ecosystem more stressed after the 

584 Port2000 construction. Species-based indices were very useful to detect the effects of dredging 

585 activities which directly affect the settlement of benthic communities. This effect was also 

586 reflected in the ENA indices. 

587

588 4.4.2. Estuarine reference box

589 In FS, both fish and macrozoobenthos taxonomic richness increased. However, the ratio 

590 BFish/BMacrozoobenthos remained stable. The MDS analysis showed that the fish 

591 composition in this spatial box did not deeply change between periods. ENA indices suggest a 

592 mature system for FS for both periods. Therefore, this estuarine spatial box could be confirmed 
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593 as the least stressed area of the Seine estuary, as previously assessed by Tecchio et al. (2016), 

594 and that species-based indicators, ELFI and ENA indices bring similar information for this 

595 spatial box.

596

597 4.4.3. Intermediate box

598 We assumed that E4 should exhibit the highest taxonomic richness and biomasses given its 

599 intermediate position between marine and estuarine waters (Dauvin & Desroy, 2005). It had the 

600 highest fish and benthic macrofauna taxonomic richness of all spatial boxes. Similar results 

601 were found by Martino and Able (2003), who showed that in the Mullica river-Great Bay 

602 (USA), fish species richness increased from the marine stations to the ones at the mouth of the 

603 estuary, and then strongly decreased towards the estuarine sampling stations. The MDS analysis 

604 put forward that E4 could be seen as an intermediate spatial box for fish, but as a marine box 

605 for the macrobenthos community. Indeed, this confirmed that E4 itself can be considered as an 

606 ‘ecocline’, i.e. a boundary of progressive changes (spatial and ecological) between two different 

607 systems, the ocean and the estuary (Attrill and Rundle, 2002; Basset et al., 2013). Finally, 

608 results from ENA indices demonstrated an increase in system activity, redundancy, cycling, 

609 omnivory and detritivory between the two periods. Therefore, as for CH and FN, ENA indices 

610 enabled us to identify that the system was increasing its stabilizing mechanisms, probably to 

611 face stronger disturbances.

612

613 4.4.4. Marine boxes

614 Finally, in the bay, E14 and E2 marine boxes appeared similar in terms of fish and 

615 macrozoobenthos taxonomic composition between the two periods. Results from ENA indices 

616 show no significant differences between the two periods for both spatial boxes. Indices based 
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617 on diversity and biomasses showed the importance of benthic communities has intensified in 

618 E2 but the origin of this change remains unknown.

619

620 4.4.5. Summary

621 The estuarine marinisation effects are potentially stronger than the effects of the Port2000 

622 construction. Indeed, on the one hand, the marinisation of the Seine estuary mostly changed the 

623 species assemblages, therefore affecting the ecosystem structure (i.e. biological and physical 

624 architecture of an ecosystem), due to the arrival of numerous marine species. On the other hand, 

625 the anthropogenic pressures affected habitat connectivity and food-web dynamics (i.e. transfer 

626 of energy from one part of the food web to another, Lindeman, 1942), assessed with ENA 

627 indicators such as system activity, omnivory, recycling or detritivory. The main information 

628 brought by the combination of indices was summarized in Table 3. 

629
630
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632 Table 3. Main information about the functioning and the status of the six spatial boxes.
633

Method Main results Conclusions
Increase of the taxonomic richness 
between periods for the estuarine 
spatial boxes (CH, FN, FS) and 

the biomass of fish and 
macrozoobenthos increased

Arrival of marine species 
such as P. minutus in relation 

to the marinisation of the 
estuary (lower river discharge 

in the second period)
CH: low values of 

macrozoobenthos richness
Low benthos biomass due to 

dredging and high 
hydrodynamics in this part of 

the estuary
E4: the richest area for both 

periods
This corresponds to the rich 

Abra alba-Lagis koreni 
macrobenthic community and 

the feeding zone for fish 
(mainly flatfish).

Biotic indices based 
on diversity and 

biomasses => give 
information about 

the structure of 
communities

The MDS ordination showed a 
spatial segregation between CH 

and the other zones, and a 
temporal change between periods, 
both for fish and macrozoobenthos

Evolution in salinity plays a 
determinant role in the 

spatial gradient of the fauna; 
both periods were clearly 

distinguished
FN: higher carbon recycling and 
detritivory (increase in detritus 

input) + higher redundancy (more 
species)

Biotic indices based 
on the classification 
of species in trophic 

groups => give 
information about 
the functioning of 

the food web

CH: increase in system activity, 
carbon cycling, ascendency, 
redundancy and detritivory

Stress increased in the 
estuary mainly for CH and 
FN zones. The other zones 

were less disturbed.

