\

Normalized Types

Pierre Courtieu

» To cite this version:

‘ Pierre Courtieu. Normalized Types. Computer Science Logic, Sep 2001, Paris, France. hal-02346059

HAL Id: hal-02346059
https://hal.science/hal-02346059
Submitted on 31 Jan 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02346059
https://hal.archives-ouvertes.fr

Normalized Types

Pierre Courtieu

Université Paris-Sud, Laboratoire de recherche en Informatique (LRI),
Batiment 490 — 91405 Orsay Cedex, France —
http://www.lri.Fr/

Abstract. We present a new method to specify a certain class of quo-
tient in intentional type theory, and in the calculus of inductive con-
structions in particular. We define the notion of "normalized types".
The main idea is to associate a normalization function to a type, instead
of the usual relation. This function allows to compute on a particular el-
ement for each equivalence class, avoiding the difficult task of computing
on equivalence classes themselves. We restrict ourselves to quotients that
allow the construction of such a function, i.e. quotient having a canon-
ical member for each equivalence class. This method is described as an
extension of the calculus of constructions allowing normalized types. We
prove that this calculus has the properties of strong normalization, sub-
ject reduction, decidability of typing. In order to show the example of
the definition of Z by a normalized type, we finally present a pseudo Coq
session.

1 Introduction

1.1 The calculus of inductive constructions

Type theory is a fruitful formalism for automated proof systems like Coq, Lego,
Agda/alfa etc. The expressive power of this framework is comparable to set the-
ory. However it appeared that the definition of complex structures is easier and
computationally more powerful if the type theory is enriched with some con-
structions. In particular the calculus of inductive constructions (CZC) [14] is an
extension of the calculus of construction [6] where it is possible to define new
types by giving the list of its typed constructors, in a sort of ML-style. For

example :
Inductive Nat := 0:Nat | S:Nat — Nat.
Inductive AList := nil: (A:Set) (AList A)
| cons:(A:Set) A — (AList A) — (AList A).
Inductive BListn := nil: (BListn 0)

| cons: (n:Nat) Bool — (BListn n) — (BListn (S n)).
By definition the terms of an inductive type T is the least set of terms recur-
sively built from its constructors. This is stated by the induction schemes, also
called elimination principles, like for example the one on natural: VP {(P 0) A
(Vz(P z) = (P (S x)))} = Va(P). It is possible to define functions on an

inductive type by pattern matching in ML-style, that can be evaluated in the
usual way. For example:
parity = Az:Nat. Case z of 0 = true | (S n) = (not (parity n)) end

In the calculus of inductive constructions, these notions are stated by typed
terms, in the Curry-Howard spirit. The elimination principle above is for example
expressed by the term:

Nat_rec:(P:Nat—Set)(P 0)— ((m:Nat)(P m)— (P (S m)))— (m:Nat)(P m)
where an expression of the form (z:A)T (also written [Tz : A.T) is the notation
for the dependent product, abbreviated in A — T when T does not depend on x.

Using Nat_ rec, we can define (possibly recursive) functions on Nat by pattern
matching on constructors. We can also make proofs by cases or by induction on
Nat. We can deduce from Nat_rec a non dependent principle, easier to use when
the type P is not dependent:

Nat_ rec’: (P:Set) P— (Nat— P—P)— Nat— P
The function parity is written in the CZC using Nat rec’ :
parity = (Nat_rec’ bool true ([y:nat[b:bool](not b)))

where [z:A]t stands for Az : A.t. In order to evaluate such functions in the CZC,
new rewriting rules are added for the recursors:

(Nat_rec’ Tty t1 0) —, 1

(Nat_rec’ Tty ty (S z))—, (th (Nat_rec’ T ty t; z))
where ty and #; are two terms of type T and nat— T— T respectively. Notice
how structural recursion is simulated and how the head constructor of the last
argument (0 or S) is used to choose which branch of the recursor must be used.

In the version of the CZC that we consider, this new reduction, called -
reduction is part of the internal reduction of the system, as for 3 (evaluation of
applications). We do not consider n (evaluation of dummy abstractions) in our
work. More precisely, the internal reduction —¢7¢ which defines the evaluation
mechanism on terms, is :

—c7c = —, U —3

From the theorem prover perspective, it is very important that the evaluation
mechanism terminates. So in CZC restrictions on the definition of functions are
made to allow only terminating functions to be defined (see appendix B, and
[14]). This evaluation mechanism is closely related to the internal notion of
equality of CZC, as we explain in the next section.

1.2 The notion of equality

The notion of equality in type theory is a delicate problem. The undecidability
in general of the usual notion of equality in mathematics makes impossible any
implementation of a general decision procedure. However, a lot of work has been
done to find weaker decidable equivalence relations between terms of the type
theory, in order to:

— Make decision procedures to minimize the number of proofs of equality to
be made by hand.