FS: still in ‘high ecological status’ Reference box

Increase in ELFI values between 
periods

The ecological status was 
supposed to have improved but 
it is likely due to the arrival of 

marine species only

Biotic index based 
on the classification 

of species in 
ecological groups 

=> give 
information about 
the health status of 

ecosystems

Decrease of the metric DDIA 
(diadromous species) in the second 
period, indicator of a lower habitat 

connectivity

Lower connectivity due to the 
extension of the breakwaters 
between FN and CH during the 

Port2000 construction
634

635 ELFI was sensitive to the arrival of marine species and therefore was highly relevant in a 

636 context of marinisation of the estuary. ENA indices appeared as good ‘surveillance indicators’, 

637 that Shephard et al. (2015) proposed as indicators that would be a good complement to 

638 operational indicators, for example in the context of the Marine Strategy Framework Directive 

639 application. ENA indices are also useful to take ecosystem-based management measures for 
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640 such ecosystems (de la Vega et al., 2018; Safi et al., 2019). In addition, their association with 

641 biodiversity indicators made the analysis more robust as suggested by Rombouts et al. (2013). 

642 For instance, the arrival of new species and the higher biomasses observed in some spatial boxes 

643 between periods can also explain increases in some ENA indicators such as system activity, 

644 omnivory or redundancy but this cannot be evidenced and requires further investigations.

645

646 5. Conclusions 

647

648 The effects of the Port2000 construction were not as evident as expected due to the presence 

649 of other natural (e.g. marinisation) and anthropogenic (e.g. continuous harbour activities) 

650 perturbations, which makes the interpretation of ecological indicators difficult. ELFI was 

651 particularly relevant in a context of marinisation, as this index is sensitive to the arrival of new 

652 marine species. But the different metrics used to calculate ELFI are also indicative of 

653 anthropogenic impacts (e.g. DDIA and habitat connectivity affected by the construction of 

654 Port2000), making ELFI a very powerful tool to assess the health status of this estuary. The use 

655 of ENA indices alone was not sufficient to describe changes in ecosystem functioning between 

656 the two periods, distinguishing the effects of the Port2000 construction and the process of 

657 marinisation, but they appeared as an interesting complementary set of tools for characterising 

658 the evolution of food-web dynamics. Indeed, ENA indices allowed us to observe changes that 

659 occurred in specific ecosystem processes and to identify how an ecosystem becomes more 

660 stable (e.g. by increasing omnivory) under increasing stress. We showed that detecting changes 

661 related to anthropogenic disturbances alone in the Seine requires using ecological indicators at 

662 different levels (species, communities and ecosystem) and at multiple scales of observations. 

663 This work emphasizes the need to use several metrics to assess ecosystem health status and to 

664 continue long-term monitoring of such complex and reactive ecosystems.
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937 Figure legends

938

939 Fig. 1. Map showing the geographical position of the Seine estuary in France. The spatial boxes 
940 are composed of the navigation channel (CH), the northern channel (FN), and the southern 
941 channel (FS) as estuary boxes; an intermediate box located at the mouth of the estuary (E4), 
942 and two marine boxes (E2 and E14). Source: GIP Seine-Aval and SHOM.
943
944 Fig. 2. Barplots representing fish biomass, macrozoobenthos biomass, the sum of fish and 
945 macrozoobenthos biomasses, and the ratio BFish/BMacrozoobenthos, for all spatial boxes 
946 before the construction of Port2000 (first bars) and after (second bars). The spatial boxes are 
947 composed of the navigation channel (CH), the northern channel (FN), and the southern channel 
948 (FS) as estuary boxes; an intermediate box located at the mouth of the estuary (E4), and two 
949 marine boxes (E2 and E14).
950
951 Fig. 3. Barplots representing taxonomic richness divided by the log-transformed total number 
952 of samples realised within the six spatial boxes before (first bars) and after (second bars) the 
953 construction of Port2000 for fish and macrozoobenthos. The spatial boxes are composed of the 
954 navigation channel (CH), the northern channel (FN), and the southern channel (FS) as estuary 
955 boxes; an intermediate box located at the mouth of the estuary (E4), and two marine boxes (E2 
956 and E14).
957
958 Fig. 4. MDS ordination based on Bray-Curtis similarity matrices from biomass data (square-
959 root transformed) for fish (on the upper part) and for macrozoobenthos (on the lower part), for 
960 all spatial boxes during the first (first bars), before Port2000, and the recent (second bars) 
961 periods.
962
963 Fig. 5. ELFI values for the whole estuary for 10 years, between 1995 and 2012, with the class 
964 boundaries of the Water Framework Directive.
965
966 Fig. 6. Ecological network analysis (ENA) indices for all spatial boxes for the period before 
967 (first bars) and after (second bars) Port2000. The spatial boxes are composed of the navigation 
968 channel (CH), the northern channel (FN), and the southern channel (FS) as estuary boxes; an 
969 intermediate box located at the mouth of the estuary (E4), and two marine boxes (E2 and E14). 
970 Means and standard deviations are represented. Asterisks represent significant changes assessed 
971 from Cliff’s delta statistics (level 0.05; between before and after construction). 
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Appendices

Appendix A. Data sources used in the calculation of ELFI index

Indicator Before Port2000 After Port2000 Boundary classes

ELFI 

index

Biomasses from 

Ifremer and CSLN. 