— Make typing decidable in presence of a conversion rule of the form (needed
in a dependently typed framework):

F"tlTl TlETQ

C :
onv TFit:Th

where = is an equivalence relation between terms, I' is a typing environment,
and ¢, 77 and 15 are terms. We see here that in order to keep a decidable
typing procedure, = must remain decidable.

A decidable typing is not an absolute requirement, systems like PVS do not
have a decidable typing. However, there are evident practical advantages in de-
cidability of typing and internal equality and we will consider it necessary in our
paper according to the point of view that prevailed in the conception of Coq.

Since the classical (undecidable) notion of equality is still necessary, the CZC,
as other systems of type theory, uses several notions of equality. In CZC we
first have a notion of internal equality, also called definitional equality!. This
equality is a congruence on terms (and types because we are in a type dependent
framework) and is the equality used in the conversion rule of the type system.
More precisely, the internal equality =¢7¢ of CZC is the reflexive, symmetric and
transitive closure of —¢7¢.

We have a second notion of equality, called propositional equality (%czc) also
called Leibniz equality. It is defined in the calculus and can be used and extended
by the user. It will not be considered in the typing rules and is not necessarily

decidable. It is defined such that =¢7¢ C éczc, thus we will call user equality,
u .. . [u .
noted =¢z¢, the minimal relation such that: =¢cz¢c = =c7cU =c¢zc that is the

part of %CIC that is not in =¢7¢.

Notice here that nothing prevents the user from generating an inconsistency,
for example by defining P such that P(True, False). We see in the next section
that the fact that the propositional equality is not restricted to =¢7¢ creates
more subtle problems.

To sum up this section, we can say that %czc is the mathematical equality
and =czc is the sub-relation of éczc that is considered (and decided) during
typing. Of course extending =c¢7zc¢ is interesting as more terms will be identified
internally.

1.3 The problem of non free structures

As we saw in section 1.1 the ¢ rule only checks the head constructor of the
argument of a function to decide which reduction rule to apply. This mechanism

!'In fact, Martin-Lof in its type theory gives four notions of equality: intentional
(definitional) equality, judgment equality, type equality, and propositional equality.
In the CZC these categories are not exactly relevant as intentional equality is much
more powerful than in Martin-16f’s theory, and judgment and type equalities are
somehow replaced by internal or propositional equality.

works well when the structures defined by inductive types are free, which means
that two terms starting with two different constructors cannot be equal (even

for %CIC). But it fails in presence of equations between head constructor terms?

(in %CIC). Indeed, in this case, two equal terms (by %CIC)tl and ts, starting by
two different constructors, can generate an incoherence by —¢z¢. Suppose for
example that we want to define the natural numbers modulo 2, we can naively
state the axiom Eq0mod2: 0 =c¢zc (S (S 0)) but then consistency of the system
is compromised, as shown by the simple function f3:
f=Az:Nat. Case z of 0= True
| (S n) = False end

generating two equalities (f 0) =¢z¢ True and (f 0) =crc (f (58S 0)) =czc False
leading trivially to True éczc False.

For this reason, inductive types allow only to specify free structures. This
means that it is not possible to define quotients on inductive types in a simple
way in systems like Cogqg.

However, mathematical structures like integers (Z), integers modulo (Z /nZ),
rationals (Q), or Sets are intrinsically quotients, that we want to define from an
underlying type and an equivalence on this type.

Our contribution, the normalized types is a method to specify structures

where Z is safely extended by the user, allowing to define a certain class of
quotient. It has been inspired by two existing methods, the quotient types [9], [11],
[5], and the congruence types [2], that we both briefly present in the following.

1.4 Related work

The definition of non free structures in intentional type theory has been studied
by Backhouse, Hofmann, Barthes, Geuvers, Jacobs and recently by S. Boutin.
Roughly two methods were proposed: quotient types and congruence types, both
inspired by previous works on extensional type theory.

Quotient types as presented in [5] are an axiomatization of quotients from the
set theory, that has been implemented in the Coq system. A quotient type 7'/R
is built from a type T (that we shall call the underlying type), and a relation
R on this type. For all z : T we define the term (In) : T/R. A set of axioms
defines the properties of T'/ R according with the classical notion of quotient, for
example: Vz,y : T.(Rz y) — (In ©) =yser (In y) that defines the equality among
the elements of the quotient. This axiomatization, by taking a set theoretical
approach, is very general, but because of its axiomatic nature, does not catch
the computational aspect of quotients (In particular because of the use of =yer
above instead of =¢z¢).

2 Terms whose head symbol is a constructor.
% Notice that strictly speaking we use here a strong version of Nat_rec’.

Martin Hofmann, in [10] and [9] already defines quotients this way. By ex-
tending the Martin-Lof type theory with quotient types and by giving an inter-
pretation of it in the pure Calculus of Constructions, he gives good properties
to quotient types. Our present work follows a similar method.