Use of an R script 

provided by Mario 

Lepage (Irstea, UR 

EABX)

Index values from 

Agence de l'Eau Seine-

Normandie

Delpech et al., 2010

Fish data ‘After Port2000’ are standardized data from surveys designed for ELFI calculation 

following normalized protocol. Fish data used for ELFI calculation ‘Before Port2000’ were 

obtained using similar sampling gear (beam trawls with similar net features), accounting for 

sampling effort (trawled surface area) and considering a relevant spatial design regarding WFD 

fish sampling protocol (> 6 tows by haline zone)
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Appendix B. Range values between the five ‘Ecological Quality Status’ levels considered for 

the ELFI indicator (Delpech et al., 2010). Five levels of EQS classified as ‘high’, ‘good’, 

‘moderate’, ‘poor’, and ‘bad’ were used. ‘High status’ means very low human pressure. ‘Good 

status’ means a ‘slight’ deviation from this condition, ‘moderate status’ means moderate 

deviation, ‘poor status’ means high deviation and ‘bad status’ means very high human pressure.

EQS level

Range values for 

ELFI

High 0.90 ≤ ELFI ≤ 1.00

Good 0.68 ≤ ELFI < 0.90

Moderate 0.45 ≤ ELFI < 0.68

Poor 0.23 ≤ ELFI < 0.45

Bad 0.00 ≤ ELFI < 0.23
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Appendix C. Data sources used in the calculation of the different indicators

Group Compartment Biomass data Biodiversity 
indicators

ENA 
indices ELFI

1 Seabirds - X
2 Fish, piscivores X X X
3 Fish, planktivores X X X

4 Fish, benthos 
feeders

Ifremer, CSLN, Le Havre port authority sampling 
programs (Liteau, Port2000, Grand Canal, 

COLMATAGE 2008-2009-2010), and GIP Seine-
Aval X X X

5 Benthic predators X X

6 Benthic filter 
feeders X X

7 Benthic deposit 
feeders 

PECTOW, BENTHOSEINE, and COLMATAGE 
projects, Le Havre port authority, and GIP Seine-

Aval
X X

8 Suprabenthos
National Natural History Museum Paris, Wimereux 

marine station, Caen University, Le Havre port 
authority, and GIP Seine-Aval sampling programs

X

9 Zooplankton From Rybarczyk and Elkaïm (2003) X

10 Meiofauna Le Guellec and Bodin (1992); Ratsimbazafy, 
(1998); Spilmont et al. (2005) X

11 Bacteria Chardy (1987); Chardy and Dauvin (1992) X
12 Microphytobenthos Spilmont et al. (2005), Napoleon et al. (2012) X

13 Phytoplankton SURVAL database 
(http://envlit.ifremer.fr/resultats/surval) X

14 Detritus Seine-Aval sampling program X
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Appendix D. Biomasses entered in LIM-MCMC models for all trophic compartments and for 
both periods, before (1996-2002) and after (2005-2012) Port2000 construction. The values of 
biomass are mean over the years. Data sources are presented in Appendix A. More 
information can be found in Tecchio et al. 2016. For the spatial boxes, see Fig.1.

 Period Biomass (gC m-2 y-1)
 

Trophic compartments 
 

 
  CH FN FS E4 E14 E2

1996-2002       1 OIS Seabirds
2005-2012       
1996-2002 0.019 0.060 0.057 0.143 0.103 0.2642 FPI Fish, piscivorous
2005-2012 0.044 0.048 0.055 0.061 0.543 0.004
1996-2002 0.040 0.037 0.025 0.043 0.026 0.0163 FPV Fish, planktivorous
2005-2012 0.012 0.027 0.028 0.047 0.013 0.004
1996-2002 0.003 0.005 0.230 0.560 0.244 0.5544 FBF Fish, benthos 

feeders 2005-2012 0.088 0.327 0.252 0.307 0.387 0.358
1996-2002 0.163 17.15 9.830 1.000 2.590 0.9815 IPR Invertebrates, 

predators 2005-2012 1.118 26.88 41.65 1.109 14.69 2.817
1996-2002 0.442 1.897 22.32 3.08 3.81 12.716 IFF Invertebrates, filter 

feeders 2005-2012 1.963 4.340 5.262 9.425 3.123 10.82
1996-2002 0.052 1.587 3.140 6.134 6.134 4.2557 IDF Invertebrates, 

deposit feeders 2005-2012 1.420 1.466 0.865 7.200 3.705 5.923
1996-2002 2.208 2.030 2.010 0.101 0.101 0.1018 SUP Suprabenthos
2005-2012 0.542 0.960 0.930 0.020 0.020 0.020
1996-2002       9 ZOO Zooplankton
2005-2012       
1996-2002 0.427 0.119 0.119 0.377 0.402 0.16710 NEM Meiofauna
2005-2012 0.427 0.119 0.119 0.377 0.402 0.167
1996-2002       11 BAC Bacteria
2005-2012       
1996-2002 0.050 1.725 1.720 0.300 0.350 0.38012 MPB Microphytobenthos
2005-2012 0.050 1.725 1.720 0.300 0.350 0.380
1996-2002       13 PHY Phytoplankton
2005-2012       
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