A common aspect of these works is that the elimination principles for quotient
is split in two principles. The first is weak and allows to define functions on the
quotient from functions on the underlying type. This lifting operation is allowed
when the function is compatible with the relation of the quotient, according to
the classical set theory mechanism. The second is strong and allows to make
inductions on quotient types, again by lifting proofs made on the underlying
type. There is no compatibility condition for this principle. But it is clear that
in some cases it is possible to define better induction schemes.

Congruence types are a generalization of inductive types which could be called
"inductive types with relation" ([13] [5]), or "inductive types with rewriting" [2].
This last point of view is the closest of our approach. It consists in the association
of an inductive type T and a canonical (i.e. confluent and terminating) term
rewriting system(TRS) p, which will be added to the internal reduction and
equality of the system. This defines a new type T'. Despite not being an inductive
type, T has a good computational behavior, because we can use p to link any
closed term of T to a unique term in 7 : its normal form by p. This method allows
a satisfying representation of quotients when the relation R can be oriented in
a canonical TRS. In particular better induction schemes can be proved by hand
using a notion of fundamental constructor. However, adding rewriting systems
to internal reduction dynamically leads to the difficult problems of termination
criteria and interaction between rewriting systems [3].

1.5 Plan

We give a general description of normalized types in the next section. Then we
define formally our extension of the calculus of constructions in section 2. We
prove properties of this system in section 3. Finally we conclude with some con-
siderations on our system and with some ideas of further work in 4. In appendix
A the example of the definition of Z in a pseudo Coq session is developed. We give
in the appendix B a short definition of the calculus of construction as defined in
[14].

2 The Calculus of Inductive Constructions with
normalized types

Let A be a type and nf a function from A to A, we define a new type Norm(A, nf)
called "type A normalized by nf". Its elements are, and are only, of the form:
Class(A, nf,t), where ¢ is a term of type A. This will expressed by the elimination
principle. The main idea of this work is to make Class(A, nf, t) and Class(A, nf,u)

equivalent for internal equality (convertible) if (nf t) and (nf u) are equivalent.
Reduction is defined to avoid the coherency problems cited in section 1.3.

Our system is a variant of quotient types in the spirit of congruence types of
Barthe and Geuvers. We take advantages of both methods:

— We use the idea of the association of a type with a computational object.
Barthe uses a TRS, we will use a normalization function nf, i.e. a term of the
original system, avoiding the problem of mixing reductions cited previously.

— We will define a new calculus extending the calculus of inductive construc-
tions. We use an interpretation from our calculus into CZC to define our
notion of internal equality.

By aslight addition to the reduction rules we can add the normalized types to
the Calculus of Inductive Constructions. The modification mainly consists in the
enrichment of the conversion and reduction rules in order to make Class(A, nf,t)
and Class(A, nf,u) convertible provided that ¢t and u have the same canonical
form. The subject of the end of this paper is the formal definition and the study
of the main properties of this extension.

We use a method similar to [1] but in the context of inductive types, we first
extend the syntax, typing and reduction rules of CZC and then we prove the
properties of the new calculus (CZC™) using a translation from CZC™ to CIC
that has some strong properties.

2.1 Syntax

The syntax of CZC™ is based on the notations of B. Werner’s thesis [14] where
a precise description of the CZC can be found (a short one can be found in
appendix B.

We take here the following hierarchy of sorts: Set:Type:Extern.

Variables : Vi=xy,2...
Sorts: S :=Set | Type | Extern
Terms (all terms of CZC belong also to CZC™):
T:=V|SI|[V:TIT|(V:T)T'|TT
| Ind(V : T')(T") | Constr(n,T") n € IN | Elim(T,T,T,T){T}
| Norm(T,T') | Class(T, T, T) | Elimnorm(T,T,T,T)

T denotes a sequence of terms. Ind, Constr and Elim are the usual construc-
tions for inductive types. Norm, Class and Elimnorm are respectively the type
constructor, term constructor and destructor for normalized types.

We will use the usual notation A — B in place of (z : A)B when B does
not depend on z. To increase readability, we will often use Cog-like notations for
pattern matching expressions:

Cases t of <patternl> = w; | <pattern2> = uy ...end.
in place of the corresponding Elim(#1,t2, t3,t) {u;}, hiding arguments ¢, t» and
t3 that can be deduced from context.

We will as usual note t[z « u] the term ¢ where all free occurrences of z
have been replaced by u. The notion of free variable extends well to our new
constructions, and all usual properties of substitutions are preserved.

Finally, we define typing environments as sets of pairs of the form (z : T).
As usual [] will denote the empty environment, and I" :: & : T the environment
I'u{(z:T)}. We will omit parenthesis when it is not ambiguous.

2.2 Computation

Definition 1. Let —,; be the following rewriting rule:
Elimnorm(A, nf, f, Class(A, nf ,t)) — s (f (nf t))

the reduction —sczew of CIC™ is the congruent closure of —f U —, U—p3

Remark 1. Let t; and ¢» be two terms of CZC such that ¢, — 3 2 in CZC, then
we have also t; —,5 t2 in CIC" . — 70w reduction preserves typing.

2.3 Conversion and internal equality

Conversion is defined using a combination of an interpretation ¢ of terms of
CZC™ into other terms of CZC™, and a new reduction —,8+ns applied to the
interpreted terms. This unusual definition is necessary since we want two terms
to be convertible when there canonical forms (calculated by the interpretation)
are equivalent for a certain relation (the new notion of reduction).

Since ¢ is not necessarily idempotent, it is impossible to define the conversion
as the closure of a reduction. We see here that deciding equality (=,s+czc) and
computing (— 7w) are not anymore the same issues, but the two notions have
to be compatible, as it is stated in property 1.

Definition 2. We define p on terms and environments recursively as follows:

— ¢(Class(A, nf, 1)) = Class(p(A), o(nf), (p(nf) (1)),
— C[t] = Clp(t)] where C is a context different than Class(_).

—o(H=Nand oI =x:T)=p(I):x:0(T)
Definition 3. We define — .5, =540, ¢z 05 follows:

— Elimnorm(A, nf, f, Class(A, nf ,t)) —np (f t)
— =,34nf 15 the congruent closure of —,, —pg and — .
— t1 and ty are convertible (t1=czenta) iff Y(t1) =ppnp ©(t2).

Property 1. If t —o7en u then t =pron u.

2.4 Typing

The typing system contains the rules of CZC (given in appendix B), except the
conversion rule, plus the following rules:

I'FA:Set I'kFnf:A— A IntroN:F'—t:A I'+ Norm(A, nf) : Set

FormN s = N orm (A, n/) - Set T'F Class(A, nf, t) : Norm(A, nf)

I'Ht: T1 '+ Tl,TQ .S TIECICW‘T2
I't:Ts

Conv :

I'FP:Sort I'kt:Norm(A,nf)
I'-rH:A—P
I' + Elimnorm(A, nf, H,t): P
I't P:Norm(A,nf) — Sort I'tFt:Norm(A,nf)
I'H: (s: A)(P Class(A, nf, s))
'+ Elimnorm(A, nf, H,t) : (P (IdNorm(A, nf,t)))
with IdNorm(A,nft) =acr Elimnorm(A;nf,([x:A] Class(A,nf x)),t)

In the rule EimN we use the term IdNorm, which maps Class(...,z) to
Class(...,(nf z)). It is a consequence of the implicit normalization done with
the reduction —,; (and ¢) defined previously. It is necessary to ensure that
the reduction —,; preserves typing. We see here that Elimnorm(A, nf, H,t) is
not the proof that P is verified by ¢ but by the canonical form of .

ElimN,oqcp :

ElimN :

Now it is easy to replace the property (nf s Zorc s) by any equivalent induc-
tive predicate to have a powerful principle to define function or make inductive
proofs on normalized types. See appendix A for an example.

3 Properties of CZC™

Important results about this system are:

1. subject reduction, which proof is classical, similar to what can be found in [14]
or [8].

2. strong normalization — c7cos on well typed terms, that is proved in the
following sections as a consequence of the analog property of CZC.

3. decidability of typing, that is a consequence of the decidability of =;;cw,
that is a consequence of 4 and 5

4. strong normalization of — 54, on well typed terms, which proof is com-
pletely similar to 2.

5. confluence (Church-Rosser) of —, 4 ,, proved using a classical the notion

of parallel reduction.

3.1 A translation from CZC™ to CZC

To prove strong normalization of our reduction — 34,5 we use the translation
() from CZIC™ to CIC, such that if t —sozew ', then (t) —seze (t'). Thus,
since () preserves also typing, SN (CZC™) is a consequence of SA'(CZC), which
is well known.

Definition 4. () is defined by induction as follows:
(Norm(A, nf)) = (Indnorm (A) {(nf))
(Class(A, nf,t)) = (indclass (A) (nf) ((nf t)))
(Elimnorm(A, nf, f,t)y = ((f) (rep (A) (nf) (1))
(CTE) = C[(t)]

For any other construction C'
We extend trivially () to environments:

(m = 0
(2 T) = (Y ==z (T)

9

Notice the interpretation of the new terms of CZC™ into an inductive type
(Indnorm defined below) of CZC. Terms of the form Class(...) are normalized
by () via nf. The type and terms of CZCused in the translation are defined as
follows:

— Indnorm is a parameterized inductive type, it corresponds to the type Norm:
Indnorm := [A:Set] [nf:A — A] Ind (X:Set) {A — X}

— the unique constructor of Indnorm corresponds to the construction Class:
indclass:= [A:Set] [nf:A — A] Constr(1,(Indnorm A nf)) *

— the destructor rep of Indnorm corresponds to Elimnorm:
rep:=[A:Setf[nf:A— A][t:(Indnorm A nf)]

Cases t of (indclass A nf)=z end.

The type of rep is the following: (A:Set) (nf:A — A) (Indnorm A nf) — A.

3.2 Properties of the translation ()

In this section we prove properties of () that will allow us to state in the follow-
ing section the strong normalization, subject reduction and confluence modulo
conversion of CZC™ . This is the technical part. The two main properties of ()

are that it preserves the typing relation and reduction.

We will note ¢ £ ¢/ when ¢ is equal to ' by definition of ().

In order to prove strong normalization of CZC™ from strong normalization
of CZC, () needs to preserve the typing relation. Before proving this property we
state a small lemma:

Lemma 1. For all terms X, Y and T, and for all environment I', if I' Fezc
(Indnorm X Y) : T or I' beze T : (Indnorm X Y), then I' Feze X ¢ Set and
I |_CIC Y: X — X.

Proof. This is deduced from the typing rules and the type of Indnorm which
is (A:Set) (nf:A — A) Set.
Lemma 2. If I' bogen w: T then (I') Feze (u) : (T).
Proof. By induction on the proof that I' Fozenr w : T All cases from CZC are

immediate since the typing rules of CZC are also typing rules of CZC™ . Finally
the only difficulty is the case of the rule ElimN:

— Last rule used is ElimIN, we know that:

u = Elimnorm(4, nf, f,t), and thus () £ () (rep (4) (nf) (1))

I' Fozenr Elimnorm(A, nf, f,t) : (P (IdNorm(A, nf,t)))
From the rule ElimN we know that the following assertions hold:

* To make things clear, we can say that this is what is defined in Coq when we write
the following definition:
Inductive Indnorm [A:Set, nf:A — A]:= indclass : A — (Indnorm A nf).
Where A and nf are parameters of the inductive type Indnorm.

10

(i) I'Fogem f:(s: A)(P Class(A4, nf,s))
So by ind. hyp.: (I') Feze (f) : (s : (A))((P) (indclass (A) (nf) ({nf) s)))

(if) I' Fegem t: Norm(A, nf)
So by ind. hyp.: (I") Feze (t) : (Indnorm (A) (nf))

(iii) I' Fozens P Norm(A,nf) — Sort.

By lemma 1 and (ii), we have:

(I') Feze (A) = Set, and (I') Feze (nf) : (A) — (A)

and so, from the type of rep we have:

(I') Feze (rep (A) (nf) (1)) : (A)

let us denote the term (rep (A) (nf) (t)) by v. By applying the typing rule

for application, we can conclude that:

(I') Feze ({f) v) - ((P) (indclass (A) (nf) ((nf) s)))[s < v].

Therefore:

(') Feze (u) = ((P) (indclass (A) (nf) ({nf) (rep (A) (nf) (1})))) (1)

On the other hand, we can verify that:

(P (1dNorm(A,nf ,t))=czcw ((P) (indclass (A) (nf) (rep (A) (nf) (t))))
which is the type of (u) in (I")(Cf. (1)). So by the conversion rule of CIC we
conclude that:

('Y Feze (u) : (P (IdNorm(A, nf,t))).

The second property that we want in order to prove that CZC™ is normalizing

is that () preserves reductions (lemma 4). We need to prove first that () is
coherent with substitutions, which is rather immediate.

Lemma 3. If t = ulz — v] is a term of CIC™ , then (t) = (u)[z — (v)].

Proof. By induction on u and then by cases. We suppose without loss of gener-
ality that all occurrences of x in u are free.

Now we can state the preservation of reductions:

Lemma 4. For all well typed terms t; and t» of CIC™Y, if t1 —5+nf 2 then
(t1) =5 (t2).

Proof. By induction on t;.

Base case: t; = z, Extern, Set or Type, then ¢; is not reducible by —,g4nf.
t1 = (z : u)v, then (t1) = (z : (u))(v) the reduction is necessarily done on a
strict sub-term of ¢;. There are two cases:

1. to = (z : w')v with u —,g4,s v, then (t2) = (z : (u’)){v). By induction
hypothesis, {u) —, (i), thus {t1) = (= : (u))(v) =1y (= : (W))(0) =
(t2). OK.

2. or ty = (z : w)v" with v —,g4,s v/, same argument. OK.

The following case are similar to the previous case: t; = [z : u]v, t; = Ind(z :
u)v, t; = Constr(i,u), t; = Norm(u,v,w), t; = Class(t,u, v, w).
t1 = (u v), then (1) = ({u) (v)), we distinguish two cases:

11

1. if the reduction is in a strict sub-term of #;, then the same argument as
in previous cases holds again.

2. if the reduction is on the head of t;, then it is a S-reduction, t; = ([z :
Tlw' v), and ty = v'[z — v]. So (t1) = ([z : (T)](w’) (v)). By lemma 3
(t2) = (u')[z < (v)] and therefore (t;) —3 (t2). OK.

— t1 = Elim(ug, ua,v;,u3){f;}, this case is similar to the previous one, giving
details here would involve to define precisely t-reduction, which is rather
long.

— t1 = Elimnorm(A, nf, f,t), then (t1) = ({f) (rep (A) {nf) (t))), there are two
cases:

1. if the reduction is in a sub-term of ¢;, then the above arguments holds.
2. if the reduction is done on the head of t;, then it is a nf-reduction, and
we know that:
o t = Class(A, nf,u) and therefore
(t1) = ((F) (rep (A) (nf) (Class(4, nf,u))))
L ((£) (rep {A) (nf) (indelass (4) (nf) ({nf) (u))))).
Which can be reduced by 4 and ¢ to
=5 () ((nf) (w))
o to = (f (nf u)). and therefore (t2) is equal to ((f) ({(nf) (u))).
We have proved that (t;) —s (t2). OK.

3.3 Strong normalization

Theorem 1. If there exists an infinite reduction A starting from a well typed
term t of CIC™ by —,3+nf, then there exists an infinite reduction A’ starting
from a well typed term of CIC ((t}) by — ..

Thus CIC™ is strongly normalizing on well typed terms.

Proof. The reduction exists by iteration of lemma 4, and (t) is well typed by
lemma 2.

4 Conclusion

We presented a method to specify a certain class of quotient. Our choice of a
function instead of a term rewriting system as in [2] is motivated by the fact
that functions are the computational object of the type theory. This allows to
use a rather simple extension of CZC and its reduction. However, defining nf by
a rewriting system remains a good idea for several reasons, in particular because
it is possible to reduce in a term at any position, which is not possible in general
with a recursive function and third it is more efficient.

The class of quotients that we can represent this way is the same as for [2],
i.e. quotient whose relation can be "oriented" into a computation.

For Rationals we can define nf as the function that reduces fractions to
irreducible fractions, but one needs more work to have a nice definition of @.

12

As we said in the beginning of the paper, focusing on a particular member of
an equivalence class at the moment of computation can be seen as a weakness
of our approach. But the fact that we use this artifice only when computing
allows to stay at the level of equivalence classes when reasoning. Indeed, the
terms Class(...,0I) and Class(..., (SI (PI 0I))) are identified only at
conversion level (of course they are propositionally equal) but are not reduced
one to the other.

Anyway it is clear that an implementation of normalized types should propose
several principles as we said previously. It should by the way be interesting to
see how automated induction methods as in [4] could be used to generate them
automatically. Indeed, such methods are for example able to generate NormInt
of previous section.

References

[1] G. Barthe. Extensions of pure type systems. In proc TLCA’95, volume 902 of
Incs. Springer-Verlag, 1995.

[2] G. Barthe and H. Geuvers. Congruence types. In H. Kleine Buening, editor,
Proc. Conf. Computer Science Logic, volume 1092 of Lecture Notes in Computer
Science, pages 36-51, 1995.

[3] F. Blanqui, J.-P. Jouannaud, and M. Okada. The Calculus of Algebraic Construc-
tions. In Paliath Narendran and Michael Rusinowitch, editors, 10th International
Conference on Rewriting Techniques and Applications, volume 1631 of Lecture
Notes in Computer Science, Trento, Italy, July 1999. Sprinyger-Verlag.

[4] Adel Bouhoula and Jean-Pierre Jouannaud. Automata-driven automated induc-
tion. In Twelfth Annual IEEE Symposium on Logic in Computer Science, pages
14-25, Warsaw,Poland, June 1997. IEEE Comp. Soc. Press.

[5] S. Boutin. Réflexions sur les quotients. thése d’université, Paris 7, April 1997.

[6] Thierry Coquand and Gérard Huet. The calculus of constructions. Information
and Computation, 76:95-120, February 1988.

[7] Thierry Coquand and Christine Paulin-Mohring. Inductively defined types. In
P. Martin-L6f and G. Mints, editors, Proceedings of Colog’88, volume 417 of Lec-
ture Notes in Computer Science. Sprinyger-Verlag, 1990.

[8] H. Geuvers. The church rosser property for Sn-reduction in typed A-calculi. In
Proc. Tth IEEE Symp. Logic in Computer Science, Santa Cruz, pages 453—-460,
1992.

[9] M. Hofmann. Eztensional concepts in intensional type theory. Phd thesis, Edin-
burgh university, 1995.

[10] M. Hofmann. A simple model for quotient types. In proc TLCA’95, volume 902
of Incs. Springer-Verlag, 1995.

[11] B. Jacobs. Quotients in simple type theory. Drafts and Notes, http://www.cwi.
nl/ bjacobs/, 1991.

[12] Christine Paulin-Mohring. Inductive definitions in the system COQ. In Typed
Lambda Calculi and Applications, pages 328-345. Springger-Verlag, 1993. LNCS
664.

[13] G. Malcolm R. Backhouse, P. Chisholm and E. Saaman. Do-it-yourself type
theory. Formal Aspects of Computing, 1989.

[14] Benjamin Werner. Meéta-théorie du Calcul des Constructions Inductives. These
de doctorat, Univ. Paris VII, 1994.

13

A Example: the integers

We shall now describe by an example the use of normalized types. We define the
integers (Z), using a type Int that has 3 constructors 0, S and P, and a function
nf that eliminates the useless combinations : (S (P _)) and (P (S _.)). To improve
readability, we present this example as a pseudo Coq session. Coq is a tool that allows
to interactively define, and type, terms of CZC. One way to define terms is to build
them with a proof engine interactively by means of a set of tactics. We will suppose
here that it has been extended to CZC™. Actually, normalized types have only been
axiomatized in the real Coq. Int, nf and I have been defined, in particular I has been
proved. Of course when we use normalized types, we pretend that normalized types
have been implemented in the system Cogq, which is not the case (though it will be
implemented in a non official version of the system in a short future).

A.1 Basic definitions

We assume that the propositional equality is defined like it is presently in Coq, i.e. as
the least reflexive relation:

Inductive eq [A:Set; x:A] : A->Prop := refl_equal : (eq A x x)
We first define the underlying type Int:
Inductive Int : Set := 0: Int | S: Int -> Int | P: Int -> Int.

Then we define the function nf:

Fixpoint nf [n:Int]: Int :=
Cases n of

0 => 0
| (S a) => Cases a of
0 => (S 0)
| (S y) => Cases (nf a) of 0 => (S 0)
| (S x)=>(S (5 x))
| (P x) =>x end
| (P y) => (nf y) end
| (Pa)= ... end.

Notice that it is written for a head-first strategy. That way, a term of the form
(nf (P (S (P x)))) will reduce to (nf (P x)), which is not the case with the more
obvious function (the two terms are only provably equal). This is a weakness of the
normalized types that we briefly discuss in the conclusion.

A.2 Definition and use of the normalized type

From now we still present the example in Coq syntax but it is supposed that the system
has been modified to deal with normalized types as it is described in this paper. We
define the normalized type representing Z:

Definition Z: Set := Norm (Int,nf).

Assuming that our notion of convertibility has been implemented in the system,
Class(Z,nf,0) and Class(Z,nf,(S (P 0))) are convertible, therefore we can make
the following proof of S P 0 = 0:

Lemma (eq Z Class(Int,nf,0) Class(Int,nf,(S (P 0)))).

14

Exact (refl_equal Z Class(Int,nf,0)). Save.

Let us show now the definition of a function. We first define a function IdInt on
the underlying type and then we define IdZ on Z using Elimnorm and IdInt:
Definition IdInt : Int -> Z := [x:Z] Class(Int,nf,x).

Definition IdZ : Z -> Z := [x:Z] Elimnorm(Int,nf,IdInt,x).

Now we can apply IdZ to several terms and see how it is computed.
Eval Compute in (IdZ Class(Int,nf,0)) = Class(Int,nf,0)

Eval Compute in (IdZ Class(Int,nf,(S (P 0)))) = Class(Int,nf,0)

Let us follow step by step the second reduction:

(1dZ Class(Int,nf,(S (P 0))))

—p Elimnorm(Int,nf,IdInt,Class(Int,nf,(S (P 0))))

—,f (IdInt (nf (S (P 0)))) —" (IdInt 0) —™ Class(Int,nf,0)

Notice that because of the reduction —,f, (S (P 0)) is reduced to 0 before being
applied to IdInt, this is why the two terms above are reduced to the same. We see
here an example of the way incoherence by ¢ (explained in section 1) is avoided in our
system: nf s applied before any c-reduction on a normalized term can occur.

A.3 Better induction scheme

The following principle is a stronger elimination scheme in case that nf is idempotent:
Elim_A: (A:Set) (nf: A -> A) ((x:Int) (nf (nf x))= (nf x))
-> (P: A -> Prop) (H:(s:A) (nf s = s) (P Class(A,nf,s)))
-> (t:(Norm (A,nf))) (P t)

It is easily provable in CZC™, and we can deduce from it a stronger elimination principle
for Z. We have to prove is that nf is Idempotent, and then instantiate Elim_A:
Lemma I:(x:Int) (nf (nf x))= (nf x). ..<taclics>Save.
Lemma E1Z:

(P:Z->Prop) (H: (x:Int) (nf x = x) (P Class(Int,nf,x)))->(t:Z) (P t).
which is already a better induction principle. We can build an even more useful one by
defining inductive predicate NormInt equivalent to the proposition (nf x = x):
Inductive pos:Int->Prop:=p0:(pos (S 0)) | pS:(x:Int) (pos x)->(pos (S x))
Inductive neg:Int->Prop:=n0:(neg (P 0)) | pS:(x:Int) (neg x)->(neg (S x))
Inductive NormInt: Int -> Prop := norm0 : (NormInt IO)

| normpos: (x:Int) (pos x) (NormInt x)
| normneg: (x:Int) (neg x) (NormInt x).

Lemma Normint_correct : (x:Int) (NormInt x) <-> (nf x = x). ... Save.
Finally we can replace one by the other and obtain the well known principle on Z:
Lemma IZ:
(P: Z -> Prop) (H:(x:Int) (NormInt x) (P Class(Int,nf,x))) -> (t:Z) (P t)

B The calculus of inductive constructions

Here is a short description of the calculus of inductive constructions first defined in [7],
following notations of [14] and [12]. We first give the syntax, then the typing and
reduction rules.

15

The Syntaz is the following:

Variables : Vi=wy z...
Sorts: S = Set | Type | Extern®.
Terms:

To=V|S|V:TT|(V:T)T'|TT
| Ind(V : T)(T) | Constr(n,T) n € IN | Elim(T,7,T, T){T}
Ind, Constr and Elim are respectively the type constructor, term constructor and
destructor for inductive types.

Reduction reduction of CIC is the congruent closure of 3 and :-reductions. See [14]
for precisions on the term A[t1, s, t2]. It roughly applies the good arguments (T7L) to
the branch (fx) of the recursive definition.
(Jz : t]t1 t2) —5 ta[z\t2]
Elim(I, Q. a, Constr(k, I'/m){ fi} —. (A[Ck(I), fx, Fun_Blim(I,Q, f:)Jm)
where I =Ind(X : A){Ci(X)}

The type system
(Ax1)[] F Set: Type (Ax2)[] F Type : Extern

JARH tt1) Fta: I+ st1)to : JARH tti)kFtt
(PROD—S)—(I Y 2:s (Lawm-s) (z:ta)ta i s (z:t1) 2
'kF(z:ti)ta:s bz :t1]t: (z:t1)ts

I'+t:Set I'HFA:B r I't:T I'-A:B r
(W-SET) © aé (W-TYPE) ype o ¢
I':(a:t)F A: B I':(a:t)FA:B
I'Ety:t it r 'ty :T1)Ts 'ty Ty
(Var) 1 t2 (z:t1) € (Arr) 2t (z)T 1 1
I'kFzxz:t 'k (ta t1): Tolz — t1]
I'+t:1Ty I'+-1Ty:s I'ET5:s Ty =p, 1>
(Conv)
'kt:Ts
(1)Ar(A,Set) 'k A:Type Vil (X :A)F Ci(X):Set) Vi.constr(Ci(X))
ND

I'FInd(X : A){Ci(X)}: A
I'Find(X : A){Ci(X)}: T 1< n<|Ci(X)|
(I" + Constr(n, Ind(X : A){C;(X)}): Cn(Ind(X : A){C;(X)}))
A= (e:A)Set I=Ind(X:A){Ci(X)} TI'Fu:A T'tt:(Iu)
FFQ:(m: A)(I =) —Set Vi(I'+ f; : A{C;(I),Q, Constr(i, I)})

(INTRO)

(W-Evin) T FEm(1,Q,u,0{fi}:(Qut)
A=(z:A)Set I=Ind(X:A{C;(X)} I'tu:A I'kFt:(lu)
, [‘I—Q:.(w:A)(Im)—>Type ,
(S-Fun) Vi.Small(Ci(X)) Vi(T'F fi: A{Ci(I),Q, Constr(i, I)})

'k Elim(I1,Q,u,t){fi}: (Q u t)

The system is composed of the usual set of typing rules for a pure type system
(PTS) and a specific set of rules for inductive types (Ind and below).

The EriM rules make use of the term A{C;(I),Q, Constr(i,I)}, which is again
defined in[14], that builds the type that each branch of a recursive function defined
with Elim should have.

The constructions constr(C;(X)), Ar(A,Set) and Small(C;(X)) are very important
syntactic conditions that must be satisfied to ensure normalization and coherency of
the system. There exact formulation is not very important for us, the important point
is that the resulting calculus has nice properties like strong normalization, confluence
and subject-reduction, and that normalized types can therefore be define from it.

% it is possible to replace Extern by a universe hierarchy, actually it is the case for the
system implemented in Coq and Lego, it seems not difficult to extend our work to a
universe hierarchy.

